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The multi-species coalescent (MSC) provides a theoretical foundation for
modern phylogenetics and comparative population genetics. Its theoretical
properties have been heavily studied but there are still aspects of the MSC
that are largely unknown, including the covariances in pairwise coalescence
times, which are fundamental for understanding the properties of statistics
that combine data from multiple species, such as the fixation index (FST).
The major contribution of this study is the derivation and implementation
of exact expressions for the covariances of pairwise coalescence times under
phylogenetic models with piecewise constant changes in population size,
assuming no gene flow after species divergence. We use these expressions
to derive the variance in average pairwise differences within and between
populations. We then derive approximations for the expectation and bias of
a sequence-based estimator of FST, a commonly used genetic measurement
of population differentiation, when it is applied to a non-recombining
region of the genome. We show that the estimator of FST is generally biased
downward. A freely available software package is provided, STCov, to calcu-
late the mean, variances and covariances in coalescence times presented here
under user-defined piecewise-constant species trees.

This article is part of the theme issue ‘Celebrating 50 years since
Lewontin’s apportionment of human diversity’.
1. Introduction
The multi-species coalescent (MSC) is a generalization of Kingman’s coalescent
[1] that describes the joint coalescence process in multiple species, or popu-
lations, as they diverge from each other. The MSC provides a theoretical
foundation for phylogenetic analyses as it fully describes and characterizes
the process of incomplete lineage sorting [2–5]. It is, therefore, central in the uni-
fication of the fields of population genetics and phylogenetics. It is also central
for understanding divergence between populations and allows the theoretical
prediction of the amount of variance within and between populations. In this
sense, it provides a theoretical framework for relating apportionment of genetic
variance within and between populations, as proposed by Lewontin [6], to
specific models of population divergence.

One of the important utilities of theoretical models, such as the MSC, is to
provide predictions regarding observed statistics, eventually leading to the
development of estimators of population-level parameters. In this regard, an
important use of the MSC has been to understand the properties of pairwise
nucleotide differences within and between species, which is one of the most
commonly used statistics to analyse population genetic data. Takahata & Nei
[7] derived expressions for the variance in average pairwise nucleotide differ-
ences and Nei and Li’s ‘net number of differences’ [8], (d). They assumed a
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Kingman’s coalescent model [1] of two diverging popu-
lations, and an infinite sites model of mutation [9,10]. These
classical results provided insights into when the net
number of differences can be used as a reliable estimator
for species divergence, and the appropriate sampling
schemes to reduce the variance. It is also one of the first
uses of the MSC.

Takahata & Nei [7] defined dX and dY to be the mean
number of nucleotide differences between two (haploid) indi-
viduals sampled from within population X or Y, respectively.
Similarly, dXY is the average number of nucleotide differences
between two individuals randomly sampled from popu-
lations X and Y. The statistics dX, dY and dXY are then
calculated based on sample sizes of nX and nY from popu-
lations X and Y, respectively, as follows:

dX ¼ 2
nXðnX � 1Þ

XnX�1

i¼1

XnX
i0¼iþ1

ki,i0 ð1:1Þ

dY ¼ 2
nYðnY � 1Þ

XnY�1

i¼1

XnY
i0¼iþ1

k j,j0 ð1:2Þ

and dXY ¼ 1
nXnY

XnX
i¼1

XnY
j¼1

ki,j, ð1:3Þ

where ki,i0 is the number of pairwise nucleotide differences
between individuals (haplotype genomic sequences) i and
i0. Henceforth, in this study, an ‘individual’ is a non-recom-
bining haploid genomic sequence.

To measure the net number of nucleotide differences
between two populations, Nei & Li’s [8] d is defined as

d ¼ dXY � 1
2
ðdX þ dYÞ: ð1:4Þ

The relationship between differences within and between
populations gives an indication of the degree of population
subdivision. d specifically measures the excess number of
substitutions between populations, which quantifies the
extent of divergence. These measures of species divergence
form the basis for many evolutionary analyses and are
among the most basic and commonly used inferential tools
in modern population genetics.

The pairwise differences dXY, dX and dY provide measures
of genetic variability within and between species/popu-
lations that are applicable to DNA sequencing data and
have been fundamental in analyses of such data since the
1980s. However, since their invention, the question quickly
arose of how they relate to older measures of genetic diver-
gence and variability originally derived for independent
loci such as allozymes, in particular, how are they related to
Wright’s FST? Furthermore, how should FST appropriately
be calculated for DNA sequencing data? These questions
were answered by Slatkin [11], who argued that FST is equiv-
alent to a ratio of average coalescence times of different pairs
of genes. Assuming an infinite sites model, he then showed
that Wright’s FST in the context of DNA sequencing data
could be expressed in terms of dXY, dX, and dY (see equation
(7.2) below).

The statistics dXY, dX and dY have been, and continue to be,
a cornerstone of the analysis of DNA sequence data. Under-
standing their mean, variances and covariances under
arbitrary genetic and species tree models is essential for their
biological interpretability, and considerable previous work
has been devoted to understanding their properties. Tajima
[12] and Takahata & Nei [7] studied the variance of average
pairwise differences in a panmictic population and in a split
model with constant population size. In a series of papers,
Wakeley studied the variance in pairwise differences in a gen-
eral model of population sub-division [13] and the average
pairwise differences in a model with migration [14], and
later demonstrated the impact of recombination on the numeri-
cal stability of such estimates [15]. Tang et al. [16] derived an
estimator for the time to most recent common ancestor
(TMRCA) of a sample of DNA sequences along with quantifi-
cation of sampling error by leveraging pairwise differences,
free of population structure assumptions.

The multi-species coalescent has received renewed atten-
tion in the age of genomics because of its applicability in
phylogenetic analyses using multiple loci. Efromovich &
Kubatko [17] presented a method to calculate the distribution
of coalescent times at the root of a species tree with an arbi-
trary number of populations. In a pair of papers,
Wilkinson-Herbots provided unified analytic results for
both the distribution of coalescence times and pairwise differ-
ences under models of isolation with migration [18,19] under
assumptions of constant population size. Heled [20] helped
to further marry previously pairwise difference quantifi-
cation and the multispecies coalescent by deriving closed-
form exact results for the ‘average sequence dissimilarity’
between pairs of sequences drawn at random under a
simple two-species coalescent process with constant popu-
lation size. Many methods have also been developed to use
pairwise differences under the MSC while leveraging large
genomics datasets to infer species tree topologies and
divergence times (e.g. [21–23]).

Takahata&Nei’s [7] original results on dXY, dX and dY relied
on the assumption of constant and equal population sizes
among populations and through time. Using the MSC, we
here extend these results to arbitrary piecewise constant popu-
lation size histories along a phylogeny. To do so, we derive and
present general equations for calculating the covariance of pair-
wise coalescence times, for any two, three or four haploid
individuals, arbitrarily chosen within the phylogeny. We also
derive expressions for the expected shared branch length
between sets of lineages. We provide a software package,
STCov, for calculating these theoretical MSC quantities. We
then use these results to demonstrate the effects of various
demographic, mutational and sampling size changes on the
distribution of d, and extend the discussion to specifically
investigate the statistical properties of Slatkin’s FST estimator
[11], and some of its various applications [24–26], as it is the
most commonly used measure of FST using sequence data.
We investigate the effects of bottlenecks, sampling variance
and demographic changes on various FST-based measure-
ments, and present the magnitude of downward bias when
using FST estimated from a ‘ratio of averages’ approach to Slat-
kin’s estimator, as is typical in single gene analyses.
2. Mean, variance and covariance of average
pairwise differences

We first review previous results for the mean, variance and
covariance of average pairwise nucleotide differences for
individuals sampled from two populations, X and Y,
as functions of the individual pairwise difference terms (ki,i0,
ki,j · · ·). Suppose i, i0, i00, i000 are individuals from population
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X, and j, j0, j00, j000 are individuals from population Y. By
definition we have,

EðdXÞ ¼ Eðki,i0 Þ, ð2:1Þ
and likewise for population Y. Suppose i, j are individuals
from X, Y, respectively, then,

EðdXYÞ ¼ Eðki,jÞ: ð2:2Þ
Following the derivations in Tajima [12], Takahata & Nei [7]
and Wakeley [14], under an infinite-site model of mutation,
the variance and covariance of dX, dY, dXY and d can be
written as follows:

VarðdXÞ ¼ 1
nXðnX � 1Þ 2Eðk2i,i0 Þ þ 4ðnX � 2ÞEðki,i0ki,i00 Þ

�
þðnX � 2ÞðnX � 3ÞEðki,i0ki00 ,i000 Þ� � Eðki,i0 Þ2,

ð2:3Þ

VarðdYÞ ¼ 1
nYðnY � 1Þ 2Eðk2j,j0 Þ þ 4ðnY � 2ÞEðk j,j0k j,j00 Þ

h
þðnY � 2ÞðnY � 3ÞEðk j,j0k j00 ,j000 Þ

�� Eðk j,j0 Þ2,
ð2:4Þ

VarðdXYÞ ¼ 1
nXnY

Eðk2i,jÞ þ ðnY � 1ÞEðki,jki0 ,jÞ þ ðnX � 1ÞEðki,jki,j0 Þ
h

þðnX � 1ÞðnY � 1ÞEðki,jki0 ,j0 Þ
�� EðkijÞ2

ð2:5Þ
and VarðdÞ ¼ VarðdXYÞ þ 1

4
VarðdXÞ þ VarðdYÞ½ �

þ2CovðdX, dYÞ � CovðdXY, dXÞ�
� CovðdXY, dYÞ:

ð2:6Þ

Further, formulae for the covariance of average pairwise
difference terms can also be reduced to functions of individ-
ual pairwise terms

CovðdX, dYÞ ¼ Covðki,i0 , k j,j0 Þ: ð2:7Þ
This simple result is due to the fact that the covariance of
sums can be decomposed into the sums of covariances.

As presented in Takahata & Nei (equations 18a–d) [7],
covariance equations involving the cross population can be
expressed as follows:

CovðdXY, dXÞ ¼ 2
nX

Eðki,i0ki,jÞ þ nX � 2
nX

Eðki,i0ki00 ,jÞ

� Eðki,i0 ÞEðk j,j0 Þ ð2:8Þ
and

CovðdXY, dYÞ ¼ 2
nY

Eðk j,j0ki,jÞ þ nY � 2
nY

Eðk j,j0ki,j00 Þ

� Eðki,i0 ÞEðk j,j0 Þ: ð2:9Þ
These expressions are all functions of the individual pairwise
differences, e.g. ki,i0. In what proceeds we demonstrate that
these expressions can be further generalized as functions of
pairwise coalescence times, e.g. ti,i0.
3. Pairwise mutational differences
In this section, we generalize previous work [7,12] by
deriving expressions for the covariance of pairwise differ-
ences under arbitrary piecewise-constant demographic
settings using the MSC. Throughout this section, we will
assume an infinite sites model [9,10], with no recombination.
We first review results on the mean and variance from
previous work (e.g. [7,12,14]), and then extend results to
the covariance.
(a) Mean and variance
Note, given a coalescence time ti,j between two individuals,
i and j, the expected number of nucleotide differences
between the pair is equal to 2μti,j, for i.e.

Eðki,jÞ ¼ 2mEðti,jÞ: ð3:1Þ
Under the assumption that the number of mutations
conditional on a genealogy is Poisson, the conditional
expectation and variance of pairwise differences are equal.

Varðki,jjti,jÞ ¼ Eðki,jjti,jÞ: ð3:2Þ
By applying the law of total variance, we can decompose the
unconditional variance of pairwise differences as

s2
ki,j ¼ Varðki,jÞ ¼ E Varðki,jjti,jÞ

� �þ Var Eðki,jjti,jÞ
� �

¼ Eð2mti,jÞ þ Varð2mti,jÞ
¼ 2mEðti,jÞ þ 4m2Varðti,jÞ:

ð3:3Þ

We can obtain the second moment of the distribution of pair-
wise nucleotide differences, Eðk2i,jÞ, from the definition of
variance,

Eðk2i,jÞ ¼ s2
ki,j þ Eðki,jÞ2 ¼ 2mEðti,jÞ þ 8m2Eðti,jÞ2: ð3:4Þ
(b) Covariance
Let i, i0, j, j0 be four individuals sampled from arbitrary
populations. Let T be a local coalescent tree relating the
four individuals restricted to a non-recombining region.
Here, we show that

Covðki,i0 , k j,j0 jTÞ ¼ mti,i0>j,j0 : ð3:5Þ
Consequently, we further derive the unconditional quantity

Covðki,i0 , k j,j0 Þ ¼ mEðti,i0>j,j0 Þ þ 4m2Covðti,i0 , t j,j0 Þ, ð3:6Þ
where ti,i0>j,j0 denotes the amount of branch length on T
shared between the branch connecting pair i, i0 and the
branch connecting pair j, j0. Figure 1 provides an illustra-
tive example of this quantity, and electronic supplementary
material, §F, provides a more technical treatment.

To prove these results, we start by revisiting the idea that
under the infinite-site model, the mutational process given a
branch length is Poisson. Given local tree, T, with coalescence
times ti,i0 and tj,j0 from T, conditional pairwise differences
follow a Poisson distribution, written as

ki,i0 jti,i0 � Poissonð2mti,i0 Þ and k j,j0 jt j,j0 � Poissonð2mt j,j0 Þ,
where 2ti,i0 is the amount of total branch length locally
between the two individuals. A key feature of the Poisson
distribution is that the sum of Poisson random variables is
also Poisson. To exploit this, let ti,i0>j,j0 denote the amount of
branch length on T shared by pairs i, i0 and j, j0 (figure 1).
The branch length between i, i0 not shared with pair j, j0 is
denoted by ti,i0nj,j0, with similar notation for pair j, j0 by swap-
ping labels. We can decompose the branch lengths into the
shared and non-shared segments as

2ti,i0 ¼ ti,i0>j,j0 þ ti,i0nj,j0 and 2t j,j0 ¼ ti,i0>j,j0 þ t j,j0ni,i0 : ð3:7Þ



Þ

a b c d a b c d a

a1 + a2 a3

bc d a bc d

(a)

(b)

(c)

possible topologies

a 1

a 3

a
2

T1 T2 T3 T4

=

shared branch length

expected shared branch length

ta,b∩c,d

E(ta,b∩c,d ) = E(α1 + α2|T3 )P (T3 ) + E(α3|T4) P (T4)

0 0

Figure 1. (a–c) Explanation of expected shared branch length for four unique individuals. Bolded blue lines indicate the branch length between individuals a and b.
Bolded red lines indicate branch length between c and d. Overlapping blue and red lines (along with α terms) indicate shared branch length. The four tree
topologies are representative of the possible gene tree orderings, but it should be noted that these representative trees assume a and b are exchangeable, as
well as c and d. The expected shared branch length is a weighted sum of the shared branch lengths across all possible topology orderings. (Online version in colour.)
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Notice that ki,i0>j,j0 jT, ki,i0nj,j0 jT and k j,j0ni,i0 jT are therefore indepen-
dent Poisson random variables. Similarly, ki,i0 ¼ ki,i0>j,j0 þ ki,i0nj,j0
and k j,j0 ¼ ki,i0>j,j0 þ k j,j0ni,i0 , where ki,i0>j,j0 , k j,j0ni,i0 and ki,i0nj,j0 are
independent of each other conditionally on T.

We can expand Cov(ki,i0, kj,j0|T ), (equation 3.5) as follows:

Covðki,i0 , k j,j0 jTÞ ¼ Covðki,i0>j,j0 þ ki,i0nj,j0 , ki,i0>j,j0 þ k j,j0ni,i0 jTÞ
¼ Varðki,,i0>j,j0 jTÞ þ Covðki,i0>j,j0 , ki,i0nj,j0 jTÞ
þ Covðki,i0>j,j0 , k j,j0ni,i0 jTÞ þ Covðki,i0nj,j0 , k j,j0ni,i0 jT

¼ Varðki,i0>j,j0 jTÞ
¼ mti,i0>j,j0 :

The overall result is that the covariance of pairwise differ-
ences given the coalescent tree T is equal to the mutation
rate times the shared branch length.

To get the unconditional quantity, Cov(ki,i0, kj,j0 ) (equation
3.6), we apply the law of total covariance:

Covðki,i0 , k j,j0 Þ ¼ E Covðki,i0 , k j,j0 jTÞ
� �þ Cov Eðki,i0 jTÞ, Eðk j,j0 jTÞ

� �
¼ Eðmti,i0>j,j0 Þ þ Covð2mti,i0 , 2mt j,j0 Þ
¼ mEðti,i0>j,j0 Þ þ 4m2Covðti,i0 , t j,j0 Þ:

The case when for only three unique individuals (ki,i0, ki,j)
has the same form, by replacing j0 with i in the equations
above.

Takahata & Nei [7] have previously derived formulas for
the covariance under constant population size; see electronic
supplementary material, §C, which presents a visualization
of their results as a comparison to the generalized results
presented here.
4. Mean, variance and covariance in pairwise
coalescence times

We assume species evolution follows a bifurcating species tree
S ¼ ðS,~t, ~hÞ, with no migration (see figure 2a). Each branch,
i, of S is parameterized by constant diploid population size ηi,
start time τi, and end time τp(i), where p(i) is the parent branch
of i. Let μ be the mutation rate (constant across the genome/
species) per sequence per generation. Time is measured in
units of generations in the past. We implicitly assume that all
coalescent calculations here are conditioned on a fixed species
tree S, although the tree is not always indicated in the notation
for the sake of simplicity and compactness.
(a) Mean and variance in coalescence times
Let ti,j be the coalescence time of two individuals, i and j,
sampled from species X and Y, respectively, in a non-recom-
bining region of the genome. For species tree S, denote the
marginal tree SXY ¼ ðSXY,~tXY, ~hXYÞ of two species (see
figure 2b). Here, ~tXY represents the set of divergence times
of species ancestral to both X and Y, indexed by (τ1, τ2,…),
where τ1 : = τXY, the divergence time for species X and Y. Simi-
larly, ~hXY represents the corresponding population sizes.
Suppose there are V≥ 1 intervals in SXY.

Under this marginal tree, we can analytically calculate the
first two moments of the distribution of ti,j as

Eðti,jjSÞ ¼
XV
k¼1

P22ðt1, tkÞ
ðtkþ1

tk

ti,jPðti,jjS, tkÞdti,j

¼
XV
k¼1

P22ðt1, tkÞ
ðtkþ1

tk

ti,j
2hk

e�ððti,j�tkÞ=2hkÞ dti,j

¼
XV
k¼1

P22ðt1, tkÞ �ðtkþ1 þ 2hkÞ e�ððtkþ1�tkÞ=2hkÞ þ tk þ 2hk

h i
ð4:1Þ

and

Eðt2i,jjSÞ ¼
XV
k¼1

P22ðt1, tkÞ
ðtkþ1

tk

t2i,jPðti,jjS, tkÞdti,j

¼
XV
k¼1

P22ðt1, tkÞ
ðtkþ1

tk

t2i,j
2hk

e�ððti,j�tkÞ=2hiÞ dti,j

¼
XV
k¼1

P22ðt1, tkÞ �ðt2kþ1 þ 4tkþ1hk þ 8h2
kÞ e�ððtkþ1�tkÞ=2hkÞ

h

þt2k þ 4tkhk þ 8h2
k

�
:

ð4:2Þ
P22(τ1, τk) represents the probability that lineages i and j fail to
coalesce in the time interval (τ1, τk), (two lineages in, two



X Y Z O X Y
SXY = (X, Y )

XY = (τXY , τXY Z , τXY ZO)

SXY = (SXY , XY , XY )

XY = (ηX , ηY , ηXY , ηXY Z , ηXY ZO)

S = (S, , )

= (τXY , τXY Z , τXY ZO)

= (ηX , ηY , ηZ , ηO, ηXY , ηXY Z , ηXY ZO)
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ηXY

ηXY Z

ηXY ZO

ηX ηY

ηXY

ηXY Z

ηXY ZO

time
(before present)

τXY

τXY Z

τXY ZO

0

(a) species tree (b) marginal species tree

Figure 2. Species tree notation. (a) Example of notation used for a four-species tree with topology, divergence times and constant population sizes within each
population which can vary between species. (b) Example of a marginal species tree, the result of subsetting a larger species tree. As a consequence, the population
size histories are no longer constant within each species, but instead are piecewise constant.
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lineages out). Formally, this is the probability that two
lineages which exist in the same population at time interval
τ1 have not coalesced by time τk (backwards in time)

P22ðt1, tkÞ ¼
Y

t1�tl,tk

e�ððtlþ1�TlÞ=2hlÞ: ð4:3Þ

Note that the mean Eðti,jjSÞ and variance Varðti,jjSÞ ¼
Eðt2i,jjSÞ � Eðti,jjSÞ2 of pairwise coalescence times under the
standard piecewise constant coalescent process are just
simply weighted sums over coalescence intervals.
(b) Covariance in pairwise coalescence times
The challenge in calculating the covariance terms from a
species tree, S, comes from the combinatorial problem of inte-
grating over all of the possible times and orderings of the
coalescent events along the multi-species tree. The general
formula for covariance in this case is given by

Covðti,i0 , t j,j0 jSÞ ¼ Eðti,i0 t j,j0 jSÞ � Eðti,i0 jSÞEðt j,j0 jSÞ,
where the last term is simply a product of independent
expectations. The first term on the right-hand side of the
equation is what we will focus on; in particular, we write

Eðti,i0 t j,j0 jSÞ ¼
ð1
Dj,j0

t j,j0Pðt j,j0 jSÞ
ð1
Di,i0

ti,i0Pðti,i0 jt j,j0 , SÞdti,i0 dt j,j0 :

ð4:4Þ
Di,i0 is the species divergence time between individuals i, i0

from S, where Di,i0 = 0 if i, i0 are of the same species
(similarly for Dj,j0 ). We assume all coalescence events must
be at least as ancient as the species divergence time (e.g. tj,
j0 ≥Dj,j0 ), i.e. we assume no introgression, migration or
admixture, etc.

To evaluate this quantity, Eðti,i0 t j,j0 jSÞ, we consider six
separate conditional cases. For a bifurcating tree of four indi-
viduals, there are three unique coalescence events. The six
cases correspond to the possible orderings of coalescence
events for this local tree of four individuals, given that we
structure the joint likelihood as Pðti,i0 jt j,j0 , SÞPðt j,j0 jSÞ:

C1. ti,i0 is the first coalescent event.
C2. ti,i0 is the second event, tj,j0 is the third.
C3. ti,i0 = tj,j0 as the third coalescent event.
C4. tj,j0 is the second event, ti,i0 is the third.
C5. tj,j0 is the first event, ti,i0 is the second.
C6. tj,j0 is the first event, ti,i0 is the third.

Here, ‘first event’ implies most recent, and ‘third’ implies
most ancient. These events are further illustrated in detail
in figure 3. Conditioning on each of these six events, and
evaluating each expectation separately, the expression for
the joint expectation becomes

Eðti,i0 t j,j0 jSÞ ¼
X6
k¼1

Eðti,i0 t j,j0 jS, CkÞPðCkjSÞ: ð4:5Þ

In the presence of no population isolation (all individuals
from the same species), but piecewise constant population
size history, the set of recursions and integrals is presented
in its entirety in the electronic supplementary material, §G.
This calculation is useful in the instance that all four lineages
survive to a common population without having coalesced
with one another, which occurs with some probability in
each case.

Introducing a species tree structure on top of the six cases
multiplies the number of cases to consider. There are
five general possible species tree configurations that can
arise (see electronic supplementary material, figure S13).
We have derived exact equations and recursions to evaluate
all six cases (C1,…, C6) across the five general possible tree
configurations, and have implemented them in C++ code
(STCov) which is freely available to use (more information
in the code availability section). From this implementation,
we are able to calculate exact theoretical quantities for these
statistics under any piecewise constant scenario.
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5. Accuracy of coalescent calculations
To demonstrate the accuracy of the coalescent equations
above, as implemented in our software STCov, we compare
the theoretical results (assuming infinite-sites) against
empirical estimates from gene trees under a finite-sites
model using ms [27]. We first test two simple demographic
scenarios for a tree of two species, X and Y: ηY = ηX, and
ηY = 2ηX (figures 4 and 5), where η represents scaled effective
population size. We assume ηXY = ηX in both scenarios. Let
lineages i1, i2, i3 originate in population X, and lineages j1,
j2, j3 originate in Y. We generate 1500 independent gene
trees from ms for each demographic scenario (with specified
population sizes and single divergence time which we vary
from 0–20 in units of 2ηX generations), and calculate
sample mean, variance and covariance terms. The figures
demonstrate that the theoretical calculations from STCov
match simulations (dots) well, while variation in the
empirical estimates can be attributed to a finite sample size.
6. Accuracy of pairwise difference calculations
In this section, we evaluate the accuracy of our results under
varying mutation rates, divergence times and population
sizes. We compare our results to simulated datasets.

We compare three population size change models,
denoted by ηY = 1ηX, ηY = 2ηX and ηY = 10ηX, along with
three mutation rates 2μηX = 10, 1, 0.1, for a total of nine simu-
lation scenarios. We present one of those scenarios here
(figure 6), and leave the full set of results to the electronic
supplementary material, figures S2–S10. While allowing for
variance in the empirical estimates from sample size, coalesc-
ent and mutational variation, there is strong agreement
between the theoretical and simulated results. Note that the
theoretical quantities assume an infinite-sites model of
mutation, whereas our simulations are performed assuming
a realistic, finite-sites model (1500 independent genes of
10 000 bp each; see electronic supplementary material for
full simulation details). We choose to compare this finite-
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sites model over simulations using a model of infinite sites to
demonstrate the applicability of the results to the types of
data that will be used in practice, and to demonstrate when
there are limitations. We leave a demonstration of the accu-
racy of our variance/covariance calculations in relation to
the previous results derived for constant population size
in Takahata & Nei [7] to the electronic supplementary
material, §C.
7. Accuracy in estimating FST
A direct extension of our discussion on the mean and
variance of average pairwise nucleotide differences is to the
measurement FST for a given species tree, mutation rate and
sample size. Slatkin (1991, equation 8) [11] presented a
coalescent-based definition of FST as a function of the differ-
ence in expected time to coalescence for a collection of
subpopulations. Specializing to two sub populations of
interest, X and Y, Slatkin’s FST can be expressed as

FST ¼ Eðti,jÞ � ð1=2Þ Eðti,i0 Þ þ Eðt j,j0 Þ
� �
Eðti,jÞ , ð7:1Þ

where i, i0 are from population X, and j, j0 are individuals
sampled from population Y. This definition of FST relies on a
ratio of estimates of average coalescence times, where average
pairwise differences in DNA sequence data are used as the
proxy to estimate the unknown coalescence times. Discussed
in Slatkin and Hudson et al. [11,26], for two populations X
and Y, FST can be estimated from a non-recombining portion
of the genome using

FST � dXY � ð1=2ÞðdX þ dYÞ
dXY

¼defineFGST: ð7:2Þ

For the sake of this paper, we differentiate FST and FGST as the
exact measurement from unobservable coalescence times and
the estimate from pairwise differences across multiple
sequences, respectively. As we have shown above, the expec-
tation, variance and covariance of these sample average
pairwise differences contained in equation (7.2) can be
derived using coalescent theory, for a given mutation par-
ameter μ and sample sizes. We can use these to study the
accuracy of the FGST estimator to Slatkin’s FST under an arbitrary
species tree, S.

To begin, it is important to note that the mean of a ratio is
not the ratio of means, specifically it is the case that

EðFGSTÞ =
EðdXYÞ � ð1=2Þ EðdXÞ þ EðdYÞð Þ

EðdXYÞ

¼ 2mEðti,jÞ þ m Eðti,i0 Þ þ Eðt j,j0 Þ
� �

2mEðti,jÞ ¼ FST:

ð7:3Þ
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This implies that the estimator FGST is potentially a biased
estimator of FST, such that FST � EðFGSTÞ = 0. To study
this bias, we need an expression for the mean of FGST. In gen-
eral, there is no closed form for the mean of a ratio of
dependent random variables, so we will first simplify our
terms, and then approximate the mean and variance using
a Taylor expansion. We can first simplify the expressions
for EðFGSTÞ

EðFGSTÞ ¼ E
dXY � ð1=2ÞðdX þ dYÞ

dXY

� �

¼ 1� 1
2
E

dX þ dY
dXY

� �
ð7:4Þ

and

VarðFGSTÞ ¼ Var
dXY � 1

2
ðdX þ dYÞ
dXY

0
B@

1
CA

¼ 1
4
Var

dX þ dY
dXY

� �
: ð7:5Þ

We are now interested in the mean and variance of the ratio
(dX + dY)/dXY. As generally discussed in Stuart & Kendall
[28], we can use a second-order Taylor expansion of f (A,
B) =A/B around the mean values ðEðdXÞ þ EðdYÞ, EðdXYÞÞ to
get an approximation to the mean, and a first-order expan-
sion around the means to get an approximation of the
variance of the ratio term. We can approximate the mean as

E
dX þ dY
dXY

� �
� EðdXÞ þ EðdYÞ

EðdXYÞ þ EðdXÞ þ EðdYÞ
EðdXYÞ3

VarðdXYÞ

� 1

EðdXYÞ2
CovðdX, dXYÞ þ CovðdY, dXYÞ½ �:

ð7:6Þ

By rearranging terms, observe that EðFGSTÞ is a function of FST,
along with other mean, variance and covariance terms

EðFGSTÞ ¼ 1� 1
2
E

dX þ dY
dXY

� �

� FST þ 1

2EðdXYÞ2
CovðdX, dXYÞ þ CovðdY, dXYÞð

� EðdXÞ þ EðdYÞ
EðdXYÞ VarðdXYÞ

�
: ð7:7Þ

Using this, we can get an expression for the bias of EðFGSTÞ

EðFGSTÞ � FST � 1

2EðdXYÞ2
CovðdX, dXYÞ þ CovðdY, dXYÞð

� EðdXÞ þ EðdYÞ
EðdXYÞ VarðdXYÞ

�
:

ð7:8Þ

Similarly, we can get a first-order approximation for the
variance of FGST:

VarðFGSTÞ ¼
1
4
Var

dX þ dY
dXY

� �

� 1
4

 
VarðdXÞ þ VarðdYÞ þ 2CovðdX, dYÞ

EðdXÞ þ EðdYÞð Þ2

þ EðdXÞ þ EðdYÞð Þ2
EðdXYÞ4

VarðdXYÞ

� 2
EðdXÞ þ EðdYÞ

EðdXYÞ3
CovðdX, dXYÞ þ CovðdY, dXYÞð Þ

!
:

ð7:9Þ
Figure 7 shows the accuracy of the two Taylor approxi-
mations under a constant population size model for
mutation rate 2μηX = 1. The approximation for the mean is a
good one, however the first-order approximation to the var-
iance is insufficient for low divergence times, as it can be
seen there are higher-order terms involved. From this, we
decide that we cannot approximate the variance in FGST well
with this method, and do not pursue this aspect further.
Electronic supplementary material, figures S11 and S12,
demonstrate the accuracy of the Taylor approximations
under alternate mutation rates, and it can be seen that the
approximation to EðFGSTÞ breaks down under a 10× reduction
in the mutation rate (2μηX = 0.1) due to the high variance in
estimating variance/covariance terms of the d statistics.

In what follows, we will evaluate the bias in the FGST esti-
mator of FST under different demographic and genetic
parameters, using the approximation given in equation (7.7).
(a) Results for the mean and bias of FGST
In this section, we study the effects of varying demographic
and genetic parameters on the expectation of FGST and conse-
quently its bias as an estimator of FST. First, we start with a
discussion on the differences between EðFGSTÞ and FST, both
as described above. Supposing we knew the true values,
we calculate FST using only the individual expectations of
dX, dY and dXY. We can write

FST ¼ EðdXYÞ � ð1=2Þ EðdXÞ þ EðdYÞð Þ
EðdXYÞ ¼ 1� 1

2
EðdXÞ þ EðdYÞ

EðdXYÞ

¼ 1� 1
2
Eðti,i0 Þ þ Eðt j,j0 Þ

Eðti,jÞ : ð7:10Þ

Immediately we can note that FST is not dependent on sample
sizes nX, nY or the mutation rate, μ. Instead, it is solely a func-
tion of mean coalescence times, and is only variable in the
demographic parameter space. Also, note the fundamental
difference between EðFGSTÞ and FST is the term

E
dX þ dY
dXY

� �
versus

EðdXÞ þ EðdYÞ
EðdXYÞ : ð7:11Þ

It is known that ratio estimators are in general biased [29].
Jensen’s inequality [30] tells us, for a convex function f(t), that

E f ðtÞð Þ � f EðtÞð Þ: ð7:12Þ
Letting f (t) = (dX + dY)/dXY and observing that dXY≥ 1/2(dX +
dY), the inequality implies

E
dX þ dY
dXY

� �
� EðdXÞ þ EðdYÞ

EðdXYÞ : ð7:13Þ
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Thus we expect EðFGSTÞ to be a negatively biased estimate
of FST. As the divergence time between X and Y
becomes deeper (more ancient), we expect dX + dY to
become increasingly independent from dXY and EðFGSTÞ to
become increasingly closer to FST. Also, letting the number
of mutations increase in an infinite-sites model, the estimates
of dX, dY and dXY become closer to their expectations, bring-
ing equation (7.13) closer to equality. Figure 8 demonstrates
the relationship between EðFGSTÞ and FST under varying
divergence times DXY, population sizes and mutation rates
μ. As discussed above, the relative bias of FGST is much
less under a deep divergence model (DXY = 20.0, in units of
2ηX generations) as dX, dY and dXY are more independent,
compared to a more shallow divergence (DXY = 1.0), where
we see in our example FST is three times as large as
EðFGSTj2mhX ¼ 0:1Þ. It is clear that FGST is a faithful estimator
of FST under very high mutation rates, however, it is biased
downward for small values of μ, although the bias is reduced
for deep divergence models. When estimating FST from mul-
tiple genes across the genome, one approach used to reduce
the estimation bias is to estimate each term in equation
(7.10) individually and apply a ‘ratio of averages’ approach
[31], as further highlighted in the discussion.
(b) Effect of bottleneck timing on FST
Population bottlenecks can drastically affect the genetic diver-
sity of populations over evolutionarily short periods of time.
In the context of FST, the question of when a bottleneck
occurred in a history of evolution is key in understanding
its impact on population differentiation. In this section, we
use the flexibility of STCov to explore the effect of a popu-
lation bottleneck placed at various times in the history of
two theoretical species, X and Y, on FST. Here, we model a
population bottleneck as a 10 × reduction in the population
size η0 for a fixed length of time (1.0 in units of 2η0 gener-
ations). We study four scenarios as described in figure 9.
For varying divergence times DXY, we use STCov to calculate
FST under each scenario, and use empirical simulations via
ms and SeqGen to validate our results. We find that a
recent bottleneck has the largest impact on FST at every diver-
gence time tested (figure 10), demonstrating an increased
level of differentiation as compared to the scenario with no
bottleneck. Both scenarios of deeper bottlenecks have much
less effect on overall FST despite their bottlenecks being iden-
tical in size and length. This illustrates that the timing of
variation-reducing events such as a bottleneck plays a large
role in the impact to measured genetic differentiation using
FST, where the impact can be effectively lost given sufficient
time post-bottleneck.
(c) Bias in the FST estimator for gene flow
The value of FST is often used to estimate levels of gene flow
between populations. Wright [32] first derived the relation-
ship between FST to estimate Nm in an Island model, where
N is the number of individuals in each deme (sub-popu-
lation), and m is the fraction of migrants into the deme in
each generation. Hudson et al. [26] used this relationship to
estimate Nm using the following expression:

hNmiF ¼ 1
2

1
FST

� 1
� �

, ð7:14Þ

where FST is an estimate from sequence data, i.e. FGST in our
notation. The results of the simulations presented there
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show estimates using 〈Nm〉F are upward-biased using an esti-
mate of FST from sequence data in place of the unknown FST
based on coalescence times. There are two potential sources
of this bias, the estimator function, 〈Nm〉F, and the estimate,
FGST. The scope of this study concerns the role of estimator
FGST, and we can investigate the effect of this estimator com-
pared to using the true value, FST. We note that we do not
intend to estimate or study gene flow in this manuscript,
but simply evaluate the accuracy of the function 〈Nm〉F
when an estimate of FST is used.

To start, we can once again use a Taylor expansion to
get an approximation for the expected value of 〈Nm〉F,
when using FGST
ing
.org/journal/rstb
Phil.Trans.R.So
EðhNmiFÞ ¼
1
4
E

dX þ dY
dXY � ð1=2ÞðdX þ dYÞ
� �

� 1
4

EðdXÞ þ EðdYÞ
EðdXYÞ � ð1=2Þ EðdXÞ þ EðdYÞð Þ

� 1� CovðdX, dXYÞ þ CovðdY, dXYÞ � ð1=2Þ VarðdXÞ þ VarðdYÞð Þ � CovðdX, dYÞ
EðdXÞ þ EðdYÞð Þ EðdXYÞ � ð1=2Þ EðdXÞ � EðdYÞð Þð Þ

�

þVarðdXYÞ þ ð1=4Þ VarðdXÞ þ VarðdYÞ þ 2CovðdX, dYÞð Þ � CovðdX, dXYÞ � CovðdY, dXYÞ
EðdXYÞ � ð1=2Þ EðdXÞ � EðdYÞð Þð Þ2

#
:

ð7:15Þ
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We can use this expression to study the difference between
using the estimator, FGST, and the (unknown) true value, FST,
in the expression for 〈Nm〉F. Figure 11 shows the difference
between using FST and FGST in 〈Nm〉F under different mutation
rates, population sizes and species divergence times. From
the figure, we see that the expectations are, in fact, overesti-
mates. In this figure, 10 individuals are sampled from each
population. When the divergence time DXY is low, the bias
relative to the true value is substantial, resulting in an esti-
mate twice as large as that which would have been
obtained using an accurate estimate of FST. For high mutation
rates, this bias decreases rapidly as DXY increases. For a low
mutation rate, 2μηX = 0.01, a bias of greater than 50% overes-
timation persists. Even at high mutation rates, an upwards
bias of about approximately 5% exists even at large diver-
gence time values. Note, however, that we do not see a
large difference in the bias across different population size
models. The results here can explain (at least a portion of)
the bias seen in Hudson et al. [26], that using an estimate of
FST can result in an artificial increase in the function 〈Nm〉F.
(d) Accuracy of log transform for linearizing FST
Under a neutral divergence model, FST has also commonly
been transformed as a linear approximation to the population
divergence time, DXY. Discussed in Cavalli–Sforza [25], and
later Nielsen et al. [24], is that given an estimate of FST, DXY

can be estimated by the transformation

D̂XY /�logð1� FGSTÞ: ð7:16Þ
Another commonly used transformation, presented in Slatkin
[33], relates the time of divergence to a ratio of FST values

D̂XY / FGST
1� FGST

: ð7:17Þ

Here, we evaluate the accuracy of these transformations by
approximating the expected value of each using similar
Taylor expansions, as earlier. Without having an accurate
approximation of VarðFGSTÞ, we can only make a first-order
approximation of equation (7.16) such that

Eð� logð1� FGSTÞÞ � � logð1� EðFGSTÞÞ: ð7:18Þ
For equation (7.17), by plugging in the estimator for FST from
equation (7.2), we find

FGST
1� FGST

¼ 2
dXY

dX þ dY
� 1:

Taking the expectation of this quantity

E
FGST

1� FGST

 !
¼ 2E

dXY
dX þ dY

� �
� 1: ð7:19Þ

By deriving a similar second-order Taylor approximation for
the expectation on the right-hand side, as we did earlier with
EððdX þ dYÞ=dXYÞ, we get

E
dXY

dX þ dY

� �
� EðdXYÞ

EðdXÞ þ EðdYÞ �
CovðdX, dXYÞ þ CovðdY, dXYÞ

EðdXÞ þ EðdYÞð Þ2

þ VarðdXÞ þ VarðdYÞ þ 2CovðdX, dYÞ
EðdXÞ þ EðdYÞð Þ3 EðdXYÞ,

ð7:20Þ
and we have a second-order Taylor approximation of the
expectation of equation (7.17).

In figure 12, we evaluate the linearity between these
expressions and divergence time, and the accuracy of our
approximations against simulated data (line versus dots),
under two different population size models. It is clear that
Slatkin’s [33] linear FST is a linear predictor of divergence
time under the constant population size model assumed in
its derivation. However, under a model where the population
size of species Y is 10 times higher than X, the linearity
expectedly disappears. The log transformation of Nielsen et
al. and Cavalli-Sforza [24,25] performs worse and can only
be used as a local-linear approximation. Across large values
of DXY, it demonstrates clear nonlinear behaviour and Slat-
kin’s [33] transformation is preferable under the conditions
investigated here.
8. Discussion
In this study, we have derived the equations and recursions
needed to calculate exact values for the covariance between
pairs of coalescence times in a species tree model, allowing
for piecewise constant changes in population sizes through-
out the tree. Using these expressions, we are able to build
on previous theory to get exact values for the mean, variance
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Figure 11. 〈Nm〉F approximation bias across divergence times and mutation rates. Under varying population size scenarios (rows), we demonstrate the difference
between theoretical 〈Nm〉F and the expected estimate when calculating from pairwise differences using equation 7.15. (a,c,e) On the y-axis are values 〈Nm〉F as
functions of divergence time DXY. We plot the value when using the true FST, and approximations EðhNmiF j2mhXÞ, for mutation rates 2μηX = 10.0,1.0 and 0.1.
(b,d,f ) The per cent difference between 〈Nm〉F using FST (black line in a,c,e) and the expected sample quantity to represent the bias in estimation. We simulated
assuming equal sample sizes nX = nY = 10, and population size structure as indicated at the top of each plot. For a fixed sample size, the expected sample quantity
tends to overestimate the ‘true’ value, with the amount of overestimation a function of μ and DXY.
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and covariance of the average number of pairwise differences
for a given mutation rate and sample size. We have
demonstrated that in the constant population size scenario,
we can exactly recreate the covariance results of Takahata &
Nei [7]. The equations and recursions derived here are
implemented in a freely available software package, STCov,
which allows for exact calculations under any piecewise con-
stant model of divergence for arbitrary numbers of species/
populations. While the covariance results presented here are
interesting on their own, we imagine there are many further
applications of the summary statistics presented here.

One such application we explored is the properties of Slat-
kin’s FST and its approximation using sequence data, FGST,
under a divergence model. Under the infinite-sites model
with no recombination, we demonstrate the known negative
bias in estimating FST using sequence data and the ‘average of
ratios’ approach. We show that the magnitude of the bias is a
function of both mutation rate and population divergence
time, with the amount of bias decreasing as both mutation
rates and divergence times increase. The bias, however, is
non-vanishing for low mutation rates, even as simulated
divergence time increases, and is further exaggerated for
imbalanced population sizes. As such, the results of the trans-
formation for FST used for gene-flow estimation can be biased
upwards when using empirical estimates, which reaffirms
discussion in Hudson et al. [26] and provides further insight
to the source of the bias. We therefore advocate that when
looking at FST in a gene-by-gene fashion, such as when per-
forming local FST scans, to consider that empirical estimates
of Slatkin’s FST are generally accurate for high values of
mutation and deep divergence, but warn against its over-
interpretation in low mutation or recent divergence scenarios,
where the FST estimate can be uninformative. We recommend
using equation (7.8) to estimate the expected level of bias
upon application.

Throughout the theoretical equations presented here, we
assumed an infinite-sites model of mutation with no recombi-
nation between sites. However, allowing for recombination
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Figure 12. Linearized FST estimates. Testing the linearity of two FST transformations plotted against species divergence time, DXY. On the left (a,c) is the approximate
mean log transformed value. On the right (b,d ) is the approximated mean fraction transformed value. Both use FGST as a proxy for the unknown FST. Plotted on the x-
axis of all is the simulated divergence time. The red circles correspond to empirical values of Eð�logð1� FSTÞÞ and EðFST=ð1� FSTÞÞ to verify the accuracy of
the approximation (line in black). (a,b) correspond to the approximations under a constant population size model. (c,d ) correspond to the ηY = 10ηX imbalanced
population size model. (Online version in colour.)

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20200415

13
between sites provides more stable estimates of the expec-
tations of pairwise differences. As discussed in Wakeley
[15], allowing for an increasing amount of recombination
between loci decreases the error in estimates of expectations
of dX, dY and dXY. At the limit of infinitely free recombination
between loci, estimates of equation (7.13) tend towards equal-
ity and thus the estimator EðFGSTÞwould converge to the value
of FST, mitigating the negative bias seen here. Therefore,
aligning with conclusions drawn in Bhatia et al. [31], in the
age of whole-genome estimates of FST, taking a ‘ratio of
averages’ across independent loci rather than the ‘average
of ratios’ approach to FST can sidestep the bias we have
presented when estimating FST from loci across an entire
genome; the former also having the advantage of being a
more numerically stable estimator.

Independent of bias, our equations demonstrate that the
timing of a bottleneck can drastically impact measured
levels of FST. Specifically, that the impact of population
variation can vanish given enough time. Finally, we study
the accuracy of a couple of commonly used linear transform-
ations of FST as approximate measures of population
divergence times, and find, for equal population sizes, the
estimator proposed in Slatkin [33] has the best performance,
but when population sizes are no longer equal, expectedly,
even this transformation shows deviations from linearity.

There are many interesting properties to study with the
covariance of pairwise coalescent times and pairwise differ-
ences. We hope that the software provided, STCov, will
allow for further investigation into the properties and useful-
ness of these quantities for estimating various aspects of
species trees, such as topology reconstruction, divergence
time and population size estimation, gene flow and admix-
ture detection.
9. Software availability
Along with this manuscript, we provide software
(implemented in C++) freely available for download which
calculates the various coalescent quantities presented here
(means, variances, covariances and shared branch length).
We have designed the code to be very flexible to user
inputted species trees. The program outputs exact quantities
for any user-defined rooted, bifurcating, piecewise-constant
population size species tree. Download the code at https://
github.com/gaguerra/STCov.
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The data are provided in electronic supplementary material [34].
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