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Scalable long read self‑correction 
and assembly polishing 
with multiple sequence alignment
Pierre Morisse1*, Camille Marchet2, Antoine Limasset2, Thierry Lecroq3 & Arnaud Lefebvre3

Third-generation sequencing technologies allow to sequence long reads of tens of kbp, that are 
expected to solve various problems. However, they display high error rates, currently capped 
around 10%. Self-correction is thus regularly used in long reads analysis projects. We introduce 
CONSENT, a new self-correction method that relies both on multiple sequence alignment and local 
de Bruijn graphs. To ensure scalability, multiple sequence alignment computation benefits from a 
new and efficient segmentation strategy, allowing a massive speedup. CONSENT compares well 
to the state-of-the-art, and performs better on real Oxford Nanopore data. Specifically, CONSENT 
is the only method that efficiently scales to ultra-long reads, and allows to process a full human 
dataset, containing reads reaching up to 1.5 Mbp, in 10 days. Moreover, our experiments show that 
error correction with CONSENT improves the quality of Flye assemblies. Additionally, CONSENT 
implements a polishing feature, allowing to correct raw assemblies. Our experiments show that 
CONSENT is 2-38x times faster than other polishing tools, while providing comparable results. 
Furthermore, we show that, on a human dataset, assembling the raw data and polishing the assembly 
is less resource consuming than correcting and then assembling the reads, while providing better 
results. CONSENT is available at https​://githu​b.com/moris​pi/CONSE​NT.

Third-generation sequencing technologies Pacific Biosciences (PacBio) and Oxford Nanopore Technologies 
(ONT) have become widely used since their inception in 2011. In contrast to second-generation technologies, 
producing reads reaching lengths of a few hundreds base pairs, they allow the sequencing of much longer reads 
(10 kbp on average1, and up to > 1 million bps2). These long reads are expected to solve various problems, such as 
contig and haplotype assembly3,4, scaffolding5, and structural variant calling6. However, they are very noisy. More 
precisely, basic ONT and non-CCS PacBio reads can reach error rates of 10 to 30%, whereas second-generation 
short reads usually display error rates of 1%. The error profiles of these long reads are also much more complex 
than those of the short reads. Indeed, they are mainly composed of insertions and deletions, whereas short reads 
mostly contain substitutions. As a result, error correction is often required, as the first step of projects dealing 
with long reads. As the error profiles and error rates of the long reads are much different from those of the short 
reads, correcting long reads requires specific algorithmic developments.

The error correction of long reads has thus been tackled by two main approaches. The first approach, hybrid 
correction, makes use of additional short reads data to perform correction. The second approach, self-correction, 
aims at correcting the long reads solely based on the information contained in their sequences.

Hybrid correction methods rely on different techniques such as: 1. Alignment of short reads to the long reads 
(CoLoRMAP7, HECiL8) ; 2. Exploration of de Bruijn graphs, built from short reads k-mers (LoRDEC9, Jabba10, 
FMLRC11) ; 3. Alignment of the long reads to contigs built from the short reads (MiRCA​12, HALC13) ; 4. Hidden 
Markov Models, initialized from the long reads sequences and trained using the short reads (Hercules14) ; 5. 
Combination of different strategies (NaS15 (1 + 3), HG-CoLoR16 (1 + 2)).

Self-correction methods usually build around the alignment of the long reads against each other 
(PBDAGCon17, PBcR18). We give further details on the state-of-the-art of self-correction in the “Related works ”.

As first long reads sequencing experiments resulted in highly erroneous long reads (15–30% error rates on 
average), most methods relied on the additional use of short reads data. As a result, hybrid correction used to 
be much more widespread. Indeed, in 2014, for five hybrid correction tools, only two self-correction tools were 
available.

However, third-generation sequencing technologies evolve fast, and now manage to produce long reads 
reaching error rates of 10–12%. Moreover, the evolution of long-read sequencing technologies also allows to 
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produce higher throughputs of data, at a reduced cost. Consequently, such data became more widely available. 
As a result, self-correction can now efficiently be used in place of hybrid correction in data analysis projects 
dealing with long reads.

Related works.  Since third-generation sequencing technologies evolve fast, and now reach lower error 
rates, various efficient self-correction methods have recently been developed. Most of them share a common 
first step of computing overlaps between the long reads, which can be performed in two different ways. First, 
a mapping approach can be used, to simply provide the positions of similar regions of the long reads (Canu19, 
MECAT​20, FLAS21). Second, an alignment approach can be used, to provide the positions of similar regions, but 
also their actual base to base correspondence in terms of matches, mismatches, insertions, and deletions (PBD-
AGCon, PBcR, Daccord22). A directed acyclic graph (DAG) is then usually built, in order to summarize the 1V1 
alignments and compute consensus, after recomputing actual alignments of mapped regions, if necessary. Other 
methods rely on de Bruijn graphs, either built from small windows of the alignments (Daccord), or directly from 
the long reads sequences with no prior overlapping step (LoRMA23). These graphs are explored, using the solid 
k-mers (i.e. k-mers occurring more frequently than a given threshold) from the reads as anchor points, in order 
to correct low quality, weak k-mers regions.

However, methods relying on direct alignment of the long reads are prohibitively time and memory con-
suming, and current implementations thus do not scale to large genomes. Methods solely relying on de Bruijn 
graphs, and avoiding the overlapping step altogether, usually require deep long reads coverage, since the graphs 
are usually built from large, solid k-mers. As a result, methods relying on a mapping strategy constitute the core 
of the current state-of-the-art for long read self-correction.

Contribution.  We present CONSENT, a new self-correction method that combines different efficient 
approaches from the state-of-the-art. CONSENT indeed starts by computing multiple sequence alignments 
(MSA) between overlapping regions of the long reads, in order to compute consensus sequences. These consen-
sus sequences are then polished with local de Bruijn graphs, in order to correct remaining errors, and further 
reduce the final error rate. Moreover, unlike current state-of-the-art methods, CONSENT computes actual MSA, 
using a method based on partial order graphs24. We also introduce an efficient segmentation strategy based on 
k-mer chaining, which allows to reduce the time footprint of the MSA. This segmentation strategy thus allows to 
compute scalable MSA. In particular, it allows CONSENT to efficiently scale to ONT ultra-long reads.

Our experiments show that CONSENT compares well to the latest state-of-the-art self-correction methods, 
and outperforms them on real ONT datasets. In particular, they show that CONSENT is the only method able 
to efficiently scale to ONT ultra-long reads, allowing to perform correction of a full human dataset, containing 
reads reaching up to 1.5 Mbp in 10 days.

Additionally, CONSENT is also able to polish assemblies generated from raw long reads. Our experiment 
on a full human dataset shows that assembling the raw data and polishing the assembly is less resource con-
suming than correcting and then assembling the data, while offering better results. Our experiments also show 
that CONSENT outperforms state-of-the-art assembly polishing tools in terms of resource consumption, while 
providing comparable results.

Results
Impact of the segmentation strategy.  Before comparing CONSENT to state-of-the-art self-correction 
tools, we first validate our segmentation strategy. To this aim, we simulated a 50x coverage of long reads from 
E.coli, with a 12% error rate, using SimLoRD25. The following parameters were used for the simulation: –prob-
ability-threshold 0.3 –prob-ins 0.145 –prob-del 0.06, and –prob-sub 0.02. We then 
ran the CONSENT pipeline, with, and without the segmentation strategy. Results of this experiment are given 
in Supplementary Table 1. We obtained these results using ELECTOR26, a tool specifically designed to precisely 
measure correction accuracy on simulated data. In particular, ELECTOR reports metrics such as recall (number 
of modified bases among erroneous bases in the original data), precision (number of properly corrected bases 
among bases modified by the error-correction tool), and error rate before and after correction. These results 
show that, compared to the regular MSA implementation, our segmentation strategy allows a 47x speedup, 
reducing the runtime from 5 h 31 min to 7 min. Moreover, our segmentation strategy also allows to reach lower 
memory consumption and higher quality. In particular, the post-correction error rate is decreased by 1.77x, and 
the precision increases by almost 0.15%. This gain in quality can be explained by the fact that our segmentation 
strategy allows to get rid of spurious sequences and thus to compute more accurate alignments and consensus.

Comparison to the state‑of‑the‑art.  We compare CONSENT against state-of-the-art error correction 
methods. We include the following tools in the benchmark: Canu, Daccord, FLAS, and MECAT. We voluntarily 
exclude LoRMA from the comparison, as it tends to aggressively split the reads, and thus produce reads that are 
usually shorter than 900 bp. We however report LoRMA’s result in Supplementary Tables S3 and S4. We also 
exclude hybrid error correction tools from the benchmark, as we believe it makes more sense to only compare 
self-correction tools. We performed experiments both on simulated and real data. We ran all tools with default 
or recommended parameters, and with a number of threads corresponding to the maximum number of cores 
available on the systems experiments were performed on. For CONSENT, we set the minimum support to define 
a window to 3, the window size to 500, the overlap size between consecutive windows to 50, the k-mer size used 
for chaining and polishing to 9, the solidity threshold for k-mers to 4, and the solidity threshold for the anchors 
chain computation to 8. Additionally, only windows for which at least two anchors could be found during the 
segmentation algorithm were processed.
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Datasets.  For our experiments, we used simulated PacBio long reads, as well as real PacBio and ONT long 
reads. PacBio simulated reads were generated with SimLoRD, using the previously mentioned parameters. We 
generated two datasets with a 12% error rate for E. coli, S. cerevisiae and C. elegans: one with a 30x coverage, and 
one with a 60x coverage, corresponding to typical sequencing depths in current long reads experiments. As for 
the real data, we used a 89x coverage dataset from S. cerevisiae, a 63x coverage dataset from D. melanogaster, and 
a 29x coverage from H. sapiens chr 1, containing ultra-long reads, reaching lengths up to 340 kbp. Human data 
were sequenced by2] and are publicly available with accession number PRJEB23027 (release 4). D. melanogaster 
data are publicly available with accession number SRX3676783. Real S. cerevisiae data are publicly available with 
accession number SRR9617898. Further details for all the datasets are given in Supplementary Table S1. We used 
the reference genomes K-12 substr. MG1655 for E. coli, S288C for S. cerevisiae, Bristol N2 for C. elegans, BDGP 
Release 6 for D. melanogaster, and GRCh38 for H. sapiens. Further details on the reference sequences are given 
in Supplementary Table S2.

Comparison on simulated data.  To precisely assess the accuracy of the different correction methods, we first 
tested them on the simulated PacBio datasets. ELECTOR was used to evaluate the correction accuracy of each 
method. Correction statistics of all the aforementioned tools on the different datasets, along with their runtime 
and memory consumption, are given in Table 1. For methods having distinct, easily identifiable, steps for over-
lapping and correction (i.e. Daccord, MECAT and CONSENT), we additionally report runtime and memory 
consumption of these two processes apart. We ran all the correction experiments on a computer equipped with 
16 2.39 GHz cores and 32 GB of RAM. All tools were thus run with 16 threads.

Daccord clearly performed the best in terms of number of bases and quality, outperforming all the other 
methods on the E. coli and the S. cerevisiae datasets. However, the overlapping step, relying on actual alignment 
of the long reads against each other, consumed high amounts of memory, 3x to 11x more than CONSENT or 
MECAT mapping strategies. As a result, Daccord could not scale to the C. elegans datasets, DALIGNER report-
ing an error upon start, even when run on a cluster node equipped with 128 GB of RAM. On the contrary, Canu 
displayed the highest error rates on all the datasets, except on the C. elegans dataset with a 30x coverage, but 
consumed relatively stable, low amounts of memory. In particular, on the two C. elegans datasets, it displayed 
the lowest memory consumption among all the other methods.

MECAT performed the best in terms of runtime, outperforming all the other tools on all the datasets. Its 
overlapping strategy was also highly efficient, and displayed the lowest memory consumption among all the 
other strategies, on all the datasets. However, compared to Minimap2 (the overlapping strategy adopted in 
CONSENT) MECAT’s overlapping strategy displayed higher runtimes, although it remained faster than Dac-
cord’s DALIGNER. Minimap2’s memory consumption, however, was larger than that of MECAT’s overlapping 
strategy, on all the datasets. The memory consumption of Minimap2 can nonetheless easily be reduced, at the 
expense of a slightly larger runtime, by decreasing the size of the index used for computing the overlaps, which 
CONSENT sets to 1 Gbp by default.

Compared to both FLAS and CONSENT, MECAT displayed lower number of bases on all the datasets. As 
for FLAS, this can be explained by the fact that it is a MECAT wrapper, allowing to retrieve additional overlaps, 
and thus correct a greater number long reads. As a result, since it relies on MECAT’s error correction strategy, 
FLAS displayed highly similar memory consumption. Runtime was however higher, due to the additional steps 
allowing to retrieve supplementary overlaps, and to the resulting higher number of reads to correct. Numbers of 
bases and error rates of FLAS and CONSENT were highly similar on all the datasets, varying by 0.12% at most, on 
the S. cerevisiae dataset with a 30x coverage. CONSENT was also faster than FLAS on the E. coli and S. cerevisiae 
datasets. However, on the C. elegans datasets, CONSENT displayed slightly higher runtimes.

As for the memory consumption of the error correction step, CONSENT was less efficient than MECAT on 
most datasets. This can be explained by the fact that CONSENT loads the correction jobs into a queue of default 
size 100,000. This queue thus loads the necessary data for 100,000 correction tasks into memory at once. We 
then iteratively allocate new tasks to threads as they become available. Reducing the size of this queue would 
allow CONSENT to consume less memory, at the expense of a slightly higher runtime, since the queue would 
have to be repopulated more often.

Comparison on real data.  We then evaluated the different correction methods on a real PacBio S. cerevisiae 
dataset, as well as on larger, real ONT datasets from D. melanogaster and H. sapiens (chr 1). For these datasets, 
we not only evaluate how well the corrected long reads realign to the reference genome, but also how well they 
assemble. For the alignment assessment, we report how many reads were corrected, their total number of bases, 
their N50, the proportion of corrected reads that could be aligned, the average identity of the alignments, as well 
as the genome coverage, that is, the percentage of bases of the reference genome to which at least a nucleotide 
aligned. For the assembly assessment, we report the overall number of contigs, the number of contigs that could 
be aligned, the NGA50 and NGA75, and, once again, the genome coverage. We obtained alignment statistics 
using ELECTOR’s second module, which performs alignment to the reference genome with Minimap2. We per-
formed assemblies using Minimap2 and Miniasm27. Moreover, for the H. sapiens (chr 1) dataset, we performed 
additional assembly experiments using the more modern and sophisticated assembler Flye28. Assembly statistics 
were obtained with QUAST-LG29. Results are given in Table 2 for the alignment assessment, and in Table 3 for 
the assembly assessment. Runtimes and memory consumption of the different methods are also given in Table 2. 
As for the simulated data, we report runtime and memory consumption of the overlapping and correction steps 
apart, when possible. We ran all the correction experiments on a cluster node equipped with 28 2.39 GHz cores 
and 128 GB of RAM. All tools were thus run with 28 threads.
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On these three datasets, Daccord failed to run, as DALIGNER could not perform alignment, for the same 
reason as for the simulated C. elegans datasets. For all the datasets, CONSENT corrected the largest number of 
reads, output the largest number of bases, and reached the largest genome coverage. On the S. cerevisiae dataset, 
CONSENT reached slightly lower alignment identity than the other tools. However, on the two more complex 
ONT datasets, CONSENT displayed the highest alignment identity. Additionally, the N50 of CONSENT was 
the highest on the S. cerevisiae dataset, and was higher than that of all the others methods, except Canu, on the 
two ONT datasets.

When it comes to runtime and memory consumption, MECAT outperformed all the other methods, as in the 
experiments on simulated data. However, it is worth noting that the runtime was comparable to other methods, 
and that CONSENT was the second fasted tool after MECAT on the two ONT datasets. Finally, MECAT reached 
the highest proportion of aligned reads, on all datasets, although CONSENT was close, since only 0.24–1.21% 
fewer reads could be aligned.

Moreover, on the H. sapiens (chr 1) dataset, CONSENT and Canu were the only tools able to deal with ultra-
long reads. Indeed, other methods reported errors when attempting to correct the original dataset. As a result, 

Table 1.   Metrics output by ELECTOR on the simulated PacBio datasets. Daccord results are missing for 
the two C. elegans datasets, as DALIGNER failed to perform alignment, reporting an error upon start, even 
when ran on a cluster node with 28 2.4 GHz cores and 128 GB of RAM. Recall and precision are not reported 
for original reads, since they cannot be computed from uncorrected reads. Best results for each metric is 
highlighted in bold.

Dataset Corrector
Number of 
bases (Mbp)

Error rate 
(%) Recall (%)

Precision 
(%)

Overlapping Correction Total

Runtime
Memory 
(MB) Runtime

Memory 
(MB) Runtime

Memory 
(MB)

E. coli 30x

Original 140 12.2862 _ _ N/A N/A N/A N/A N/A N/A

Canu 130 0.4156 99.7647 99.5887 _ _ _ _ 19 min 4613

Daccord 131 0.0248 99,9965 99,9757 1 min 6813 13 min 639 14 min 6813

FLAS 130 0.2720 99.9291 99.7385 _ _ _ _ 12 min 1639

MECAT​ 107 0.2569 99.9302 99.7533 25 s 1600 1 min 14 s 1083 1 min 39 s 1600

CONSENT 130 0.3111 99.9328 99.6934 18 s 2345 7 min 16 s 532 7 min 34 s 2345

E. coli 60x

Original 279 12.2788 _ _ N/A N/A N/A N/A N/A N/A

Canu 219 0.7404 99.4781 99.2658 _ _ _ _ 24 min 3674

Daccord 261 0.0214 99.9971 99.9790 3 min 18,450 51 min 1191 54 min 18,450

FLAS 260 0.1547 99.9546 99.8526 _ _ _ _ 38 min 2428

MECAT​ 233 0.1714 99.9547 99.8362 1 min 2387 4 min 1553 5 min 2387

CONSENT 259 0.1833 99.9771 99.8196 1 min 4693 25 min 1757 26 min 4693

S. cerevisiae 
30x

Original 371 12.283 _ _ N/A N/A N/A N/A N/A N/A

Canu 226 1.1052 99.1766 98.9036 _ _ _ _ 29 min 3681

Daccord 348 0.1259 99.9874 99.8762 7 min 31,798 1 h 12 min 3487 1 h 19 min 31,798

FLAS 344 0.3272 99.9131 99.6843 _ _ _ _ 29 min 2935

MECAT​ 285 0.3040 99.9160 99.7072 1 min 2907 4 min 1612 5 min 2907

CONSENT 344 0.4102 99.9192 99.5956 1 min 5519 21 min 1503 22 min 5519

S. cerevisiae 
60x

Original 742 12.2886 _ _ N/A N/A N/A N/A N/A N/A

Canu 599 0.7919 99.4488 99.2148 _ _ _ _ 1 h 11 min 3710

Daccord 695 0.0400 99.9928 99.9606 10 min 32,190 2 h 16 min 1160 2 h 26 min 32,190

FLAS 689 0.2034 99.9418 99.8049 _ _ _ _ 1 h 30 min 4984

MECAT​ 616 0.2088 99.9428 99.7996 4 min 4954 12 min 2412 16 min 4954

CONSENT 688 0.2897 99.9532 99.7145 2 min 11,378 1 h 11 min 4754 1 h 13 min 11,378

C. elegans 30x

Original 3006 12.2806 _ _ N/A N/A N/A N/A N/A N/A

Canu 2773 0.5008 99.7103 99.5040 _ _ _ _ 9 h 09 min 6921

Daccord _ _ _ _ _ _ _ _ _ _

FLAS 2729 0.7613 99.8613 99.2541 _ _ _ _ 3 h 07 min 10,565

MECAT​ 2084 0.3908 99.8903 99.6212 27 min 10,535 21 min 2603 48 min 10,535

CONSENT 2789 0.6495 99.8846 99.3596 16 min 16,711 3 h 40 min 5338 3 h 56 min 16,711

C. elegans 60x

Original 6024 12.2825 _ _ N/A N/A N/A N/A N/A N/A

Canu 5112 0.7934 99.4573 99.2131 _ _ _ _ 9 h 30 min 7050

Daccord _ _ _ _ _ _ _ _ _ _

FLAS 5584 0.3997 99.9175 99.6104 _ _ _ _ 10 h 45 min 13,682

MECAT​ 4938 0.2675 99.9258 99.7415 1 h 28 min 10,563 1 h 15 min 3775 2 h 43 min 10,563

CONSENT 5587 0.3858 99.9428 99.6201 56 min 15,732 12 h 50 min 7921 13 h 46 min 15,732
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in order to allow these methods to perform correction, we had to manually remove the reads longer than 50 
kbp. There were 1,824 such reads, accounting for a total number of 135,364,312 bp. However, even if it managed 
to scale to the correction of ultra-long reads, Canu was almost seven times slower than CONSENT, making 
CONSENT the only tool to efficiently scale to ultra-long reads.

On the S. cerevisiae dataset, the assembly yielded from FLAS corrected reads outperformed all the other 
assemblies in terms of number of contigs. Oppositely, the assembly yielded from CONSENT corrected reads 
displayed the largest number of contigs. It also displayed more errors per 100 kbp and a slightly higher number 
of misassemblies compared to other assemblies. Canu corrected reads yielded the assembly covering the largest 
proportion of the reference genome, whereas MECAT corrected reads yielded the assembly displaying the lowest 
number of misassemblies and errors per 100 kbp. However, all assemblies were comparable in terms of NGA50 
and NGA75, and CONSENT even outperformed MECAT in terms of NGA75.

On the D. melanogaster dataset, the assembly yielded from CONSENT corrected reads outperformed all the 
other assemblies in terms of number of contigs, NGA50, NGA75, as well as error rate per 100 kbp. In particular, 
the NGA50 of the CONSENT assembly was 2.1-6.8 times larger than that of other assemblies. The assembly 
yielded from Canu corrected reads outperformed all the other assemblies in terms of genome coverage, but 
was composed of the highest number of contigs, after the assembly obtained from the raw reads. However, the 
genome coverage of the CONSENT assembly was slightly larger than that of FLAS and MECAT. Finally, in terms 
of misassemblies, the assembly generated from MECAT corrected reads outperformed the other assemblies, 
although they all remained comparable on this metric.

On the H. sapiens (chr 1) dataset, the assembly obtained from CONSENT corrected reads once again outper-
formed all the other assemblies in terms of number of contigs, NGA50, and NGA75. In particular, the NGA50 
of the CONSENT assembly was almost 1.6-4.3 times larger than that of other assemblies. However, 12 contigs of 
the CONSENT assembly could not be aligned to the reference. As a result, compared to the assemblies obtained 
from FLAS and MECAT corrected reads, the assembly yielded from the CONSENT corrected reads covered 
2.6% less of the reference sequence, and displayed a higher error rate per 100 kbp. These unaligned contigs and 
differences could likely be reduced by further adapting both CONSENT and Miniasm parameters. Moreover, the 
assembly yielded from CONSENT corrected reads displayed a slightly higher number of misassemblies, although 
it remained comparable to that of other assemblies. On this metric, the assembly generated from MECAT cor-
rected reads once again slightly outperformed other assemblies.

In addition, as we previously mentioned, we also performed additional assembly experiments using the more 
modern and sophisticated assembler Flye on the H. sapiens (chr 1) dataset. Here, the assembly yielded from 
CONSENT corrected reads displayed the smallest number of contigs, and the lowest number of errors per 100 

Table 2.   Statistics of the real long reads, before and after correction with the different methods. Best results 
for each metric is highlighted in bold. 1Reads longer than 50 kbp were filtered out, as ultra-long reads caused 
the programs to stop with an error. There were 1824 such reads in the original dataset, accounting for a 
total number of 135,364,312 bp. 2Daccord could not be run on these two datasets, due to errors reported by 
DALIGNER.

Dataset Corrector
Number of 
reads

Number 
of bases 
(Mbp) N50 (bp)

Aligned 
reads (%)

Alignment 
identity 
(%)

Genome 
coverage 
(%)

Overlapping Correction Total

Runtime
Memory 
(MB) Runtime

Memory 
(MB) Runtime

Memory 
(MB)

S. cerevi-
siae

Original 121,640 1083 12,048 96.27 84.63 99.65 N/A N/A N/A N/A N/A N/A

Canu 74,658 644 11,171 99.67 96.67 99.18 _ _ _ _ 1 h 24 min 3870

Daccord2 _ _ _ _ _ _ _ _ _ _ _ _

FLAS 80,087 665 10,815 99.78 97.65 99.16 _ _ _ _ 1 h 02 min 6195

MECAT​ 46,614 477 11,123 99.84 97.91 98.21 2 min 7176 4 min 3023 6 min 7176

CONSENT 116,391 965 11,331 99.60 95.47 99.52 4 min 19,828 1 h 13 min 3108 1 h 17 min 19,828

D. mela-
nogaster

Original 1,327,569 9064 11,853 85.52 85.43 98.47 N/A N/A N/A N/A N/A N/A

Canu 829,965 6993 12,694 98.05 95.20 97.89 _ _ _ _ 14 h 04 
min 10,295

Daccord2 _ _ _ _ _ _ _ _ _ _ _ _

FLAS 855,275 7866 11,742 95.65 94.99 98.09 _ _ _ _ 10 h 18 
min 18,820

MECAT​ 827,490 7288 11,676 99.87 96.52 97.34 28 min 13,443 1 h 26 min 7724 1 h 54 min 13,443

CONSENT 1,096,046 8308 12,181 98.66 97.17 98.20 1 h 07 min 31,282 8 h 53 min 5639 10 h 00 
min 31,282

H. sapiens 
(chr 1)

Original 1,075,867 7256 10,568 88.24 82.40 92.46 N/A N/A N/A N/A N/A N/A

Canu 717,436 5605 11,002 97.60 90.40 92.33 _ _ _ _ 22 h 06 
min 12,802

Daccord1,2 _ _ _ _ _ _ _ _ _ _ _ _

FLAS1 670,708 5695 10,198 99.06 91.00 92.37 _ _ _ _ 4 h 57 min 14,957

MECAT​1 655,314 5479 10,343 99.95 91.69 91.44 26 min 11,075 1 h 27 min 4591 1 h 53 min 11,075

CONSENT 893,738 6502 10,870 98.89 93.15 92.38 23 min 17,290 2 h 47 min 4645 3 h 10 min 17,290
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kbp. Its number of misassemblies was also smaller than that of all other assemblies, except the one generated 
from Canu corrected reads. Morever, the proportion of aligned contigs and the genome coverage were highly 
similar for all assemblies. Interestingly, only the assembly generated from CONSENT corrected reads allowed 
to reach larger NGA50 and NGA75 than the assembly generated from the raw reads. Compared to other cor-
rection tools, CONSENT is the only method allowing to enhance the quality of the Flye assembly in such a way. 
Indeed, all the other assemblies, despite displaying a smaller number of contigs than the assembly generated 
from raw reads, reached smaller NGA50 and NGA75. These results thus underline the fact that Flye can benefit 
from CONSENT correction to generate higher quality assemblies.

Assembly polishing.  As an additional feature, CONSENT also allows to perform assembly polishing. The 
process is pretty straightforward. Indeed, instead of computing overlaps between the long reads, as presented in 
the previous sections, overlaps are simply computed between the assembled contigs and the long reads used for 
the assembly. The rest of the pipeline remains the same. We present assembly polishing results on the simulated 
E. coli, S. cerevisiae, and C. elegans datasets with a 60x coverage, as well as on the real S. cerevisiae, D. mela-
nogaster and H. sapiens (chr 1) datasets. We compare CONSENT to RACON30, a state-of-the-art assembly pol-
ishing method. Results are presented in Table 4. We ran all the polishing experiments on a cluster node equipped 
with 28 2.39 GHz cores and 128 GB of RAM. All tools were thus run with 28 threads. Moreover, we only com-
pare the runtimes of the actual polishing steps of the tools. Thus, the runtime of Minimap2, and the runtime of 
CONSENT pre-processing steps (sorting and reformatting the overlaps file) are not taken into account in the 
comparisons. Although these pre-processing steps can be slow for large datasets and large overlaps files, and 
are not required by RACON, we would like to underline that they allow to avoid the burden of loading the full 
overlaps file into memory, as required by RACON. The benefits of these pre-processing steps can be confirmed 
by comparing the memory consumption of CONSENT and RACON, as commented below. Moreover, to further 
emphasize the interest of these pre-processing steps, additional experiments on another human dataset (acces-
sion number NA12878, release 6), which are not presented here, have shown RACON could require more than 
2 TB of RAM, while CONSENT displayed a peak of 39 GB.

These results show that CONSENT outperformed RACON in terms of quality of the results, especially deal-
ing better with errors, and thus greatly reducing the error rate per 100 kbp, on the E. coli, S. cerevisiae, and C. 
elegans datasets. RACON outperformed CONSENT in terms of NGA50, NGA75, genome coverage, and number 
of misassemblies, but the two methods were highly comparable on these three datasets. Oppositely, RACON 

Table 3.   Statistics of the assemblies generated from the raw and corrected real long reads. Best results for each 
metric is highlighted in bold.  1As previously mentioned, Daccord results on the three datasets are absent, since 
it could not be run. 2For the assembly of the original reads on the H. sapiens (chr 1) dataset, QUAST-LG did 
not provide a metric for the NGA75. 

Dataset Corrector Contigs
Aligned 
contigs (%) NGA50 (bp) NGA75 (bp)

Genome 
coverage (%)

Errors / 100 
kbp Misassemblies

S. cerevisiae

Original 29 93.10 408,751 179,653 84.67 10,514 45

Canu 27 100.00 549,622 426,490 96.64 1291 53

Daccord1 _ _ _ _ _ _ _

FLAS 21 100.00 542,516 447,884 95.63 1423 43

MECAT​ 22 100.00 550,249 305,358 95.81 1154 38

CONSENT 37 97.30 524,568 419,018 94.68 1548 60

D. mela-
nogaster

Original 423 96.45 864,011 159,590 83.22 10,690 810

Canu 410 92.93 2,757,690 822,577 92.95 1896 845

Daccord1 _ _ _ _ _ _ _

FLAS 407 98.53 1,123,346 363,017 92.16 2736 838

MECAT​ 310 99.68 1,414,076 480,297 92.02 1731 554

CONSENT 287 98.61 5,906,563 1,143,682 92.26 1502 804

H. sapiens 
(chr 1)

Original2 201 93.53 1,008,692 _ 77.52 11,318 98

Canu 361 98.61 946,029 245,015 94.85 4689 49

Daccord1 _ _ _ _ _ _ _

FLAS 259 100.00 1,378,242 287,113 94.89 4413 50

MECAT​ 237 100.00 1,698,601 289,968 94.97 4404 44

CONSENT 154 92.21 2,777,701 736,664 92.30 4486 78

H. sapiens (chr 
1) (Flye)

Original 319 97.81 11,231,592 2,893,011 96.24 2204 44

Canu 181 98.90 3,022,928 1,237,577 95.69 2521 27

Daccord1 _ _ _ _ _ _ _

FLAS 169 99.41 7,733,334 2,298,510 95.73 2677 33

MECAT​ 170 98.82 7,625,451 1,475,937 95.61 2732 36

CONSENT 153 98.69 12,088,173 3,089,752 95.71 2057 28
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outperformed CONSENT in terms of errors per 100 kbp on the S. cerevisiae real dataset, but CONSENT outper-
formed RACON in terms of number of misassemblies NGA50, NGA75, and genome coverage.

For the larger, eukaryotic D. melanogaster dataset, RACON outperformed CONSENT in terms of number of 
errors per 100 kbp, and genome coverage, but the NGA50, NGA75 of the two methods remained comparable. On 
the H. sapiens (chr 1) dataset, RACON once again outperformed CONSENT in terms of error rate and genome 
coverage, and also displayed larger NGA50 and NGA75. However, polishing the assembly with CONSENT 
allowed to align a greater proportion of contigs, compared to both the raw and the RACON polished assem-
bly. On these two datasets, RACON slightly outperformed CONSENT in terms of number of misassemblies, 
although the two methods remained highly comparable. 2Additionally, on all the datasets, the polishing step of 
CONSENT was 3x to 38x faster than RACON, and also consumed up to four times less memory, thanks to its 
pre-processing steps.

Results on a full human dataset.  To further validate the scalability of CONSENT, we present results on a 
full ONT human dataset. This dataset is composed of 113 Gbp, displays an error rate of 17%, and contains ultra-
long reads reaching lengths up to 1.5 Mbp. Data were sequenced by2] and are publicly available with accession 
number PRJEB23027. Further details are given in Supplementary Table S1.

In this experiment, we not only evaluate how CONSENT behaves on such a large dataset, but also study the 
impact of the correction / assembly order on the quality of the results. We thus correct the raw data with CON-
SENT, and then assemble the corrected long reads, but also assemble the raw long reads first, and then polish 
the assembly with CONSENT. Alignment statistics of the raw and corrected long reads are presented in Table 5, 
while statistics of the different assemblies are presented in Table 6. We only report CONSENT results, since 
other tools could not scale to this dataset. Indeed, Daccord crashed upon start due to memory limitations, while 
FLAS and MECAT reported errors during correction, owing to the presence of ultra-long reads, as reported in 
previous experiments. Canu, on the other hand, did not crash, but required an unreasonable amount of time to 

Table 4.   Statistics of the assemblies, before and after polishing with RACON and CONSENT. The missing 
contig for the CONSENT and RACON polishings on the D. melanogaster dataset is 428 bp long, and could 
not be polished, due to the window size of the two methods being larger (500). Best results for each metric is 
highlighted in bold. 1For the assembly of the original reads on the H. sapiens (chr 1) dataset, QUAST-LG did 
not provide a metric for the NGA75.

Dataset Method Contigs
Aligned 
contigs (%) NGA50 (bp) NGA75 (bp)

Genome 
coverage (%)

Errors / 100 
kbp Misassemblies Runtime Memory (MB)

E. coli 60x

Original 1 100.00 4,939,014 4,939,014 99.91 10,721 0 N/A N/A

RACON 1 100.00 4,663,914 4,663,914 99.90 499 0 5 min 55 sec 643

CONSENT 1 100.00 4,638,842 4,638,842 99.91 117 0 30 sec 786

S. cerevisiae 60x

Original 29 100.00 579,247 456,470 96.14 10,694 5 N/A N/A

RACON 29 100.00 539,472 346,116 96.09 637 5 15 min 47 sec 1703

CONSENT 29 100.00 532,189 332,977 96.05 217 7 1 min 49 sec 1052

C. elegans 60x

Original 47 100.00 5,201,998 2,511,520 99.78 10,974 5 N/A N/A

RACON 47 97.87 6,405,523 2,726,529 99.74 819 2 2 h 24 min 14,288

CONSENT 47 100.00 6,340,451 2,699,930 99.73 375 3 11 min 3648

S. cerevisiae real

Original 29 93.10 408,751 179,653 84.67 10,514 45 N/A N/A

RACON 29 100.00 518,943 330,455 93.74 1193 52 1 h 17 min 3708

CONSENT 29 100.00 522,799 411,537 94.23 1400 50 2 min 1667

D. melanogaster

Original 423 96.45 864,011 159,590 83.20 10,690 810 N/A N/A

RACON 422 98.34 1,446,703 552,532 93.03 961 1013 3 h 29 min 19,508

CONSENT 422 98.82 1,235,999 465,133 92.00 2213 1024 1 h 14 min 5358

H. sapiens 
(chr 1)

Original1 201 93.53 1,008,692 _ 77.52 11,318 98 N/A N/A

RACON 201 97.01 3,481,900 1,282,763 95.69 2393 57 2 h 30 min 16,202

CONSENT 201 97.51 3,295,244 924,899 94.16 4727 65 31 min 5399

Table 5.   Statistics of the full H. sapiens dataset, before and after correction with CONSENT. Best results for 
each metric is highlighted in bold.

Corrector
Number of 
reads

Number 
of bases 
(Mbp) N50 (bp)

Aligned 
reads (%)

Alignment 
identity 
(%)

Genome 
coverage 
(%)

Overlapping Correction Total

Runtime
Memory 
(MB) Runtime

Memory 
(MB) Runtime

Memory 
(MB)

Original 15,243,243 112,970 12,196 80.57 82.74 93.56 N/A N/A N/A N/A N/A N/A

CONSENT 11,913,704 102,543 12,880 98.44 93.86 93.35 3 days 21 h 98,332 6 days 11 h 45,296 10 days 8 h 98,332
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run. We ran all the experiments on a cluster node equipped with 28 2.39 GHz cores and 128 GB of RAM. Tools 
were thus run with 28 threads.

Alignment statistics of Table 5 show that CONSENT managed to process the whole dataset in 10 days, and 
required less than 100 GB of RAM. More precisely, the more computationally expensive step, in terms of memory 
consumption, was actually the overlaps computation, and not the error correction itself. The corrected reads 
displayed a higher N50 than the raw reads, the longest read reaching 929 kbp. Moreover, almost 99% of the reads 
could be realigned to the reference genome. The average identity of the alignments reached more than 93.5%, 
which is slightly higher, but consistent with the results on chr 1, presented in Table 2. Moreover, CONSENT 
managed to correct a large number of reads, and thus barely reduced the genome coverage of the original dataset.

Assemblies statistics of Table 6 are particularly interesting. Indeed, they show that, in addition to being 
extremely more computationally expensive, correcting the reads before assembling them produces less satisfying 
results than assembling the raw reads first, and then polishing the assembly. Indeed, the correction + assembly 
pipeline required more than 17 days and 1 TB of RAM, while the assembly + polishing pipeline ran in 7.5 days, 
and consumed less than 400 GB of RAM. In addition, the polished assembly displayed better metrics than the 
assembly generated from corrected reads, reaching higher NGA50, NGA75, and genome coverage, and lower 
error rate per 100 kbp. These results underline the fact that, for large datasets and complex genomes, assembling 
the raw data first, and then polishing the assembly is much more efficient than correcting the reads and then 
performing assembly.

Discussion
Experimental results on the human datasets are particularly promising. Indeed, they show that CONSENT is 
the only method able to efficiently scale to the ultra-long reads they contain. More precisely, on the human chr 1 
dataset, CONSENT is almost four times faster than Canu, the only other method able to scale to the correction 
of ultra-long reads. Moreover, it also produces more accurate results, and thus allows to yield a more contiguous 
assembly. As such reads are expected to become more widely available in the future, being able to deal with them 
will soon become a necessity. In addition, results on the complete human dataset show that CONSENT manages 
to efficiently process such large datasets in 10 days, using less than 100 GB of RAM. Moreover, this memory 
consumption could easily be reduced by adapting the parameters of Minimap2, and reducing the size of the jobs 
queue used during the actual correction step. At the expense of an increased runtime, CONSENT could thus 
process a full human dataset on a simple laptop. Using 8 threads, setting Minimap2 parameter -I 900M, and 
reducing the size of the jobs queue to 50,000, we indeed estimate CONSENT would run in a month, consume 
at most 16 GB of RAM, and require 5 TB of disk space to process a full human dataset. The 5 TB disk space 
requirement comes from the overlaps file, which can easily be stored on a external hard drive. Further experi-
ments should therefore focus on the correction of larger and more complex organisms. However, the runtime 
of CONSENT’s correction step tends to be higher than that of other state-of-the-art methods. We discuss how 
to further reduce these computational costs below.

Our experiments show that the runtime of the correction step tends to rise according to the complexity of 
the genome. This can be explained by the highest proportion of repeated regions in more complex genomes. 
Such repeated regions indeed impact the alignment piles coverages, and could therefore lead to the processing 
of piles having very deep coverages. For such piles, our strategy of only selecting the N highest identity overlaps 
might prove inefficient, especially when the length of the repeated regions grows longer. To further refine the 
overlaps selection, we could use a validation strategy similar to that of HALC. Such a strategy would allow us 
to only consider sequences from the pile that actually come from the same genomic region as the long read we 
are attempting to correct. This would, in turn, allow us to ensure the selected sequences display low divergence, 
which would speed up the MSA computation, while allowing to produce higher quality consensus.

Moreover, further optimization of the parameters shall also be considered. In particular, the window size and 
the minimum number of anchors to allow the processing of a window significantly impact the runtime. Running 
various experiments with different sets of parameters could therefore allow us to find a satisfying compromise 
between runtime and quality of the results. The fact that the CONSENT assembly covers a smaller proportion 
of the reference sequence also gives us further room for improvement. In particular, looking to the unaligned 
contigs more into details could help us further improve the mechanisms and principles of CONSENT. Another 
possible improvement would be to consider multiple k-mer size for the k-mer chaining strategy. By selecting 

Table 6.   Statistics of the different assemblies for the full H. sapiens dataset. Raw corresponds to the assembly 
generated from raw reads. Corrected corresponds to the assembly generated from corrected reads. Polished 
corresponds to the assembly generated from raw reads, and polished with CONSENT. Runtime and memory 
consumption are reported for the whole correction + assembly or assembly + polishing pipelines. QUAST-LG 
did not provide a metric for the NGA75 of the assembly generated from corrected reads. Best results for each 
metric is highlighted in bold.

Assembly Contigs
Aligned 
contigs (%)

NGA50 
(bp)

NGA75 
(bp)

Genome 
coverage 
(%)

Errors / 100 
kbp Misassemblies Runtime

Memory 
(MB)

Raw 750 95.47 534,347 _ 69.83 11,175 3,414 2 days 20 h 382,191

Corrected 780 98.08 2,103,452 _ 78.76 5,652 1,919 17 days 9 h 1,097,627

Polished 749 97.86 2,964,053 232,884 83.83 4,591 2,290 7 days 12 h 382,191
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the best possible chaining according to the coverage or the repetitive elements of a given window, the method 
could be more robust and more efficient by computing smaller MSA.

Finally, it is essential to note that CONSENT uses Minimap2 as its default overlapper, but does not depend on 
this tool. As a result, CONSENT will benefit from the progress of future overlapping strategies, and will therefore 
allow to propose better correction quality as the overlapping methods evolve.

Material and methods
Overview.  CONSENT takes as input a FASTA file of long reads, and returns a set of corrected long reads, 
reporting corrected bases in uppercase, and uncorrected bases in lowercase. Like most efficient methods, CON-
SENT starts by computing overlaps between the long reads using a mapping approach. These overlaps are com-
puted using an external program, and not by CONSENT itself. This way, only matched regions need to be further 
aligned in order to compute consensus. These matched regions are then divided into smaller windows, that 
are aligned independently. The alignment of these windows is performed via a MSA strategy based on partial 
order graphs. This MSA is computed by iteratively constructing and adding sequences to a DAG. It also benefits 
from an efficient heuristic, based on k-mer chaining, allowing to reduce the time footprint of computing MSA 
between noisy sequences. The DAG is then used to compute the consensus of the window it originates from. 
Once the consensus is computed, a second correction step makes use of a local de Bruijn graph. This allows to 
correct weakly supported regions, that are, regions containing weak k-mers, and thus reduce the final error rate 
of the consensus. Finally, the consensus is realigned to the read, and correction is performed for each window. 
CONSENT’s workflow is summarized in Fig. 1.

Definitions.  Before presenting the CONSENT pipeline, we recall the notions of alignment piles and win-
dows on such piles, as proposed in Daccord, since we rely on them throughout the rest of the paper.

Alignment piles.  An alignment pile represents a set of reads that overlap with a given read A. More for-
mally, it can be defined as follows. For any given read A, an alignment pile for A is a set of alignment tuples 
(A, R, Ab, Ae, Rb, Re, S) where R is a long read id, Ab and Ae represent respectively the start and the end posi-
tions of the alignment on A, Rb and Re represent respectively the start and the end positions of the alignment 
on R, and S indicates whether R aligns forward ( S = 0 ) or reverse-complement ( S = 1 ) to A. One can remark 
that this definition is slightly different from that of Daccord. In particular, Daccord adds an edit script to each 
tuple, representing the sequence of edit operations needed to transform A[Ab..Ae] into R[Rb..Re] if S = 0 , or into 
R[Rb..Re] if S = 1 (where R represents the reverse-complement of read R). This edit script can easily be retrieved 
by Daccord, as it relies on DALIGNER31 to compute actual alignments between the reads. However, as CON-
SENT relies on a mapping strategy, it does not have access to such information. We thus chose to exclude the 
edit script from our definition of a tuple. In its alignment pile, we call A the template read. The alignment pile of 
a given template read A thus contains all the information needed for its correction. An example of an alignment 
pile is given in Fig. 2 (left).

Figure 1.   Overview of CONSENT’s workflow for long read error correction.
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R3 R4
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R1 R2
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Figure 2.   Left: An alignment pile for a template read A. The pile is delimited by vertical lines at the extremities 
of A. Prefixes and suffixes of reads overlapping A outside of the pile are not considered during the next steps, as 
the data they contain will not be useful for correcting A. Right: When fixing the length to L and the minimum 
coverage threshold to 3, the window (Wb,We) will be processed by CONSENT. With these same parameters, the 
window (Fb, Fe) will not be processed by CONSENT, as A[i] is not supported by at least 3 reads ∀ Fb ≤ i ≤ Fe.
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Windows on alignment piles.  In addition to the notion of alignment piles, Daccord also underlined the interest 
of processing windows from these piles instead of processing them as a whole. A window from an alignment pile 
is defined as follows. Given an alignment pile for a template read A, a window of this pile is a couple (Wb,We) , 
where Wb and We represent respectively the start and the end positions of the window on A, and are such as 
0 ≤ Wb ≤ We < |A| (i.e. the start and end positions of the window define a factor of the template read A). We 
refer to this factor as the window’s template. Additionally, in CONSENT, only windows having the two following 
properties are processed for correction:

•	 We −Wb + 1 = L (i.e. windows have a fixed size);
•	 ∀i , Wb ≤ i ≤ We , A[i] is supported by at least C reads of the pile, excluding A (i.e. windows have a minimum 

coverage threshold).

This second property allows to ensure that CONSENT has sufficient evidence to compute a reliable consensus for 
each window it processes. Examples of windows CONSENT does and does not process are given in Fig. 2 (right).

In the case of Daccord, this window strategy allows to build local de Bruijn graphs with small values of k, and 
overcome the high error rates of the long reads, which cause issues when using large values of k32. More gener-
ally, processing windows instead of whole alignment piles allows to divide the correction problem into smaller 
subproblems that can be solved faster. Specifically, in our case, as we seek to correct long reads by computing 
MSA, working with windows allows to save both time and memory, since the sequences that need to be aligned 
are significantly shorter.

Overlapping.  To avoid prohibitive computation time and memory consuming full alignments, CONSENT 
starts by overlapping the long reads using a mapping approach. By default, this step is performed with the help 
of Minimap233. However, CONSENT is not dependent on Minimap2, and the user can compute the overlaps 
with any other method, as long as the overlaps file follows the PAF format. We included Minimap2 as the default 
overlapper for CONSENT, since it offers good performances, and is thus able to scale to large organisms on 
reasonable setups.

Alignment piles and windows computation.  The alignment piles are computed by parsing the PAF file 
generated by the overlapper during the previous step. Each line indeed contains all the necessary information 
to define a tuple from an alignment pile. It includes the identifiers of the two long reads, the start and the end 
positions of their overlap, as well as the orientation of the second read relatively to the first. Moreover, for each 
alignment pile, CONSENT only includes the N highest identity overlaps ( N = 150 by default, although it can be 
user-specified), in order to reduce the time footprint, and avoid computing costly MSA of numerous sequences.

Given an alignment pile for a read A, we can then compute its set of windows. To this aim, we use an array 
of length |A|, which counts how many times each nucleotide of A is supported. We initialize the array with 0s at 
each position, and for each tuple (A, R, Ab, Ae, Rb, Re, S), we increment values at positions i such as Ab ≤ i ≤ Ae . 
After processing all the tuples, we retrieve the positions of the piles by finding, in the array, sketches of length L 
of values ≥ C . We search for such sketches because CONSENT only processes windows of fixed length and with 
a minimum coverage threshold. In practice, we extract overlapping windows instead of partitioning the pile into 
a set of non-overlapping windows. Indeed, since it is usually harder to exploit alignments located on sequences 
extremities, consensus sequence might be missing at the extremities of some windows. Such events would thus 
cause a lack of correction on the reads, and using overlapping windows allows to overcome the issue. Each 
window is then processed independently during the next steps. Moreover, the reads are loaded into memory to 
support random access and thus accelerate the correction process. Each base is encoded using 2 bits in order to 
reduce memory usage. The memory consumption is thus roughly 1/4 of the total size of the reads.

Window consensus.  We process each window in two distinct steps. First, we align the sequences from the 
window using a MSA strategy based on partial order graphs, in order to compute consensus. This MSA strategy 
benefits from an efficient heuristic, based on k-mer chaining, allowing to decompose the global problem into 
smaller instances, thus reducing both time and memory consumption. Second, after computing the window’s 
consensus, we further polish it with the help of a local de Bruijn graph, at the scale of the window, in order to get 
rid of the few errors that might remain.

Consensus computation.  In order to compute the consensus of a window, CONSENT uses POAv224, an imple-
mentation of a MSA strategy based on partial order graphs. These DAGs, store all the information of the MSA. 
This way, at each step (i.e. at each alignment of a new sequence), the graph contains the current MSA result. 
To add a new sequence to the MSA, the sequence is aligned to the DAG, using a generalization of the Smith-
Waterman algorithm.

Other methods usually compute 1V1 alignments between the read to be corrected and other reads overlap-
ping with it, and then build a result DAG to summarize the alignments, and represent the MSA. In contrast, 
CONSENT’s strategy allows to compute actual MSA, and to directly build the DAG, during the alignment com-
putation. Indeed, the DAG is first initialized with the sequence of the window’s template, and is then iteratively 
enriched by aligning the other sequences from the window, until it becomes the final, result graph. We then 
extract a matrix, representing the MSA, from the graph, and compute consensus by performing a majority vote. 
When a tie occurs, we chose the nucleotide from the window’s template as the consensus base.
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However, even on small windows, computing MSA on hundreds of bases from dozens of sequences is com-
putationally expensive, especially when the divergence among sequences is high. To avoid the burden of building 
a consensus by computing full MSA, we search for collinear regions shared by these sequences, in order to split 
the global task into smaller instances. We thus build several consensus on regions delimited by anchors shared 
among the sequences, and reconstruct the global consensus from the distinct, smaller consensus sequences 
obtained. The rationale is to benefit from the knowledge that all the sequences come from the same genomic area. 
This way, on the one hand, we can compute MSA of shorter sequences, which greatly reduces the computational 
costs. On the other hand, we only use related sequences to build the consensus, and therefore exclude spurious 
sequences. This behavior allows a massive speedup along with an improvement in the global consensus quality.

To find such collinear regions, we first select k-mers that are non-repeated in their respective sequences, and 
shared by multiple sequences. We then rely on dynamic programming to compute the longest anchors chain 
a1, . . . , an such as: 

1.	 ∀i, j such that 1 ≤ i < j ≤ n , ai appears before aj in every sequence containing ai and aj;
2.	 ∀i , 1 ≤ i < n , there are at least T reads containing ai and ai+1 (with T a solidity threshold equal to 8 by 

default).

We therefore compute multiple, local consensus, using substrings bordered by consecutive anchors, 
in sequences that contain them, and are then able to reconstruct the global consensus of the window: 
consensus(prefix)+ a1 + consensus(]a1, a2[)+ a2 + · · · + consensus(]an−1,an[)+ an + consensus(suffix) . We 
illustrate this segmentation strategy in Supplementary Fig. S1 (longest anchors chain computation) and S2 (local 
consensus computation and global consensus reconstruction).

Consensus polishing.  After processing a given window, a few erroneous bases might remain on the computed 
consensus. This might happen in cases where the coverage depth of the window is relatively low, and thus cannot 
yield a high-quality consensus. Consequently, we propose an additional, second correction phase, that aims at 
polishing the consensus obtained during the previous step. This allows CONSENT to further enhance its qual-
ity, by correcting weakly supported k-mers. This feature is related to Daccord’s local de Bruijn graph correction 
strategy.

First, a local de Bruijn graph is built from the window’s sequences, using only small, solid, k-mers. The 
rationale is that small k-mers allows CONSENT to overcome the classical issues encountered due to the high 
error rate of the long reads, when using large k values. CONSENT then searches for regions only composed of 
weak k-mers, flanked by sketches of n (usually, n = 3 ) solid k-mers. Afterwards, CONSENT attempts to find a 
path allowing to link a solid k-mer from the left flanking region to a solid k-mer from the right flanking region. 
We call these solid k-mers anchors. The graph is thus traversed, in order to find a path between two anchors, 
using backtracking if necessary. If a path between two anchors is found, the region containing the weak k-mers 
is replaced by the sequence dictated by this path. If none of the anchors pairs can be linked, the region is left 
unpolished. To polish sketches of weak k-mers located at the left (respectively right) extremity of the consensus, 
highest weighted edges of the graph are followed, until the length of the path reaches the length of the region to 
polish, or no edge can be followed out of the current node.

Read correction via window consensus alignment.  Once the consensus of a window has been com-
puted and polished, we need to realign it to the template, in order to actually perform correction. To this aim, 
we use an optimized library of the Smith-Waterman algorithm34. To avoid time-costly alignment, we locally 
align the consensus around the positions of the window it originates from. This way, given a window (Wb,We) 
of the alignment pile of the read A, its consensus will be aligned to A[Wb − O..We + O] , where O represents 
the length of the overlap between consecutive windows processed by CONSENT ( O = 50 by default, although 
it can be user-specified). Aligning the consensus outside of the original window’s extremities as such allows to 
take into account the error profile of the long reads. Indeed, as insertions and deletions are predominant in long 
reads, it is likely that a consensus could be longer than the window it originates from, thus spanning outside of 
this window’s extremities.

In the case alignment positions of the consensus from the ith window overlap with alignment positions of 
the consensus from the ( i + 1)th window, we compute the overlapping sequences of the two consensus. The one 
containing the largest number of solid k-mers (where the k-mer frequencies of each sequence are computed 
from the window their consensus originate from) is chosen and kept as the correction. In the case of a tie, we 
arbitrarily chose the sequence from the ( i + 1)th consensus as the correction. We then correct the aligned factor 
of the long read by replacing it with the aligned factor of the consensus.

Conclusion
We presented CONSENT, a new self-correction method for long reads that combines different efficient strategies 
from the state-of-the-art. CONSENT starts by computing overlaps between the long reads to correct. It then 
divides the overlapping regions into smaller windows, in order to compute MSA, and consensus sequences of 
each window independently. These MSA are performed using a method based on partial order graphs, allowing 
to perform actual MSA. This method is combined to an efficient k-mer chaining strategy, which allows to further 
divide the MSA into smaller instances, and thus significantly reduce computation times. After computing the 
consensus of a given window, it is further polished with the help of a local de Bruijn graph, at the scale of the 
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window, in order to further reduce the final error rate. Finally, the polished consensus is locally realigned to the 
read, in order to correct it.

Our experiments show that CONSENT compares well to, or even outperforms, other state-of-the-art self-
correction methods in terms of quality of the results. In particular, CONSENT is the only method able to effi-
ciently scale to the correction of ONT ultra-long reads, and is able to process a full human dataset containing 
reads reaching lengths up to 1.5 Mbp in 10 days. Although very recent, such reads are expected to further develop, 
and thus become more widely available in the near future. Being able to deal with them will thus soon become 
a necessity. CONSENT could therefore be the first self-correction method able to be applied to such ultra-long 
reads on a greater scale.

CONSENT’s assembly polishing feature also offers promising results. In particular, our experiment on a full 
human dataset shows that assembling the raw reads and then polishing the assembly allows to greatly reduce 
the computational costs, but also provides better results than correcting and then assembling the reads. This 
conclusion raises the question of the interest of long-read error correction in assembly projects. Moreover, as 
the processes of long read correction and assembly polishing are not much different from one another, one can 
also wonder why more error correction tools do not offer such a feature. It indeed seems to be affordable at the 
expense of minimal additional work, while providing satisfying results. We believe that CONSENT could open 
the doors to more error correction tools offering such a feature in the future. Finally, it would also be interesting 
to evaluate already published correction tools on their ability to polish assemblies, at the expense of minimal 
modifications to their workflows.

The segmentation strategy introduced in CONSENT also shows that actual MSA techniques are applicable 
to long, noisy sequences. In addition to being useful for error correction, this could also be applied to various 
other problems. For instance, it could be used during the consensus steps of assembly tools, for haplotyping, 
and for quantification problems. The literature about MSA is vast, but lacks application on noisy sequences. We 
believe that CONSENT could be a first work in that direction.

Data availability
CONSENT is implemented in C++, wrapped in Python and Bash scripts, open source, supported on Linux 
platforms and available at https​://githu​b.com/moris​pi/CONSE​NT.
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