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Associations between polymorphisms of
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and Milk production traits in Chinese
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Abstract

Background: Our preliminary work confirmed that, SLC22A7 (solute carrier family 22 member 7), NGFR (nerve
growth factor receptor), ARNTL (aryl hydrocarbon receptor nuclear translocator like) and PPP2R2B (protein
phosphatase 2 regulatory subunit Bβ) genes were differentially expressed in dairy cows during different stages of
lactation, and involved in the lipid metabolism through insulin, PI3K-Akt, MAPK, AMPK, mTOR, and PPAR signaling
pathways, so we considered these four genes as the candidates affecting milk production traits. In this study, we
detected polymorphisms of the four genes and verified their genetic effects on milk yield and composition traits in
a Chinese Holstein cow population.

Results: By resequencing the whole coding region and part of the flanking region of SLC22A7, NGFR, ARNTL and
PPP2R2B, we totally found 20 SNPs, of which five were located in SLC22A7, eight in NGFR, three in ARNTL, and four
in PPP2R2B. Using Haploview4.2, we found three haplotype blocks including five SNPs in SLC22A7, eight in NGFR
and three in ARNTL. Single-SNP association analysis showed that 19 out of 20 SNPs were significantly associated
with at least one of milk yield, fat yield, fat percentage, protein yield or protein percentage in the first and second
lactations (P < 0.05). Haplotype-based association analysis showed that the three haplotypes were significantly
associated with at least one of milk yield, fat yield, fat percentage, protein yield or protein percentage (P < 0.05).
Further, we used SOPMA software to predict a SNP, 19:g.37095131C > T in NGFR, changed the structure of NGFR
protein. In addition, we used Jaspar software to found that four SNPs, 19:g.37113872C > G,19:g.37113157C > T, and
19:g.37112276C > T in NGFR and 15:g.39320936A > G in ARNTL, could change the transcription factor binding sites
and might affect the expression of the corresponding genes. These five SNPs might be the potential functional
mutations for milk production traits in dairy cattle.
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Conclusions: In summary, we proved that SLC22A7, NGFR, ARNTL and PPP2R2B have significant genetic effects on
milk production traits. The valuable SNPs can be used as candidate genetic markers for genomic selection of dairy
cattle, and the effects of these SNPs on other traits need to be further verified.
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Background
Milk and dairy products have long been regarded as
good sources of nutrition, providing proteins, fatty acids,
minerals and vitamins. Studies have shown that eating
dairy products seems to be good for lowering blood
pressure and low density lipoprotein, muscle exercise
and preventing tooth decay, diabetes, cancer and obesity
[1]. Milk production traits are the most important eco-
nomic traits for dairy cattle breeding, including 305-day
milk yield, fat yield, protein yield, fat percentage and
protein percentage [2]. These traits are quantitative
traits, controlled by minor polygenes and greatly affected
by the environment, so the breeding work is more
difficult.
Since the genomic selection (GS) was comprehensively

applied in dairy cow breeding in developed countries in
2009, the early and accurate selection of young bulls has
been realized, the generation interval has been greatly
shortened, and the genetic progress of the population
has been accelerated, thus the breeding cost has been
significantly reduced. GS uses SNP markers to select tar-
get traits. Studies have shown that adding functional
gene information with greater genetic effects of target
traits to SNP marker data can improve the accuracy of
genome breeding value prediction [3–5].
Therefore, in recent decades, quantitative trait locus

(QTL) mapping, candidate gene analysis, genome-wide
association analysis and high-throughput sequencing
techniques have been widely used in dairy cow breeding
to identify the functional elements [6–10]. Moreover,
studies have shown that SNPs (single nucleotide poly-
morphisms) in the gene can significantly affect the milk
production traits of dairy cows [11–15].
Previously, we identified a number of genes, miRNAs

and lncRNAs that showed differentially expressed pat-
terns in different lactation periods of Holstein, and
found 12 genes, including SLC22A7, NGFR, ARNTL, and
PPP2R2B, participating in the lipid metabolism through
insulin, PI3K-Akt, MAPK, AMPK, mTOR, and PPAR
signaling pathways, which were considered to be the
promising candidates for milk production traits in dairy
cattle; additionally, the four genes, were regulated by the
same lncRNA that is worthy of further verification [16].
SLC22A7 (solute carrier family 22 member 7) is an or-

ganic anion transporter, which is involved in the trans-
port of cGMP, niacin and propionic acid [17–20].
Propionic acid can be effectively converted into glucose,

and the gene may regulate cell metabolism through the
transport of propionic acid in the kidney and liver, and
ultimately affect the milk production traits of dairy cows
[21, 22].
It is reported that NGFR (nerve growth factor recep-

tor) is closely associated with fat accumulation and the
thickness of subcutaneous fat in pigs [23, 24], and an-
other study has shown that the NGFR gene can regulate
the directional differentiation of pluripotent stem cells
into skeletal muscle progenitor cells [25].
ARNTL (aryl hydrocarbon receptor nuclear transloca-

tor like, also known as BMAL1) gene, which belongs to
the family of transcriptional regulatory factors, is the
main transcriptional activator in mammals and plays an
important role in regulating circadian rhythm [26, 27]. A
study shows that the deletion of ARNTL in the adipo-
cytes can disrupt the energy balance of mice and eventu-
ally lead to obesity [28].
The expression product of PPP2R2B (protein phos-

phatase 2 regulatory subunit Bβ) gene is a regulatory
subunit of protein phosphatase 2A, which is widely
found in neurons throughout the brain [29]. Studies
have shown that PPP2R2B is associated with some hu-
man diseases, such as spinocerebellar ataxia, breast can-
cer and autoimmune diseases [30–32].
Based on the four candidate genes for milk production

traits in dairy cows, the main goal of this study was to
identify the SNPs of these four genes, analyze their gen-
etic association with milk yield, fat yield, fat percentage,
protein yield, and protein percentage, and evaluate
whether they can be used for the genomic selection chip
development. In addition, we will predict the potential
biological structure and function of the identified SNPs,
such as transcription factor binding site (TFBS) and sec-
ondary protein structure, and speculate the causal muta-
tion for milk traits in dairy cattle.

Result
SNPs identification
In this study, we found five, eight, three and four SNPs
in SLC22A7, NGFR, ARNTL and PPP2R2B genes, re-
spectively. In SLC22A7, one SNP was located in intron,
one in 3′ untranslated region (UTR) and three in 3
‘flanking region. In NGFR, there were three SNPs lo-
cated in 5 ‘flanking region, one in intron, one in exon 6,
two in 3′ untranslated region and one in 3 ‘flanking re-
gion. In ARNTL, one SNP was located in 5 ‘flanking
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region, and two in intron. In PPP2R2B, two SNPs were
located in intron region, one in exon 6, and one in the 3
‘flanking region (Table 1; Fig. 1).
The SNP of NGFR, 19:g.37095131C > T, was a mis-

sense mutation, and when the allele was mutated from C
to T, the amino acid changed from cysteine to tyrosine.
Additionally, the genotypic and allelic frequencies of all
the identified SNPs were summarized in Table 1.

Association analyses between SNPs and the five Milk
production traits
We analyzed the association between the 20 SNPs and
five milk traits in dairy cows, including milk yield, fat
yield, protein yield, fat percentage and protein percent-
age (Additional file 1; Fig. 1).
In SLC22A7, 23:g.16896145A > G was significantly as-

sociated with milk yield, protein yield and protein per-
centage in the first lactation, and milk yield, fat yield and
protein yield in the second lactation. Two SNPs, 23:
g.16899640A > G and 23:g.16900723A > T, were signifi-
cantly associated with milk yield, fat yield and protein
yield in the first lactation. The SNP 23:g.16900870G > T
had significant associations on milk yield, protein yield
in the first lactation, and milk yield, fat yield, protein
yield and protein percentage in the second lactation.
The 23:g.16901383G > C was significantly associated
with milk yield, protein yield in the first lactation, and
milk yield, fat yield and protein yield in the second lacta-
tion (P < 0.05).
In NGFR, 19:g.37113872C > G, 19:g.37096050G > A,

19:g.37095131C > T and 19:g.37091691C > A had signifi-
cant associations with fat yield and fat percentage in the
second lactation; 19:g.37113157C > T was significantly
associated with milk yield, fat yield and fat percentage in
the second lactation; and 19:g.37112276C > T had sig-
nificant genetic effects on fat yield, fat percentage and
protein yield in the second lactation (P < 0.05).
In ARNTL, 15:g.39320936A > G was significantly asso-

ciated with milk yield, protein yield and protein percent-
age in the first lactation, and milk yield, fat yield and
protein percentage in the second lactation; 15:
g.39301344 T > C had significant effects on milk yield,
fat yield, protein yield in the first and second lactations;
and 15:g.39312186 T > C was significantly associated
with milk yield, protein percentage in the first lactation,
and milk yield, fat yield and protein yield in the second
lactation (P < 0.05).
In PPP2R2B, 7:g.58088217C > T was significantly asso-

ciated with fat yield and protein yield in the first lacta-
tion; 7:g.57855248C > T was significantly associated with
milk yield, fat yield, protein yield in the first lactation
and fat percentage in the second lactation; 7:g.57855119
T > C had significant effects on fat yield, protein yield,
protein percentage in the first lactation and fat yield in

the second lactation; 7:g.57794491G > T was significantly
associated with fat yield in the first lactation, and milk
yield and fat yield in the second lactation (P < 0.05).
In addition, the results of additive, dominant and sub-

stitution effects were shown in Additional file 2.

Associations between haplotype blocks and the five Milk
traits
We estimated the degree of linkage disequilibrium (LD)
among the 20 identified SNPs in this study using Haplo-
view4.2, and inferred three haplotype blocks, including
five, seven and three SNPs of SLC22A7, NGFR, and
ARNTL genes, respectively (Fig. 2; Block 1 (SLC22A7): D
′ = 0.99–1.00; Block 2 (NGFR): D′ = 0.98–1.00; and
Block 3 (ARNTL): D′ = 1).
In Block 1, the frequencies of four haplotypes, H1

(GAATC), H2 (GGTGG), H3 (AAAGG) and H4 (GAAG
C), were 45.9, 27.2, 16.3 and 8.9%, respectively. In Block
2, four haplotypes were found, and the frequencies of
H1 (CTCGCTC), H2 (ACTACCC), H3 (ACTATCG)
and H4 (CTCGCCC), were 47.9, 21.3, 18.8, and 10%, re-
spectively. In Block 3, the frequencies of H1 (TTA), H2
(CCA) and H3 (CTG) haplotypes were 63.5, 21.9 and
14.7%, respectively.
Moreover, we found that the haplotype combinations

showed significant associations with 305-day milk yield,
fat yield, fat percentage, protein yield, or protein per-
centage in the two lactations (P < 0.05; Additional file 3).
Block 1 of SLC22A7 was strongly associated with milk
yield, fat yield, and protein yield in the first lactation,
and milk yield and fat yield in the second lactation.
Block 2 of NGFR had significant associations with milk
yield, fat yield, and protein yield in the first lactation,
and fat yield, fat percentage and protein yield in the sec-
ond lactation. The Block 3 of ARNTL was significantly
associated with milk yield, fat yield, protein yield and
protein percentage in the first and second lactations.

Functional variation prediction caused by SNPs
We predicted the TFBS changes of the four SNPs (19:
g.37113872C > G, 19:g.37113157C > T, 19:g.37112276C >
T and 15:g.39320936A > G) in the 5′ promoter region of
NGFR and ARNTL genes by Jaspar software (Table 2),
and found that all the four SNPs could change TFBSs.
The allele C of 19:g.37113872C > G in NGFR created

binding site (BS) for transcription factor SNAI2, and al-
lele G created BS for SPI1 and OSR2. For 19:
g.37113157C > T in NGFR, allele T invented BS for
STAT3, FEV and ETV6, and allele C invented BS for
GATA2 and GATA1. Allele T of 19:g.37112276C > T in
NGFR created BS for MXI1, and allele C created BS for
NRF1 and SOHLH2.
As for 15:g.39320936A > G in ARNTL, allele G created

BS for transcription factors DMRTA2, OSR1, PAX5 and
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Table 1 Detailed information about SNPs identified and their genotypic and allelic frequencies

Gene SNP RS ID Gene region Genotype Genotypic frequency Allele Allelic frequency

SLC22A7 23:g.16896145A > G rs135904081 intron AA 0.0275 A 0.1642

AG 0.2735 G 0.8358

GG 0.6990

23:g.16899640A > G rs133901529 3’UTR AA 0.5238 A 0.7276

AG 0.4076 G 0.2724

GG 0.0686

23:g.16900723A > T rs137472561 3’flanking region AA 0.5238 A 0.7276

AT 0.4076 T 0.2724

TT 0.0686

23:g.16900870G > T rs110672247 3’flanking region GG 0.2967 G 0.5417

GT 0.4900 T 0.4583

TT 0.2133

23:g.16901383G > C rs108993506 3’flanking region CC 0.2957 C 0.5475

CG 0.5037 G 0.4525

GG 0.2006

NGFR 19:g.37113872C > G rs209326778 5’promoter region CC 0.6484 C 0.8115

CG 0.3263 G 0.1885

GG 0.0253

19:g.37113157C > T rs42707581 5’promoter region CC 0.2587 C 0.5206

CT 0.5238 T 0.4794

TT 0.2175

19:g.37112276C > T rs470795681 5’promoter region CC 0.6473 C 0.8094

CT 0.3242 T 0.1906

TT 0.0285

19:g.37096050G > A rs384321728 intron AA 0.1595 A 0.4029

AG 0.4868 G 0.5971

GG 0.3537

19:g.37095131C > T rs441506595 exon 6 CC 0.3516 C 0.5950

CT 0.4868 T 0.4050

TT 0.1616

19:g.37093264 T > C rs43703926 3’UTR CC 0.1700 C 0.4213

CT 0.5026 T 0.5787

TT 0.3273

19:g.37093189A > C rs439860473 3’UTR AA 1.0000 A 1.0000

0.0000

0.0000

19:g.37091691C > A rs382443341 3’flanking region AA 0.1595 A 0.4023

AC 0.4857 C 0.5977

CC 0.3548

ARNTL 15:g.39320936A > G rs133103558 5’promoter region AA 0.7318 A 0.8532

AG 0.2429 G 0.1468

GG 0.0253

15:g.39312186 T > C rs137623467 intron CC 0.1162 C 0.3654

CT 0.4984 T 0.6346
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Table 1 Detailed information about SNPs identified and their genotypic and allelic frequencies (Continued)

Gene SNP RS ID Gene region Genotype Genotypic frequency Allele Allelic frequency

TT 0.3854

15:g.39301344 T > C rs134613800 intron CC 0.0412 C 0.2186

CT 0.3548 T 0.7814

TT 0.6040

PPP2R2B 7:g.58088217C > T rs380884981 intron CC 0.7793 C 0.8849

CT 0.2112 T 0.1151

TT 0.0095

7:g.57855248C > T rs457295594 exon 6 CC 0.8015 C 0.8976

CT 0.1922 T 0.1024

TT 0.0063

7:g.57855119 T > C rs133004496 intron CC 0.5924 C 0.7724

CT 0.3601 T 0.2276

TT 0.0475

7:g.57794491G > T rs208484910 3’flanking region GG 0.7012 G 0.8353

GT 0.2682 T 0.1647

TT 0.0306

Note: UTR untranslated region

Fig. 1 Location and association with milk yield, fat and protein percentage of SNPs in SLC22A7 (A), NGFR (B), ARNTL (C) and PPP2R2B (D) genes.
MY milk yield, FP fat percentage, PP protein percentage. Gray boxes represent exons, and solid black circles represent significant differences in first
or second lactation
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TFAP2C, and allele A created BS for FOXL1, HOXC8,
MZF1 and TBX6.
Furthermore, the protein secondary structure variation

of the missense mutation in NGFR, 19:g.37095131C > T,
was predicted by SOPMA, and the results showed that
α-helix varied from 22.61 to 23.78%, β-turn from 2.56 to

1.86%, and random coil from 65.50 to 65.03% when al-
lele A mutated into G.

Discussion
Our previous study considered SLC22A7, NGFR, ARNTL
and PPP2R2B genes to be candidates to affect milk

Fig. 2 Linkage disequilibrium estimated between SNPs in SLC22A7, NGFR and ARNTL genes. The blocks indicate haplotype blocks and the text
above the horizontal numbers is the SNP names. The values in the red boxes are pair-wise SNP correlations (D′), while bright red boxes without
numbers indicate complete LD (D′ = 1)

Table 2 Transcription factor binding sites (TFBSs) prediction for NGFR and ARNTL genes

Gene SNPs Allele Transcription factor Relative score (≥0.80) Predicted binding site sequence

NGFR 19:g.37113872C > G C SNAI2 0.86 CACAAGTAT

G SPI1 0.87 CAGAAG

OSR2 0.90 TAACAGAAGTAT

19:g.37113157C > T T STAT3 0.86 GGTCCTGGAAA

FEV 0.88 CTGGAAAT

ETV6 0.85 CCTGGAAATG

C GATA2 0.94 AGATG

GATA1 0.93 AGATGT

19:g.37112276C > T T MXI1 0.90 GGCACACGGG

C NRF1 0.85 GCGCACGGGCG

SOHLH2 0.85 CGCACGGGCG

ARNTL 15:g.39320936A > G G DMRTA2 0.82 GTGTGCTACAGG

OSR1 0.82 TGCTACAGGG

PAX5 0.80 GTGTGCTACAGGGTGGGAA

TFAP2C 0.80 TGCTACAGGGT

A FOXL1 0.82 GTGCTATA

HOXC8 0.80 GCTATAGG

MZF1 0.80 ATAGGGTGGG

TBX6 0.80 AGTGTGCTAT
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production traits in dairy cows [16]. In this study, we de-
tected the polymorphisms of SLC22A7, NGFR, ARNTL
and PPP2R2B genes, and found that there was a signifi-
cant genetic association between the SNPs and haplo-
type blocks of these genes and milk production traits.
Transcription factors can affect gene expression by

combining to TFBSs to regulate the transcription of tar-
get genes [33]. The SNP located at TFBS may affect the
binding of transcription factors, resulting in differences
in gene expression among individuals with different ge-
notypes [34, 35]. In this study, we found the changes of
TFBSs caused by the SNPs in 5 ‘flanking regions of
NGFR and ARNTL genes. For 19:g.37113157C > T in
NGFR, allele T invented BS for transcription factors
STAT3, FEV and ETV6, and allele C invented BS for
GATA2 and GATA1. In 15:g.39320936A > G of ARNTL,
allele G created BS for DMRTA2, OSR1, PAX5 and
TFAP2C, and allele A created BS for FOXL1, HOXC8,
MZF1 and TBX6.
STAT3 is a transcription factor of the STAT family,

which can be activated by tyrosine phosphorylation to
inhibit the expression of gluconeogenic genes, thereby
reducing blood glucose and maintaining blood glucose
homeostasis [36]. The change of transcription factor
FEV expression can affect the gene expression level of 5-
hydroxytryptamine (5-HT) neurons in the central ner-
vous system [37]. ETV6 is a transcriptional suppressor,
which belongs to the ETS family and is highly conserved
[38]. GATA2 inhibits the expression of genes related to
cardiac development and up-regulates the important
genes of hematopoietic differentiation in an indirect way
[39]. GATA1 affects normal platelet production by regu-
lating the expression of NBEAL2 by long-distance en-
hancers [40]. A study has shown that DMRTA2 may
suppress the expression of cyclin-dependent kinase in-
hibitor 2C to regulate spermatogenesis in zebrafish [41].
It has been found that OSR1 can inhibit the transcrip-
tional activity of p53 and then inhibit the expression of
oncogenes in renal cancer cells [42]. It is reported that
the transcription factor PAX5 suppresses inappropriate
genes in B cell lines and activates B cell-specific genes in
B lymphocytes [43]. The down-regulation of tumor sup-
pressor gene expression regulated by TFAP2C may be
one of the carcinogenic causes of non-small cell lung
cancer [44, 45]. FOXL1 can regulate the development of
central nervous system by inhibiting the expression of
Sonic Hedgehog protein in zebrafish [46]. HOXC8, as a
transcriptional activator, induces the expression of trans-
forming growth factor-β-1, which leads to the increase
in the proliferation, anchorage-independent growth and
migration of non-small cell lung cancer [47]. MZF1 has
positive regulation on CDC37 gene transcription by
binding the regulatory sites, while MZF1 deletion re-
duces CDC37 transcription and tumorigenicity of

prostate cancer cells [48]. TBX6 is a member of the T-
box transcription factor family, which regulates mouse
embryonic development by promoting the expression of
Dll1 encoding Notch ligands [49].
These transcription factors can cause the activation or

inhibition of gene expression, and in this study, they
may interact to promote or suppress the expression of
NGFR or ARNTL genes. Based on the phenotypic data of
milk production traits with different genotypes, we
found that the fat yield of genotype TT of 19:
g.37113157C > T in NGFR was significantly higher than
that of genotype CC, and the milk and protein yields of
genotype AA in 15:g.39320936A > G of ARNTL were sig-
nificantly higher than those of genotype GG. Thus, we
speculated that the change of gene expression caused by
SNP may be one of the reasons for the phenotypic
changes of milk production traits in dairy cows.
In addition, we predicted the change of the protein

secondary structure by the missense mutation (19:
g.37095131C > T; cysteine (UGC) to tyrosine (UAC)) in
exon 6 of the NGFR gene, and found that this missense
mutation could change the protein secondary structure
of NGFR. Generally speaking, the α-helix is located at
the core of the protein and plays an important role in
the conformational change of the protein [50]. The re-
sults of association analysis showed that this mutation
was significantly associated with milk fat yield and fat
percentage, so we speculated that this missense muta-
tion, 19:g.37095131C > T, might affect the conform-
ational stability of NGFR protein and ultimately
influenced the milk fat traits of dairy cows, yet its bio-
logical function needs to be further studied.

Conclusions
This study confirmed the significant genetic effects of
SLC22A7, NGFR, ARNTL and PPP2R2B on milk produc-
tion traits of Chinese Holstein cattle, and the valuable
SNPs can be used as candidate genetic markers for mo-
lecular breeding of dairy cattle. Five SNPs were
highlighted as the promising functional mutations for
milk production traits, of which, 19:g.37113872C > G,19:
g.37113157C > T and 19:g.37112276C > T in NGFR and
15:g.39320936A > G in ARNTL, might change the TFBSs
to regulate expression of the corresponding gene, and
the missense mutation of NGFR, 19:g.37095131C > T,
could change the protein secondary structure. This study
laid a foundation for further functional verification of
SLC22A7, NGFR, ARNTL and PPP2R2B.

Methods
Animal selection and phenotypic data collection
In this study, we selected 947 daughters from 45 Chinese
Holstein sire families in 22 farms of Beijing Shounong
Animal Husbandry Development Co. LTD (Beijing,
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China) as the experimental population. The 45 sires
were used for SNP identification and their daughters,
947 cows, were used for association analysis. Each sire
family had an average of 21 daughters, and each cow
had 3-generation pedigree information and Dairy Herd
Improvement (DHI) records for milk yield, protein yield,
protein percentage, fat yield and fat percentage (Add-
itional file 4). The cows in each sire family were distrib-
uted in various dairy farms and maintained with the
same feeding conditions.
We used the phenotypic data of 947 cows in the first

lactation and 654 in the second lactation (293 cows
merely completed the milking of first lactation) for the
association analysis. The individual milk production
phenotype of each cow was the data of the whole lacta-
tion period of the parity. The 305-day milk yield is cal-
culated by multiplying the actual total milk yield by the
corresponding estimated coefficient (Additional file 4).
The 305-day milk fat and protein contents were ob-
tained by multiplying the 305-day milk yield by the aver-
age milk fat and protein percentages, respectively. The
average milk fat and protein percentages were the ratio
of total milk fat and protein contents to total milk yield,
respectively.

Genomic DNA extraction
Frozen semen of the 45 bulls and blood samples of 947
cows were provided by Beijing Dairy Cattle Center
(Beijing, China). We extracted genomic DNAs from the
semen using salt-out procedure, and used a TIANamp
Blood DNA Kit (Tiangen, Beijing, China) to extract
DNAs from the blood. The quantity and quality of ex-
tracted DNAs (A260/A280 > 1.8) were determined by a
NanoDrop2000 spectrophotometer (Thermo Science,
Hudson, NH, USA) and gel electrophoresis (1.5%),
respectively.

SNP identification and linkage disequilibrium (LD)
estimation
We designed primers (Additional file 5) with Primer3
(http://bioinfo.ut.ee/primer3-0.4.0/) to amplify all the
coding regions and 2000 bp of 5′ and 3′ flanking regions
of SLC22A7, NGFR, ARNTL and PPP2R2B genes based
on the bovine reference genome sequences. Then the
primers were synthesized by Beijing Genomics Institute
(BGI, Beijing, China). We mixed the genomic DNAs of
bull semen with the same amount, and then amplified
them by PCR (Additional file 5). We used 2% gel elec-
trophoresis to detect whether the PCR amplification
products were qualified, and the qualified PCR products
were sequenced.
After sequencing, we compared the sequences with

the reference sequences (ARS-UCD1.2) on NCBI-
BLAST (https://blast.ncbi.nlm. nih.gov/Blast.cgi) to

identify the potential SNP. Subsequently, we genotyped
the identified SNPs in 947 cows using Genotyping by
Target Sequencing (GBTS) technology by Boruidi Bio-
technology Co. Ltd. (Hebei, China). Further we calcu-
lated the allele frequency of each site and used the locus
with minor allele frequency (MAF) > 0.05 for the follow-
ing association analysis.
In addition, we used Haploview4.2 (Broad Institute of

MIT and Harvard, Cambridge, MA, USA) to estimate
the extent of linkage disequilibrium (LD) between the
identified SNPs.

Association analyses on Milk production traits
Associations between the SNPs or haplotype blocks and
the milk production traits were analyzed using SAS 9.13
(SAS Institute Inc., Cary, NC, USA). The additive genetic
relationship matrix A was constructed using the SAS,
which was computed by tracing the pedigree back to
three generations of 2827 involved individuals. Variance
components were estimated based on the data of 30,000
Chinese Holstein cows in Beijing area by using the
DMU package version 6.0 (University of Aarhus, Fou-
lum, Denmark). Finally, the effects of the SNPs/haplo-
type blocks on first or second lactation milk production
traits were estimated using the mixed procedure of SAS
9.13 software. With the following animal model, each
trait was analyzed separately and each polymorphism/
block was also fitted separately:

Y ¼ μþ hysþ b�M þ G þ aþ e;

where Y is the phenotypic value of each trait of each
cow; μ is the overall mean; hys is the fixed effect of farm
(1–22: 22 farms), calving year (1–4: 2012–2015) and
calving season (1: April–May; 2: June–August; 3: Sep-
tember–November and 4: December–March); M is the
age of calving as a covariant, b is the regression coeffi-
cient of covariant M; G is the genotype or haplotype
combination effect; a is the individual random additive
genetic effect, the distribution is N ð0;Aδ2aÞ , A is a
pedigree-based relationship matrix and the additive gen-
etic variance is δ2a; and e is random residual, the distribu-

tion is N ð0; Iδ2eÞ , the unit matrix I and the residual

variance δ2e . Bonferroni correction was carried out by
multiple tests, the significance level was equal to the ori-
ginal P value divided by the number of genotype or
haplotype combinations.
We also calculated the additive (a), dominant (d), and

substitution (α) effects as follows: a ¼ AA−BB
2 ; d ¼ AB−

AAþBB
2 ; α = a + d(q − p), where, AA, BB, and AB are the

least square means of the milk production traits in the
corresponding genotypes, p is the frequency of allele A,
and q is the frequency of allele B.
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Biological function prediction
We used Jaspar software (http://jaspar.genereg.net/) to
predict whether SNPs in the 5′ flanking region of NGFR
and ARNTL genes changed the TFBS (relative score ≥
0.80). We used SOPMA (https://prabi.ibcp.fr/htm/site/
web/services/secondaryStructurePrediction#SOPMA)
software to predict the effect of missense mutation on
the secondary structure of protein, including α-helix, β-
turn and random coil.
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