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Viral life cycles captured in thre
e-dimensions with electron
microscopy tomography
Chi-yu Fu and Johnson E Johnson
Viruses hijack host-cell functions and optimize them for viral

replication causing a severe threat to human health. However,

viruses are also tools to understand cell biology and they may

be effective reagents in nanomedicine. Studies from the

molecular to cellular levels are aimed at understanding the

details of viral life cycles and the underlying virus–host

interactions. Recent developments in electron microscopy

tomography allow viral and cellular events to be observed in

fine structural detail in three-dimensions. By combining high-

resolution structures of individual proteins and

macrocomplexes obtained by crystallography and electron

cryomicroscopy and image reconstruction with

reconstructions performed on subtomographic volumes,

electron tomography has advanced the structural and

mechanistic understanding of virus infections both in vitro and

in host cells.
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Introduction
Electron microscopy has been widely applied to visualize

the ultrastructures of cells and tissues and to reveal

morphological changes caused by virus infection. Elec-

tron tomography (ET) extends imaging from two-dimen-

sions (2D) to three-dimensions (3D) where the specimens

are tilted typically�608 or 708 along an axis perpendicular

to the electron beam. A series 2D projection images are

collected at 1–28 intervals and aligned with each other and

then back-projected to generate 3D images [1,2].

In order to minimize the inelastic scattering and to obtain

sufficient signal-to-noise ratio (SNR) of the images, cells or

tissues are fixed, traditionally with chemicals, and sec-

tioned to about 50–250 nm in thickness. An alternative
www.sciencedirect.com
to chemical fixation is high pressure freezing in combi-

nation with freeze substitution, providing better preser-

vation of the ultrastructures [3]. Electron cryotomography

(cryotomog) eliminates fixation entirely and approaches

resolution in the 4-nm range. Samples are preserved in

vitreous ice by flash freezing and then examined with low

electron doses while maintaining cryoconditions. Cryoto-

mog minimizes artifacts introduced during sample fixation,

dehydration and staining, and therefore preserves struc-

tures in a virtually native state. Cryotomog can be applied

to small prokaryotic cells without sectioning or to regions of

eukaryotic cells that are flattened [1,2]. Analysis of larger

cells requires, technically challenging, cryosectioning [4].

ET requires only the combination of different views of the

same entity with no averaging of different objects, making

it a superior method to analyze pleiomorphic objects. Some

medically important viruses (e.g. influenza and HIV) are

pleiomorphic, prohibiting the use of crystallography or

electron cryomicroscopy with image reconstruction (cryo-

EM). ET characterizations of purified viruses revealed the

structural complexity of HIV, Influenza, Hanta and Herpes

etc. [5–8]. On the other hand, ET can identify asymmetric

structural changes inside symmetric objects. The method

allowed visualization of the specialized DNA packaging

vertex in the icosahedral HSV capsid [9,10], the geometry

of the poliovirus capsid releasing its genome [11], the

structural changes of the tail machinery of Epsilon15 upon

injecting its genome [12], or the conformational changes of

hemagglutinin molecules of influenza virus upon fusing

with liposomes [13]. A significant issue affecting the

images generated by ET is the ‘missing wedge’ of data

caused by the 1408 physical limit associated with the tilts.

This causes significant artifacts in certain, predictable,

regions of the image [1]. The problem can be reduced

with multiple tilt axes and, if applicable, performing sub

tomographic volume averaging. The latter can significantly

improve the resolution if objects are sufficiently uniform to

be averaged. The growing applications of ET to charac-

terize virus structures and various stages of the virus life

cycle in vitro and in vivo have been well documented in

several reviews [14–16]. Here we emphasize recently

published work on viruses. Tomographic studies of viruses

from 2010 to date are listed in the Table 1.

Applications of electron tomography to study
viral life cycles
HIV

ET has contributed significantly to our understanding of

the complicated HIV assembly process as well as its
Current Opinion in Virology 2011, 1:125–133
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Table 1

Tomography studies of viruses from 2010 to date

Family Virus Methods Studies Ref

Cystoviridae w12 Cryotomog Architectures of viral surface complexes

responsible for host-cell attachment

[57]

Subtomo average

Cystovirida w6 Cryotomog Random occupancy of RNA polymerase and

packaging NTPase on w6 procapsids

[58]

Subtomo average

Podoviridae P-SSP7 Cryotomog Structural changes in podoviruses associated

with release of its genome into Prochlorococcus

[59]

Subtomo average

Cellular cryotomog

Podoviridae BPP-1 Cryo-EM Structure of tropism-switching

Bordetella bacteriophage

[60]

Cryotomog

Subtomo average

Rudiviridae Sulfolobus turreted

icosahedral virus

Whole cell cryotomog Viral life cycle in host sulfolobus cells [36]

Subtomo average

Bunyaviridae Hantaan virus Cryo-EM Architectures of envelop glycoprotein

spike complexes on viruses

[8]

Cryotomog

Subtomo average

Bunyaviridae Hanta viruses Cryotomog Architectures of Tula hantavirus [5]

Subtomo average

Coronaviridae Corona Viruses Subtomo average Structural analysis of M protein in relation to

virus assembly and morphology

[61]

Flaviviridae Dengue virus Cellular ET Viral replication in a human endothelial cell line [62]

Flaviviridae Dengue virus Cellular ET Dengue virus-induced autophagosomes and

changes in endomembrane ultrastructure

[62]

herpesviridae Gammaherpes Cellular ET Gammaherpesvirus life cycle in host cells [30��]

Viruses

Orthomyxo-viridae Influenza virus Cryotomog Architecture of a nascent viral fusion pore [13]

Picornaviridae Polio virus Cryo-EM Architectures of the virus releasing the genome [11]

Cryotomog

Subtomo average

Retroviridae HIV-1 Cryotomog Structural analysis of HIV-1 maturation [21]

Subtomo average

Cellular cryotomog Architectures of viral particles at native budding sites [23��]

Subtomo average

Cryotomog Maturation inhibitor bevirimat functions as

stabilizing the immature gag lattice

[63]

Subtomo average

Cellular ET HIV transfers at the virological synapse

between dendritic cells and T cells

[24]

HIV-1 Cryotomog Strain-dependent variation in architectures

of trimeric envelope glycoproteins

[64]

Simian immunodeficiency virus Subtomo average

HIV Cryotomog Conserved and variable features of gag

structure and arrangement in immature

retrovirus particles

[65]

Mason-Pfizer monkey virus Subtomo average

Rous Sarcoma Virus

Rous sarcoma virus Cryotomog Tomography characterization of morphogenic

mutations on capsid assembly

[66]

Reoviridae Cytoplasmic polyhedrosis virus ET Architectures of viral particles embedded inside

a crystalline protein occlusion body called polyhedra

[67]

Togaviridae Semliki forest virus Cellular ET Structural evidence of glycoprotein assembly in

cellular membrane compartments prior to viral budding

[68]

Togaviridae Rubella virus Cellular ET Structures of Rubella virus factories [69]
maturation and cellular egress. The viral polyprotein Gag

assembles on the interior cell membrane and recruits

other viral components and the RNA genome, as well

as the host ESCRT machinery necessary for the sub-
Current Opinion in Virology 2011, 1:125–133
sequent viral budding. The immature form of the virion

undergoes series of proteolytic cleavages by the viral

protease and converts into an infectious mature particle.

While the virions are pleomorphic, repeating patterns in
www.sciencedirect.com
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the particle surface lattice were characterized and

enhanced by sub tomographic averaging [17]. This

allowed the Gag lattice in the immature virions to be

reconstructed to 17 Å and revealed that the incomplete

hexagonal lattice packing creates curvature through sym-

metry defects with irregular shape and size. Upon proteo-

lytic cleavage of Gag the lattice maintains its largely

hexagonal organization but loses its defects, and

rearranges to incorporate pentameric CA capsomers for

curvature, creating the characteristic cone shape of the

mature capsid core [18–20]. By studying Gag mutations

abolishing cleavage at individual or multiple cleavage

sites, the structural transformations corresponding to

the maturation process were revealed in significant detail

[21].

HIV assembly and release were also examined at their

budding sites during cellular egress. The budding process

is initiated by Gag assembly and completed in an

ESCRT-dependent manner, initially forming an incom-

plete �2/3 Gag sphere [22]. The cryotomog studies of

intact plunge-frozen human cells concluded that the gag

lattice in budding sites was indistinguishable from that of
Figure 1
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Cryoelectron tomography of HIV-1 budding sites and the gag protein lattice

computationally isolated tomographic slice of cells transduced with adenovira

particles. (b) Gag lattice maps of immature (top) and intermediate (bottom)

marked with a hexagon and are colored according to the cross correlation on

tomograms extracted from an individual budding site was displayed in the ce

the structure (right). The surfaces have been colored radially to illustrate diffe

— NC + RNA.Reproduced with permission from Ref [23��].
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the released immature virion (Figure 1) [23��]. The

control of proteolytic maturation is critical, because its

loss led to the formation of aberrant particles.

Cell to cell contacts and the distribution of HIV virions at

the synapses formed between mature dendritic cells and

T cells were also revealed in 3D [24]. The T cells were

embraced by sheet-like membrane extensions derived

from the dendritic cells, which create shielded virological

synapses. The unique aspects of cell–cell transmission in

the receptor-dependent viral transfers were visualized in

the secluded synapses. The distribution of glycoprotein

spikes on the viral surface in contacts with cells during

entry was characterized in earlier studies [25].

Filoviruses

Marburg and Ebola viruses cause severe hemorrhagic

fever with high mortality rates in humans. The release

of the highly infectious filamentous particles was cap-

tured in 3D [26�]. The budding process is initiated with

the lateral association of the viral nucleocapsid with the

plasma membrane. A rapid envelopment started at one

end of the nucleocapsid followed by a scission process
Current Opinion in Virology
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of the budding particles determined by sub tomographic averaging. (a) A

l vectors expressing HIV-1 Gag. act, actin; b, budding sites; ip, immature

HIV-1. The center and orientation of each aligned sub tomogram are

a scale from low (red) to high (green). (c) The average of the aligned sub

ntral radial sections from the structure (left) and in isosurface rendering of

rent domains in Gag: yellow — membrane + MA; blue/green — CA; gray
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resulting in local membrane destabilization at the rear

end of the virus. The study found that the increased

vesiculation of the plasma membrane at the budding sites

after prolonged infection resulted in releasing viruses

with changes to spherical shapes, which are less infectious

than the filamentous particles.

Herpesvirus

A number of members in Herpesviridae cause diseases

and tumors, including varicella zoster virus, cytomegalo-

virus, Epstein–Barr virus, and Kaposi’s sarcoma-associ-

ated herpesvirus. This DNA virus has an icosahedral

capsid surrounded by an amorphous protein layer (tegu-

ment) and an envelope coated with glycoprotein spikes

[27,28]. The entry process of herpes simplex viruses was

caught in action in 3D [29]. Recently, the life cycle of

murine gammaherpesvirus including viral attachment,

entry, assembly, and egress were also revealed (Figure

2) [30��]. The study showed the transient process of

incoming capsids injecting viral DNA through nuclear

pore complexes and the process of nascent DNA being

packaged into progeny capsids as a spool coaxial with the

putative portal vertex. The work demonstrated that the

intra-nuclear invagination of nuclear membranes is

involved in the nuclear egress of herpes virus capsids.

Vaccinia virus

Vaccinia virus is a member of Poxviridae and has com-

plicated assembly and maturation pathways that were
Figure 2
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Dual-axis electron tomography of NIH 3T3 cells infected with murine gammah

attaching to the cell surface for prior to endocytosis. Color codes in 3D render

yellow, protrusions on the membrane; light gray, plasma membrane; cyan, me

capsid docking at a nuclear pore and injecting viral DNA. Color codes in 3D

INM; magenta, ONM; cyan, NPC. (c) Tomograms (top) and the 3D rendering

Color codes in 3D rendering: red, viral DNA; green, capsid; yellow, scaffold

sections of Virus-Induced Nuclear Inclusion Bodies. (e) A tomogram (top) and

codes in 3D rendering: red, viral DNA; green, capsid; orange, INM or primary

gray, ribosome.Reproduced with permission from Ref [30��].
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studied by ET [31,32]. The precursor membrane of

the virus is recruited by viral proteins to generate open

membrane crescents that coalesce to form spheroid sacks

that eventually form the envelope for the virus. The

incorporation of the DNA leads to particles with a

‘nucleoid’ subsequent transformation into the mature

virus. The latter stage involves an extreme rearrangement

of the particle envelope in which the original recruiting

viral gene products are lost. The entry of vaccinia virus

into mammalian cells was also characterized by cryoto-

mog and showed that viruses undergo distinct structural

rearrangements of the core and its surface spikes as well as

de-condensation of the viral DNA upon binding to the

cell surface [33�].

Sulfolobus turreted icosahedral virus (STIV)

STIV belongs to PRD1-Adeno viral lineage and infects

the archaea Sulfolobus growing in boiling hot springs [34].

The structure of the major capsid protein (MCP) is

conserved across three domains of life, from adenovirus,

and vaccinia virus, to bacteriophage PRD1 [35]. The

assembly process of this inner-membrane-containing

virus was revealed in intact Sulfolobus cells by whole cell

cryotomog (Figure 3) [36��]. The partially assembled

particles were observed in which the curvature and

protein-membrane layer spacing resemble those of fully

assembled particles. These intermediates support the

model of assembly in which the capsid shell and the

membrane are tightly coupled by defined local inter-
Current Opinion in Virology
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Figure 3

Current Opinion in Virology
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Whole cell cryoelectron tomography of Sulfolubs infected with STIV. (a) A computationally isolated tomographic slice of Sulfolubs infected with STIV.

SL, s-layer; PS, periplasmic space; CM, cytoplasmic membrane; Pyr, pyramid-like protrusion; STIV, STIV particles. (b) Surface representations of a

pyramid in 3D viewed from the side and the top of the structure. (c) A computationally isolated tomographic slice of Sulfolubs bursting out particles

from a pyramid structure.

Reproduced with permission from Ref [36��].
actions as assembly proceeds. Similar to the assembly of

immature vaccinia viruses, the interactions of the lipid

membrane with capsid, and possibly other trans-mem-

brane proteins, appear able to maintain the energetically

unfavorable open-ended membrane structures [31,32].

Indeed the high level of structural homology between

the STIV MCP and the vaccinia D13 protein that recruits

and shapes partially formed membrane structures is strik-

ing. This similarity in membrane recruiting subunits

closely reveals comparable roles in STIV and vaccinia

viruses but with different outcomes, that is STIV MCP

forms membrane-containing viruses while vaccinia D13 is

a scaffold that leaves the membrane during virus matu-

ration and is not present in viruses (Figure 4). The power

of cellular ET to disclose transient assembly and matu-

ration intermediates, which may not be preserved in

purified samples, is well illustrated by this example.

Sub tomographic reconstructions of the icosahedral

particles allowed the structural comparison of particles

in situ at various maturation stages [36��,37]. The study

clearly showed an empty precursor particle assumed to be

the substrate for packaging enzymes analogous to bac-

teriophage. At the resolution of the sub tomographic

reconstructions it did not appear that DNA packaging

in STIV induced large-scale capsid transformation as

observed in bacteriophage. It was clear that the turret-
www.sciencedirect.com
like structures at the fivefold vertices seen in the mature

viruses were already assembled in the procapsid particles

before genome encapsidation. The high image quality of

cellular tomograms and robust computational analysis

allowed intracellular STIV arrays to be analyzed in excep-

tional detail, including the precise orientation of the

particles within particle arrays. Particles in the arrays

were packed tightly and mainly consisted of virions.

Procapsids (lacking dsDNA) were only found on the edge

of the arrays or not associated with the arrays at all. The

arrays of STIV may accommodate DNA and packaging

enzymes where capsid assembly and genome packaging

are tightly coupled. Virus factories or viroplasm have been

reported in eukaryotic and prokaryotic systems where

proteins and newly synthesized genomes are confined

within specific compartments for efficient viral replication

and assembly [37–39]. The arrays observed in STIV may

provide an environment for dsDNA packaging and matu-

ration.

STIV infection induces the formation of pyramid-like

protrusions on the cell surface that allow virus release late

in infection [40,41]. A single viral protein was shown to

induce pyramid formation even in the absence of virus

infection [42,43]. Indeed, when this gene was expressed by

itself in Sulfolobus pyramids formed on the cell surface.

Fully developed pyramids have sevenfold symmetry and
Current Opinion in Virology 2011, 1:125–133
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Figure 4

Current Opinion in Virology
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Hybrid approaches reveal conserved structures and assembly pathway of STIV and Vaccinia virus. The tertiary structures of the STIV MCP and

Vaccinia virus D13 protein share similar folds (a) that recruit membranes to generate open membrane crescents (b) with hexagonal protein lattice

packing (c). The similar inner-membrane-containing particles are visualized (d). Approximate scales for each panel are (a) STIV MCP �37 kDa; VV D13

�62 kDa. (b) STIV particle diameter �74 nm; VV center diameter �200 nm. (c) STIV hexamer center-to-center dimension �74 Å; VV dimension

�154 Å. (d) STIV particle diameter �75 nm; VV immature particle diameter �270 nm (long axis).

Reproduced with permission from Refs [32,35,54–56].
display sharp facets. Viewed perpendicular to the facets,

the pyramids have a thicker cross-section than the cyto-

plasmic membrane and did not contain the exterior surface

protein layer (S-layer). The process of pyramid protruding

out of a thinning cell wall and perturbing the S-layer were

captured by cryotomog, revealing exceptional detail associ-

ated with this novel viral release mechanism.

Conclusions
Cryotomog has evolved to visualize sophisticated virus

life cycles and cellular pathogenesis in unprecedented

detail. Employing multiple tilt procedures and more

sophisticated programs to assemble the tomograms from

individual images can reduce the missing wedge and

correct for radiation damage to produce higher quality

density. Direct electron detectors have recently been

employed and appear to have great promise for improving

signal to noise in cryo-EM imaging in general and cryo-

tomog in particular [44]. Likewise, recent developments

with Zernike phase-contrast cryotomog allowed the

acquisition of images of unstained specimens with strik-

ing contrast while close to focus, allowing further im-

provement in resolution. Their use will benefit, in
Current Opinion in Virology 2011, 1:125–133
particular, imaging ultrastructures of thick specimens

under biological conditions [45,46].

Correlative fluorescence light microscopy and electron

microscopy approaches have been developed employing

fluorescent tags to guide the search for structures or events

of interest followed by ET or cryotomog to provide high-

resolution imaging of the biological events [47]. A similar

rationale has driven the incorporation of the tetracysteine

motif into a protein of interest. This motif induces fluor-

escence when it binds to biarsenical compounds (FlAsH

and ReAsH) allowing specific targeting with light micro-

scopy [48,49]. Following photo-conversion and osmium

staining, an insoluble osmio-philic precipitate forms

around the fluorescent target making it visible by EM.

The approach was applied to follow the assembly of flock

house virus in insect cells [50]. It allowed viral arrays to be

visualized with both fluorescence and EM analysis and

showed that heavily modified mitochondria were the sites

of viral RNA replication. In vivo labeling strategies

applicable to cryotomog have also developed recently.

Metal-binding proteins such as metallothionein (MT) or

ferritin can be fused to target proteins as can proteins that
www.sciencedirect.com
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will bind to gold clusters or heavy metal ions that can be

visualized with EM [51–53]. Analogous to GFP used in

fluorescence light microscopy, the metal-binding tags

allow identification and localization of target proteins in

the context of fine ultrastructures in tomograms.

There is an exceptional amount of activity in this arena

with new approaches being reported on a regular basis. It

seems clear that the recent insights into virus infection

and pathogenesis are just the beginning of a new era in

electron microscopy and structural virology.
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