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The acquisition of cancer hallmarks requires molecular alterations at multiple levels including genome, epigenome, transcriptome,
proteome, and metabolome. In the past decade, numerous attempts have been made to untangle the molecular mechanisms of
carcinogenesis involving single OMICS approaches such as scanning the genome for cancer-specific mutations and identifying
altered epigenetic-landscapes within cancer cells or by exploring the differential expression of mRNA and protein through
transcriptomics and proteomics techniques, respectively. While these single-level OMICS approaches have contributed towards
the identification of cancer-specific mutations, epigenetic alterations, and molecular subtyping of tumors based on gene/protein-
expression, they lack the resolving-power to establish the casual relationship between molecular signatures and the phenotypic
manifestation of cancer hallmarks. In contrast, the multi-OMICS approaches involving the interrogation of the cancer cells/tissues
in multiple dimensions have the potential to uncover the intricate molecular mechanism underlying different phenotypic
manifestations of cancer hallmarks such as metastasis and angiogenesis. Moreover, multi-OMICS approaches can be used to
dissect the cellular response to chemo- or immunotherapy as well as discover molecular candidates with diagnostic/prognostic
value. In this review, we focused on the applications of different multi-OMICS approaches in the field of cancer research and
discussed how these approaches are shaping the field of personalized oncomedicine. We have highlighted pioneering studies from
“The Cancer Genome Atlas (TCGA)” consortium encompassing integrated OMICS analysis of over 11,000 tumors from 33 most
prevalent forms of cancer. Accumulation of huge cancer-specific multi-OMICS data in repositories like TCGA provides a unique
opportunity for the systems biology approach to tackle the complexity of cancer cells through the unification of experimental data
and computational/mathematical models. In future, systems biology based approach is likely to predict the phenotypic changes
of cancer cells upon chemo-/immunotherapy treatment. This review is sought to encourage investigators to bring these different
approaches together for interrogating cancer at molecular, cellular, and systems levels.

1. Introduction to (OMICS) Technologies

“OMICS” technologies are characterized by high-throughput
interfaces which facilitate the investigation of genome,
epigenome, transcriptome, proteome, and metabolome in a
global-unbiased manner. OMICS techniques are now being
used to understand the intricate biological systems and
uncover the molecular signatures underlying the complex
cellular phenotypes [1, 2]. Different OMICS approaches
were developed to untangle the complexity of biological
systems at different dimensions (e.g., gene, RNA, and protein

levels). Recent advancements of OMICS techniques have
been proved to be theweapon of choice to dissect the aberrant
cellular functions that lay in the heart of multifactorial
diseases such as cancer [1].

1.1. Increase of Complexity from Genome to Proteome. The
different OMICS levels—Genomics, Transcriptomics, and
Proteomics—vary greatly in their complexity that is largely
driven by the spatial- and/or temporal dynamics and chem-
ical modifications (Figure 1). The flow of information from
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Figure 1:Pyramid of complexity.Thepyramid represents the flow of information from genome (top) to transcriptome (middle), to proteome
(bottom).The complexity increases fromgenome to proteome (indicated by down arrow).The complexity of transcriptome is largelymediated
by temporal dynamics and alternative splicing. In contrast, spatiotemporal dynamics and posttranslational modifications (PTMs) are mainly
responsible for high proteome complexity. Examples of PTMs include phosphorylation (P) and acetylation (Ac).

DNA to RNA and ultimately to protein is accompanied by
an exponential increase in the complexity. The hereditary
information stored in the genome in the formof 4 nucleotides
remains largely static but temporal dynamics is introduced in
the process of transcription by which genes are transcribed
into RNAs. Orchestration of temporal regulation of gene
expression depending on developmental, environmental, and
extracellular cues via gene-regulatory networks makes the
transcriptome a highly dynamic entity [3]. Alternative splic-
ing in addition to temporal dynamics increases the complex-
ity of transcriptome. mRNAs are engaged into even more
complex information coding systems: translation process
where mRNAs encode for proteins comprising 20 amino
acids. After synthesis, proteins are typically folded into many
possible conformations depending on the primary amino
acid sequences and chemical modification of amino acid
residues known as posttranslational modifications (PTMs).
Proteins undergo a large number of PTMs (e.g., phospho-
rylation, acetylation, and glycosylation) that may directly
affect their structure and functionality. Moreover, unlike
mRNAs which are synthesized in nucleus and translated in
cytoplasm, proteins have different subcellular localizations
such as cell membrane, cytoplasm, and different mem-
brane bound subcellular organelles—nucleus, mitochondria,
endoplasmic reticulum, etc. Altogether these events confer
huge complexity to the proteome. Two most important
technologies—next-generation sequencing (NGS) and mass-
spectrometry (LC-MS/MS)—have revolutionized the field of
OMICS by deciphering the human genome, transcriptome,
and proteome. Schematic diagram representing the typical
workflow of NGS (left panel) and mass-spectrometry (right
panel) experiments is shown in Figure 2.

1.2. Next-Generation Sequencing BasedApproaches: Genomics,
Epigenomics, and Transcriptomics. In recent years, the
genomics-techniques are mostly dedicated to sequence the
genome of an individual to understand the interindividual
variations at both the germline and somatic levels. The
eventual graduation of the sequencing technologies from
the Sanger sequencing based approaches to the NGS-based
massively parallel sequencing has enabled researchers to
sequence the genome/exome of interest deeply enough to
characterize the mutational landscapes of a given tissue.
For example, in a large scale project known as “The Cancer
Genome Atlas (TCGA)”, the scientists employed the
NGS coupled with downstream bioinformatics analysis to
discover somatic mutational landscape across thousands
of tumor samples representing major cancer types under
the assumption that these genome-wide mutational studies
would be pivotal in understanding complexity of different
cancer [4, 5].

Epigenomics is defined by the genome-wide identifica-
tions of chemical modifications such as methylation and
acetylation of DNA and/or DNA-binding histone proteins.
Epigenetic-modifications of DNA and histones proteins
serve as a major regulatory mechanism controlling gene
expression and cellular phenotypes [6]. The epigenomics
studies have played integral role in uncovering the disease-
associated epigenetic markers. Epigenomics techniques that
are widely used include chromatin immunoprecipitation
(ChIP) assays coupled NGS commonly known as ChIP-
Sequencing or ChIP-seq and methylation analysis through
whole-genome bisulfite/array-based sequencing. ChIP-Seq
has been developed as a powerful tool for the identification
of DNA-binding sites for transcription factors (TFs) and
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Figure 2: Schematic diagram representing the basic steps of NGS and mass-spectrometry. NGS (left) can be used for both genomic DNA
and RNA-sequencing. Mass-spectrometry based proteomics (right) are typically used to identify and quantify large amount of proteins from
cells, tissues, and body fluids. 1Primary cells and tissues from patients can be mixed with labelled proteins, typically extracted from cell lines
cultured in presence of stable isotopically labelled amino acids. This method is called Super-SILAC. Proteomics can also be done without
any labelling steps. This method is known as label free-quantification (LFQ). 2Peptides obtained after tryptic digestion can also be labelled
chemically by methods known as “TandemMass Tag (TMT)” or “Isobaric tags for relative and absolute quantitation (iTRAQ)”.

histone proteins in a genome-wide manner to construct
high-resolution genome-wide maps of histone modification
marks. ChIP-seq follows a straightforward protocol where
DNA-bound proteins are typically immunoprecipitated by
specific antibody followed by the extraction, purification, and
sequencing of the bound DNA. In recent years application
of ChIP-seq has enabled us to gain deep-insights into gene-
regulatory events that are responsible for various diseases
and biological pathways, such as cancer progression and
development, respectively. By comparing these genome-wide
profiles of histone modifications marks between cancer and
normal tissues it has been possible to understand how
epigenetic deregulation manifested in various cancers such
as breast [7] and lung [8]. Apart from histone modifications,
chemical modifications in certain DNA base can have dra-
matic epigenetic effects. For instance, chemical modification
of Cytosine residue in the promoter DNA sequence of genes
can modify their expression. By harnessing the power of
NGS, it is now possible to analyze genome-wide methylome

patterns at a single nucleotide resolution. Whole-genome
bisulfite sequencing (WGBS) or Bisulfite sequencing (BS-
Seq) in short is a powerful technology that can detect the
methylated Cytosine bases in genomic DNA. In brief the
method involves the treatment of genomicDNAwith sodium
bisulfite followed by sequencing to construct a genome-
widemap ofmethylatedCytosinewith single-base resolution.
Apart from this, a relatively novel technique known as
MBD-isolatedGenome Sequencing (MiGS) has recently been
used to analyze whole-genome methylation pattern [9]. This
technique relies on the precipitation of methylated DNA by
recombinant methyl-CpG binding domain of MBD2 protein
followed by sequencing. A study by Vidal et al. investi-
gated the genome-wide methylation analysis of 1112 primary
tumors of various cancers types where the authors identified
hypermethylated promoters and enhancers that regulate the
expression of tumor-suppressor genes and concluded that
changes in DNA methylation pattern tend to occur in the
onset, progression, and dissemination of cancer [10].
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Transcriptomics techniques are engaged in the detection
of the presence and quantification of RNA transcripts espe-
cially mRNAs but can also be extended to other types of non-
coding RNA transcripts such as long noncoding transcripts
(LncRNAs) and microRNAs. Transcriptome in a particular
cell includes all RNAmolecules that are transcribed from the
genome at a given time. In contrast to the genome, which
is static in nature, the transcriptome is subjected to change
depending on cellular, environment, extracellular, and devel-
opmental stimuli in temporal manner. Before the advent of
NGS, microarray was used as the conventional laboratory
technique to detect the changes in the mRNA levels within
the cells at different stages in a high-throughput manner.
Microarrays can typically be used to quantify the relative
abundance of mRNAs for thousands of genes simultaneously.
By this technique, it is possible to construct cellular or tissue
gene expression profiles between normal and cancer states
which may facilitate the identification of genes that exhibit
differential expression between normal and cancer states.

Leveraged by the development of efficient NGS tech-
niques, the cutting edge “Transcriptomics” technique—RNA-
sequencing (RNA-seq)—can identify the presence as well as
the abundance of RNA transcripts in an unbiased genome-
wide manner (Figure 2). Unlike microarrays, RNA-seq tech-
nology does not rely upon the transcript-specific probes and
thus can successfully perform the unbiased detection of novel
transcripts. The other advantages that the RNA-seq offers
over microarrays include broad dynamic range, increased
specificity/sensitivity, and detection of low abundant tran-
scripts. RNA-Seq analysis has shown that the mammalian
transcriptional landscape is much more complex than was
previously imagined before. Apart from diverse range of
protein-coding RNAs and well established regulatory RNAs
such as microRNAs, different types of noncoding RNAs
(ncRNAs) are pervasively transcribed from the vast majority
of noncoding regions of the genome including intergenic
and intronic sequences [11]. The recent influx of huge RNA-
seq data has revealed a differential gene expression pattern
between various types of cancer tissues and their normal
counterparts and thus harbors the potential to uncover the
intricate molecular mechanisms to understand the progres-
sion of cancer [12]. The huge data repositories such TCGA
offer the opportunity to reanalyze the OMICS data by a
pan-cancer approach where different types of cancers can be
compared and contrasted in terms of genomic and transcrip-
tomic landscapes [13]. Li et al. comprehensively analyzed the
gene expression profiles across 33 human cancer types from
the TCGA database and identified up- and downregulated
genes that exhibited remarkable consistency across different
cancer [12]. Table 1 represents summary of the applications of
different NGS-based OMICS techniques.

1.3. Mass-Spectrometry (LC-MS/MS) Based Techniques: Pro-
teomics and Metabolomics. While transcriptomics is dedi-
cated to the measurement of RNA transcripts, proteomics
is specialized in the identification and quantification of
the proteins that are present at a given time in biological
samples. Unlike the transcriptomics, quantification of the
proteome requires special strategies, since the identification

and quantification of proteins in large scale are challenging
due to the high complexity and dynamic range of the
proteome. Transcriptomics platforms such as RNAseq-based
approaches are designed to reveal the information at the
transcriptome level that in turn shapes the proteome to
carry out the functional cellular processes. Since most of the
biological processes are controlled by proteins, it is important
to reliably and accurately measure proteome alterations in
aberrant cellular state such as in a cancer context to under-
stand how cellular processes are carried out mechanistically.
However, genome-wide proteomics data for cancer is exas-
peratingly limited. To tackle this problem as a part of TCGA
a protein-expression dataset for a large number of tumor
samples and cell lines has been generated using reverse-phase
protein arrays (RPPAs) which is calledThe Cancer Proteome
Atlas (TCPA)” [14]. TCPA utilized antibodies to detect and
quantify nearly 200 proteins and phosphoproteins across
large number of TCGA tumor samples. The major limitation
of the antibody based methods is the nonspecificity of the
antibodies and low-throughput. Advancements of the tan-
demmass-spectrometry (LC-MS/MS) techniques at the level
of MS resolution, accurate quantitation, and data analysis
has made it a solid platform for simultaneous identification
and quantification of the proteome of a cell [15]. The aim
of quantitative proteomics is to obtain reliable quantitative
information about all the proteins that fall within the mass-
spectrometric dynamic range. In recent years the advent of
cutting edge high-resolution “Orbitrap” mass-spectrometer
instruments coupled with powerful computational platforms
such as MaxQuant [16] facilitated the genome-wide identi-
fication and quantification of nearly all expressed proteins
(roughly 18,000 proteins) in human cells and tissues which
paved the foundation for the construction of the first draft
of the human proteome [17, 18]. The application of mass-
spectrometry based proteomics techniques has recently been
extended to investigate the proteome alteration in vari-
ous human cancer tissues [19]. However, unlike genomics
and transcriptomics, mass-spectrometry (LC-MS/MS) based
deep-proteomics techniques are under development to be
routinely applicable in clinical settings. Nevertheless the
promise this technology holds to identify novel diagnostic
and prognostic biomarkers for cancer is enormous. Appli-
cations of mass-spectrometry-based OMICS techniques are
summarized in Table 1.

The application of mass-spectrometric techniques is not
limited to proteins and peptides but rather can be extended to
small molecules such as metabolites. While proteomics cov-
ers the analysis of proteins, metabolomics on the other hand
is characterized by the quantifications of metabolites that
are synthesized as products of cellular metabolic activities,
such as amino acids, fatty acids, carbohydrates, and lipids.
The levels of metabolites and/or ratios of certain metabolites
can be altered in disease states and thus reflect aberrant
metabolic functions in complex diseases such as cancer [1,
20]. Metabolomics, though a relatively new field of OMICS,
powered by the mass-spectrometry (LC-MS/MS) technology
is beginning to provide biological insights into the changes
of diverse metabolic pathways and fluxes in diseases states
[21]. However, there are certain challenges (such as unknown
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Table 1: Different omics techniques and their applications.

Omics Type Principle Throughput Application

Genomics Whole exome
sequencing NGS high Genome-wide mutational/ analysis

Whole genome
sequencing NGS high Exome-wide mutational analysis

Targeted
gene/exome
sequencing

Sanger-sequencing Low Mutational analysis in targeted gene/exon

Epigenomics
Methylomics Whole-genome bisulfite

sequencing High Genome-wide mapping of DNA
methylation pattern

ChIP-sequencing Chromatin IP∗ and NGS high Genome-wide mapping of epigenetic
marks

Transcriptomics
RNA-sequencing NGS High Genome-wide differential gene

expression analysis
microarray Hybridization High Differential gene expression analysis

Proteomics
RPPA Antibody based Low Differential protein abundance analysis

Deep-proteomics Mass-spectrometry high Genome-wide differential protein
expression analysis

Metabolomics Deep-
metabolomics Mass-spectrometry high Differential metabolite expression

analysis

metabolite identification, enormous diversity of metabolites
and reproducibility) that must be overcome to materialize
the full potential of mass-spectrometry-basedmetabolomics.
The field of metabolomics is still emerging and embraces the
potential to be highly effective in the discovery of biomarkers
for cancer diagnosis and progression.

All the OMICS levels are important to decipher the
complex phenotype of cells and organisms. Understanding
the molecular basis of cellular phenotypes involving genes,
RNA transcripts, proteins, and metabolites is particularly
important because it not only gives an opportunity to predict
the phenotypic alteration by examining the molecular signa-
tures but also may serve as an unbiased platform to identify
targets for therapeutic interventions. The next step towards
the technological advances of OMICS fields would be to
decrease sample processing/measurement time and increase
reproducibility to firmly establish these techniques in clinical
settings for diagnosis and prognosis of cancer.

2. Advantages of OMICS-Driven Studies in
Cancer Context

Acquisition of cancer hallmarks allows the transition of a nor-
mal cell to malignancy.The hallmarks typically include com-
plex phenotypic and molecular changes including uncon-
trolled and sustained proliferation, evading growth suppres-
sors, resisting cell death, replicative immortality, angiogene-
sis, and metastasis [22]. Moreover mechanistic understand-
ing of cancer progression though a series of experiments
allowed us to get a glimpse of some other emerging hallmarks
of cancer such as reprogramming of energy metabolism and
evading immune destruction [22]. Attaining these hallmarks
requires a series of alterations in the cellular machinery
driven by molecular aberration in the genome, epigenome,

transcriptome, proteome, and metabolome within cancer
cells and/or tissues. For instance NGS of cancer cell genomes
uncovered how activating mutations in certain proprolifer-
ative genes such as B-raf drives constitutive activation of
mitogen-activated protein- (MAP-) kinase signalling which
eventually manifests as uncontrolled proliferation of cells
[23]. Molecular aberrations that drive the cancer are not
restricted only to genomicmutational events but are extended
into epigenome. For instance, silencing of certain tumor-
suppressor genes can also be achieved through aberrant epi-
genetic mechanisms such as DNA methylation and histone
modifications [24].

The hallmark—invasion and metastasis—requires the
epithelial cells to undergo a transition towards mesenchymal
phenotype thus enabling them to invade and migrate to
distant sites for colonization. This complex phenotypic man-
ifestation requires a complete gene-regulatory network that
governsmultiple genes/proteins to work in concert to achieve
such dramatic changes. It has recently been shown that
epithelial-mesenchymal transition (EMT) is indeed induced
by certain transcription factors (TFs)—Snail, Slug, Twist, and
Zeb1/2—coordinating the multistep process of invasion and
metastasis [22, 25]. Transcriptomics techniques are suitable
to uncover such TF-driven transcription regulatory networks
that are assumed to be activated in a cancer context.

Although cell-fate decisions and phenotypic changes in
cancer cells are initiated by transcriptional networks, these
complex processes are executed by intracellular machiner-
ies composed of proteins. In this view, obtaining cancer
hallmarks is essentially achieved by the alteration of the
protein levels and/or PTMs (e.g., Phosphorylation status).
For example, proproliferative signalling can be constitutively
activated by upregulating the expression of the receptor
proteins at the cancer cell surface [22] which can be detected
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by proteomics-centric studies. Unbiased global proteomics
studies conducted by Tyanova et al. generated proteomic
profiles comprising 19 proteins that can be successfully used
to distinguish between oestrogen receptor positive (luminal),
Her2 positive, and triple negative breast tumors [26].

The manifestation of cancer hallmarks does not leave
the cellular metabolism unaffected. In a counterintuitive
way, cancer cells are able to reprogram glucose metabolism
and subsequent energy production by restricting oxidative
phosphorylation even in the presence of oxygen. This phe-
nomenon is commonly known as Warburg effect [22, 27].
In recent times with the technological progression of mass-
spectrometry instruments, we can now better understand
the metabolic reprogramming of cancer in great detail. For
example, recently it has been shown that certain tumors
are comprised of two metabolically distinct subpopulations
of cells: one subpopulation has been shown to be glucose
dependent and employmetabolic reprogramming to produce
lactate as presumed in classical “Warburg effect”, whereas the
second population channels the lactate from their neighbour-
ing lactate producing cells as energy source for themselves
[28].

All together it has now become apparent that to under-
stand cancer progression, discover new therapeutic inter-
ventions, and develop novel cancer biomarkers we need to
employ diverse OMICS strategies at multiple levels. While
a single type of OMICS study can reveal a great deal of
information at an unidirectional level (such as genomics can
only reveal the mutational landscapes of cancer patients),
the complexity of cancer-host interactions requires multi-
dimensional approaches (such as genomics, epigenomics,
transcriptomics, proteomics, and metabolomics) to portray
the complete picture. Compared to single OMICS studies,
multi-OMICS investigations have the potential to allow a
deeper-understating of how the cancerous transformation is
affecting the flowof information fromoneOMICS level to the
next. Multi-OMICS approaches can bridge the link between
cancerous genotype and the phenotypic characteristics.

3. Application of Multi-OMICS Approach:
Success Stories So Far

Adaptation of cancer cells to a new cell-fate decision
such as resisting apoptosis and phenotypic characteristics
like metastatic invasion requires changes in the genome,
epigenome, and gene expression profile that subsequently
reshapes the proteome and metabolome to meet the chal-
lenges of altered cell-fate and phenotype. Integrating multi-
OMICS profiles such as transcriptomics and proteomics
offers the perfect strategy to unravel the information regard-
ing differential abundance profile of mRNAs and proteins
in varying conditions. In the following sections, we have
discussed different integration approach of multi-OMICS
data to understand the complexity of information processing
systems in cancer cells.

3.1. Epigenomics versus Transcriptomics. The complexity of
the mammalian cell is largely driven by the heritable genome

constrained by epigenetic mechanism to regulate the expres-
sion of genes in different cellular contexts. This enables the
cells to acquire the necessary functions for differentiation
and proliferation. The epigenetic mechanisms are mediated
through DNA/chromatin and histone protein modifications.
In recent decades it has become apparent that the can-
cer epigenome harbors numerous alterations compared to
their normal counterpart. For instance, genome-wide loss
of methylation leading to aberrant unregulated expression
of tissue specific and imprinted genes was observed to be
associated with cancer [29, 30]. In line with this argument,
studies have shown that hypomethylation in the promoter
region of oncogenes, RRAS, S100P, and melanoma antigen
family A1 (MAGEA1) activates their gene expression in gas-
tric, pancreatic, and hepatocellular carcinoma, respectively
[31]. In contrast to hypomethylation which was observed to
manifest in global genome-wide manner, hypermethylation
in different types of cancer occurs locally within specific
segments of the genome. For instance promoter hyperme-
thylation triggers the silencing of tumor-suppressor genes
(TSGs), BRCA1, CDKN2A, and MLH1, thus making them
unable to control cell cycle, apoptosis, and/or DNA repair
[24, 32]. DNA-hypermethylation in CpG islands residing
within promoter regions, known as CpG island methylator
phenotype, has now turned out to be a tumor stratification
strategy in many cancer types especially colorectal can-
cer [33]. Like the methylation pattern, many studies have
now shown the association of altered histone modification
profiles and cancer progression [30]. Aberrant epigenetic
marks such as histone acetylation loss and altered H3K4,
H3K9, and H3K27 methylation patterns are associated with
various cancer types [30]. Since the manifestations of these
epigenomic changes are essentially reflected in transcriptome
level, integration of epigenomics and transcriptomics data
have the potential to broaden our understanding of how
molecular mechanisms initiate the acquisition of cancer hall-
marks. Based on the casual relationship betweenmethylation
and gene expression it is generally accepted that hyper-
and hypomethylation of promoter regions should essen-
tially be reflected in decreased and increased expression of
corresponding genes, respectively. Moreover histone methyl
transferases gene, EZH2, was observed to be highly expressed
in breast [34] and prostate cancer [35] implying bidirec-
tional interactions between epigenome and transcriptome.
Therefore in principle the reciprocal relationship between
differential gene expression and epigenomic alterations can
be investigated through the integration of ChIP-seq, methy-
lomics, and RNA-seq data. Under this assumption a recent
study conducted by Kelley et al. which integrated ChIP-seq
and RNA-seq data obtained from patient-derived xenografts
from head and neck squamous cell carcinoma (HNSCC)
samples showed that H3K4me3 and H3K27ac histone marks
are associated with tumor-specific transcriptional changes
in their target genes including EGFR, FGFR1, and FOXA1
[36]. Similarly another study by Bhasin et al. focused on
the integration of genome-wide methylomics with publicly
available RNA-seq data (obtained from TCGA) to charac-
terize indolent and aggressive prostate cancer [37]. Here the
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authors identified certain differentially methylated regions
(DMRs) within the promoter (e.g., CCDC8) and gene-
body (e.g., HOXC4) of certain genes which showed strong
negative and positive correlations, respectively with gene
expression. These findings point towards a more complex
scenario that a simple on- and off-state of genes is associated
with the absence or presence of methylation. Methylation
in the gene-body can also have a positive and direct cor-
relation with gene expression [37]. A hypothesis involving
the alternative splicing regulation by DNA methylation has
recently been put forward to explain the correlation between
gene-body methylation and gene expression [38]. A meta-
analysis involving methylomes and gene expressions from
672matched cancer and healthy tissues obtained fromTCGA
showed that hypermethylation in certain genomic regions
is not necessarily linked to a decrease in expression of
the corresponding genes [39]. This finding points towards
the fact that genes may exhibit an unchanged expression
even if their promoter region is methylated. New emerging
hypotheses such as promoter cross-talk through a shared
enhancer [40] and switching of promoter and enhancer
domains [41] are proposed to suggest novel association
mechanisms between genomic imprinting and gene expres-
sion for Nctc1 and Tet1/Tet2 genes, respectively. Whether
this discordant relationship between methylation and gene
expression is achieved by gene-specific or global mechanisms
controlling gene expression bypassing the methylation status
in cancer remains to be elucidated. Whatever the mecha-
nisms underlying the discordance between epigenome and
transcriptome are, these fundamental features of cancer cells
can only be solved by harnessing the power of multi-OMICS
technology.

3.2. Transcriptomics versus Proteomics. Over the last decade
several large scale multi-OMICS studies involving transcrip-
tomics and proteomics in mammalian cells demonstrated
that the translational rate is themajor contributor for the vari-
ation in protein abundance [18, 42, 43]. Earlier studies involv-
ing mass-spectrometry and microarray/mRNA sequencing
(mRNA-seq) for the quantification of protein and mRNA
levels of several thousand genes demonstrated the absence
of a strong correlation between mRNA and protein levels.
Rather mRNA and proteins levels showed moderate to poor
correlation (coefficient of correlation R ≤ 0.4) [18, 42, 44].
Thismoderate correlation reflects that less than 40% variance
on the protein levels is attributed to the mRNA levels. The
remaining variance (>60%) is then essentially considered
as the manifestation of differences in translational rate and
protein degradation. In addition, using the information about
degradation rates for mRNAs and proteins Schwanhäusser et
al. estimated that transcription, mRNA degradation, trans-
lation, and protein degradation explains 34%, 6%, 55%, and
5% of protein abundance variation highlighting the role
of translation as a dominant factor for regulating protein
abundance [42, 44]. Schwanhäusser et al. showed that the
translational rate can be considered as the most dominant
factor governing the protein abundance. Although mRNA
and protein levels may vary between cell types or tissues,
the protein-to-mRNA ratio has been found to be highly

conserved across twelve different human tissues for any given
gene [18]. This conservation of the gene-specific protein-to-
mRNA ratio showed the translational rate as an inherent
and constant phenomenon for mRNA.Wilhelm et al. utilized
this conserved protein-to-mRNA ratio for predicting the
protein abundance for a gene in any given tissue from
experimental mRNA abundance. Using the median protein-
to-mRNA ratios per gene across twelve tissues, it was possible
to predict protein levels from mRNA levels for every tissue.
As a validation strategy they compared predicted protein
abundancewith experimental data to show strong correlation
highlighting the role of translational rates defining the protein
abundance [18]. However, it has not been investigated if
the protein-to-mRNA ratios change or remain constant over
time in highly evolving cells such as tumor cells. Therefore
investigation of gene-specific protein-to-mRNA ratios in
cancer cells in a temporal manner is necessary to uncover
the dynamic interrelationship between transcriptome and
proteome.Themajority of the multi-OMICS studies directed
towards deciphering the complex relation between transcrip-
tome and proteome was performed in the context of steady
state levels of proteins and mRNAs [17, 42, 44]. Studies
of the transcriptome-proteome relationship under dynamic
conditions are essential to understand how the information is
propagated through these levels and ultimately contributes to
the determination of cell-fate decisions. In order to dissect the
individual roles of transcriptome and proteome in the context
of dynamic cellular response, Jovanovic et al. showed that
induction of novel cellular function in response to external
stimuli is largely controlled by transcriptional alteration
followed by proteome adaptations. In contrast the regulation
of protein synthesis and degradation is mainly responsible
for the maintenance of preexisting cellular functions [45].
However, with the cessation of the dynamic response, cells
approach a new steady state. How cells maintain the newly
acquired cellular function in a cancer context in the new
steady state remains to be elucidated.

Transcriptome and proteome interrogations have been
performed to decipher the aberrantmolecularmechanisms in
different cancer tissues such as oral squamous cell carcinoma
[46], ovarian [47], breast [26, 48], colorectal [49], and
lung [50] (Table 2). All these studies sought to investigate
the tumor-specific transcriptome and proteome profiles to
understand how the intricate molecular mechanisms drive
the phenotypic changes in tumor cells. For instance, pro-
teome profiling of breast tumors identified a set of 19 protein
markers which could be used to stratify oestrogen receptor
positive (luminal), Her2 positive, and triple negative breast
tumors [26]. Out of the 19 markers analyzed, nine genes
including MAPK3, MCM5, STMN1, and ENO1 exhibited
concordant changes in protein and mRNA levels, rendering
them as potential therapeutic targets of breast cancer [26].
Another study conducted by Li et al. analyzed genomics, tran-
scriptomics, and proteomics of 33 samples, each comprising
11 non-small-cell lung carcinoma (NSCLC) tumor tissues,
patient-matched tumor-free lung tissues, and patient-derived
xenograft (PDX) [50]. By integrating the multi-OMICS data
the authors argued that protein abundance is not a linear
function of DNA copy number and mRNA abundance.
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Table 2: Multiomics studies focusing on cancer.

PMID Tumor type Cohort Samples no# Genomics Methylomics Transcriptomics Proteomics Metabolomics
28878238 OSCC1 Taiwanese T=38, N=38 + + +
27372738 Ovarian TCGA2 T=174 + + + +
27251275 Breast TCGA2 T=105 + + + +
25043054 Colorectal TCGA2 T=96 + + + +
26725330 Breast N/A T=40 + +
25429762 Lung N/A T=11, N=11 + + +
28947419 Head/Neck Tumor N/A T=47 +
26628371 Prostate N/A Unknown + +
28225065 Cervical N/A T=52 + +
26545398 Prostate N/A T=25, N=25 + +
27406679 Breast and HCC3 N/A N3=105 + +
24316975 Breast N/A T=67, N=65 + + + +
29898407 TGCT4 TCGA2 T=137 + + + +
29100075 Soft Tissue Sarcomas TCGA2 T=206 + + +
29622466 GIAC5 TCGA2 T=921 + + +
29925010 ccRCC6 TCGA2 T=400 + + +
26544944 Prostate TCGA2 T=333 + + +
24476821 UBC7 TCGA2 T=131 + + +
26091043 Melanoma TCGA2 T=331 + + +
25079317 GA8 TCGA2 T=295 + + +
28052061 OEC9 TCGA2 T=164 + + +
24120142 Glioblastoma TCGA2 T=500 + + + +
23634996 AML10 TCGA2 T=200 + + +
25079552 LUAD11 TCGA2 T=230 + + +
T: Tumor, 1OSCC: Oral Squamous Cell Carcinoma, 2TCGA: The Cancer Genome Atlas, N: Normal, 3HCC: Hepatocellular Carcinoma, 4TGCT: Testicular
GermCell Tumors, 5GIAC: Gastrointestinal Adenocarcinomas, 6ccRCC: Clear Cell Renal Cell Carcinoma, 7UBC: Urothelial Bladder Carcinoma, 8GA: Gastric
Adenocarcinoma, 9OEC: Oesophageal Carcinoma, 10AML: Acute Myeloid Leukemia, 11LUAD: Lung Adenocarcinoma.

Therefore mRNA and DNA copy number alteration (CNA)
cannot serve as a proxy and good predictor for protein
abundance. Intriguingly, they claimed this discordance of
mRNA and protein levels to be highly gene-specific and
consistent in both primary and PDX tumors [50].

In summary the integration of transcriptomics and pro-
teomics data has already revealed some fundamental features
of mammalian cellular systems. Although this multi-OMICS
strategy is already in use to decipher molecular intricacy
and mechanistic views of cancer pathophysiology, there are
some fundamental questions which remain unanswered till
date. For example, it is now accepted that mRNA and protein
levels are not correlated in mammalian systems [17, 18, 42].
Whether this poor/moderate correlation is increased (or
decreased) in a cancer context is unknown. Similarly whether
a constant protein-to-mRNA ratio for a given gene within
epithelial cells of different tissues changes upon cancerous
transformation remains unresolved. We need to tackle these
fundamental questions to be able to harness the full potential
of the integration of multi-OMICS studies.

3.3. Proteogenomics: Connecting Proteome to Genome. While
genomics, epigenomics, and transcriptomics studies have
proved to be pivotal in gaining substantial insights into

the architecture of the genome as well as the dynamics of
transcriptome, the functional capacity of the genome that
determines the cellular phenotype depends on the mecha-
nistic power of the proteins. Moreover proteins are regulated
extensively by PTMs and their interactions to other partner-
proteins which cannot be predicted from genomics or tran-
scriptomics data. To link genotype to phenotype, the “Clinical
Proteomic Tumour Analysis Consortium (CPTAC)” has
performed proteomic profiling of TCGA tumor specimens
and linked to genomics, epigenomics, and transcriptomic
profiles for colorectal (CRC) [49], breast [48], and ovarian
[47] cancers (Table 2). Modest correlation between mRNAs
and proteins was found for colorectal (0.47), breast (0.39),
and ovarian (0.45) cancer as hypothesized by earlier studies.
While the impact of copy number alterations (CNAs) was
prominent on mRNA levels, a strong effect of CNAs was
absent in protein levels as evident by the higher CNA-mRNA
than CNA-protein correlations in CRC. Interestingly, ampli-
fication of chromosomal region 20q was associated with sig-
nificant global changes in both mRNA and protein levels that
are encoded by genes residing in these regions.These findings
that emerged from the multi-OMICS data integration under-
score the potential impact of 20q amplification inCRC,which
was previously unknown. Hepatocyte-nuclear factor 4 alpha
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(HNF4A), Translocase of outer mitochondrial membrane
(TOMM34), and SRC protooncogene, nonreceptor tyrosine
kinase (SRC) proteins encoded by the 20q chromosomal
region, were highly affected by the 20q amplification event
and may play a vital role in attaining the cancer hallmark of
sustained proliferation [49].

For breast cancer, when CNA-mRNA and CNA-protein
pairs were analyzed for 478 oncogenes and TSGs, these
cancer-related genes where found to be enriched in the subset
that exhibited concordance on both CNA-mRNA and CNA-
protein levels compared to the subset that only correlates
on CNA-mRNA but not on CNA-protein levels [48]. This
finding is of particular importance because it underscored
that the tumor-promotingCNA events aremore likely to have
an effect on both the protein and mRNA levels. In contrast
nontumorigenesis CNA events are more likely to lose their
impact and may be neutralized on the protein level rather
than on the mRNA level. In addition the proteogenomic
approach has proved to be particularly effective in identifying
possible druggable targets. Proteogenomic analysis of breast
cancer tissues resulted in the identification of such candidate
proteins,- CDK12, TLK2, PAK1, and RIPK2, that showed
gene-amplification-driven proteogenomic patterns [48].

High-Grade Serous Ovarian Cancer (HGSC) is charac-
terized by high CNAs leading to chromosomal instability
(CIN) [47]. CNAs may have an impact on the abundance
of mRNA/proteins in the same (cis-effect) and/or different
(trans-effect) locus. In colorectal cancer CNA-driven trans-
effects were observed on both mRNA and protein levels
[49]. On the contrary, in ovarian cancer, trans-effect of
CNAs on protein abundances was independent of change
in mRNA levels. For instance, CNA on specific segments
on Chromosome 2 was observed to have strong trans-effect
on more than 200 proteins whereas such effects on mRNA
levels were very small [47]. As a plausible mechanism to
explain the trans-effect of CNA on protein levels without
affecting the correspondingmRNA levels, the authors argued
that cis-regulation of RNA-binding proteins or microRNAs
that are associated with mRNA stability and translational
process may be responsible for such trans-effect on protein
levels.The proteins for which the abundance is modulated by
CNAsmostly belong to cell invasion andmigration indicating
a possible role of CNA-driven proteogenomic events in
attaining these hallmarks of cancer [47]. Next, correlation
analysis between CIN and protein abundances led to the
identification of two candidate proteins CHD4 and CHD5
that are normally associated with chromatin organization.
Abundance variation of these proteins can potentially elicit
CIN in ovarian cancer [47]. Under the assumption that PTMs
such as phosphorylation may also play a crucial role in
activating the signalling cascade to attain cancer hallmarks,
proteomic and phosphoproteomic data was integrated with
transcriptomic data for ovarian cancer. This integration
approach was particularly helpful in the identification of
the differentially regulated pathways, PDGFR-beta signalling
pathway associated with angiogenesis and integrin-linked
kinase pathways associated with cell mobility and invasion
(Figure 3), that may serve as a predictor of patient survival.
A recent study carried out by the TCGA consortium used

integrated genomics, transcriptomic, epigenomics, and pro-
teomics approaches to identify distinct molecular subtypes of
the Testicular Germ Cell Tumors (TGCT) [51].

Overall the proteogenomic approach underscores the
complementarities of proteomics/phosphoproteomics data-
set to harmonize genomics/epigenomics and transcriptomics
to gain deeper understanding into themolecularmechanisms
that help malignant cell to attain cancer hallmarks. These
studies also corroborated the previous notion that mRNA
levels are not a good proxy for protein abundance and thus
cannot be predicted only from mRNA data. Moreover CNAs
driven changes in protein abundance may serve as reliable
marker for cancer prognosis and treatment stratification.
Taking account of all the insights gained from these three
proteogenomic studies, it can be safely assumed that the
integration ofmulti-OMICS datamay have significant impact
on the diagnosis, prognosis, and treatment-outcome of indi-
vidual cancer patients in a personalized manner.

3.4. Transcriptomics versus Metabolomics. Unbiased meta-
bolomic-profiling of cancer cell is becoming increasingly
popular due to its potential to identify and quantify novel
oncometabolites which may serve as biomarkers for different
cancer types. Apart from obvious advantages in identifying
novel cancer biomarkers, metabolomics may provide key-
insights into the pathophysiology of cancer when merged
with other OMICS data. In order to extract biologically
meaningful insights from metabolomics data and contextu-
alize the differential abundances of oncometabolites, multi-
OMICS data integration is necessary. In the following exam-
ples, we have shown how metabolomics data integration
to other OMICS can be used not only to advance our
understanding into the molecular mechanism of cancer
progression but also to predict the survival rates of cancer
patients.

In a multi-OMICS integration study, Terunuma et al.
showed that levels of the oncometabolite-2-hydroxyglutarate
(2HG)were elevated in predominantly ER-negative subgroup
of breast tumors and associated with poor clinical outcome.
Moreover, integration of metabolomics with genome-wide
methylomics data revealed that the subtype of breast tumors
marked by elevated 2HG levels exhibited a hypermethylation
phenotype [52]. Corroboratingwith this result, earlier studies
also demonstrated the association between the elevated 2HG
levels and DNA-hypermethylation and enhanced histone
methylation causing epigenetic alterations in gliomas [53]
and leukemias [54].

In another study, integration of publicly available tran-
scriptomic and metabolomic datasets showed a strong
enzyme-metabolite concordance in breast cancer andhepato-
cellular carcinoma tissues [55]. Both breast and hepatocellu-
lar cancer exhibited increased gene-metabolites associations
in comparison to adjacent noncancerous tissues. The authors
argued that alerted gene-regulatory networks in cancer
context may force the changes in cancer-related metabolic
pathways causing an abundance change in the metabolite
levels [55]. Based on themulti-OMICSdata integration, a pre-
dictionmodel, developed and validated against a large cohort
of breast cancer patients, showed several cancer-related
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(a)

(b)

Figure 3: Proteomics and phosphoproteomics driven identification of the aberrant regulation of signalling pathways leading to poor
patient survival. (a) Aberrant PDGFRB signalling pathway induces angiogenesis in patients and results in poor survival. Phosphorylated
and unphosphorylated forms of proteins are indicated by blue and orange color. The directions of arrows indicate the regulation—up and
down arrows indicate upregulation and downregulation, respectively. Colors of the arrows indicate the phosphoform or the total protein
detected by (phospho)proteomics experiments. Blue and red arrows indicate phospho- and total protein, respectively. (b) Integrin-linked
kinase pathway induces cell mobility and invasion, leading to poor patient survival. Two signalling pathways, MAPK (green) and PI3K
(purple), are highlighted. Both these pathways were found to be upregulated in cancer patients with poor survival.

metabolites; namely, glucose, Glycine, serine, and acetate are
significantly associated with patient survival [55]. A similar
OMICS integration approach including metabolomics and
transcriptomics was applied to identify potential diagnostic
and prognostic cancer biomarkers for prostate [56] and
cervical cancers [57]. Ren et al. identified the accumulation
of certain metabolites such as S-adenosylhomoserine (SAH),
5-methylthioadensine (MTA), and S-adenosylmethionine

(SAM) in prostate cancer compared to noncancerous tissues
[56]. Elevated expression of Glycine N-methyltransferase
(GNMT) evident from transcriptomics analysis was assumed
to be responsible for the induction of SAH and was
proposed as a tumor-susceptibility gene in prostate can-
cer [56]. On the other hand, Yang et al. identified five
metabolites, bilirubin, LysoPC(17:0), n-oleoyl threonine, 12-
hydroxydodecanoic acid, and tetracosahexaenoic acid, as
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Figure 4: Application of NGS and mass-spectrometry (LC-MS/MS) based OMICS techniques in cancer research. Genomics,
epigenomics, and transcriptomics are based on NGS techniques; whereas proteomics and metabolomics are driven by mass-spectrometric
(LC-MS/MS) technique. The principal application of genomics, epigenomics, and transcriptomics is screening of genome-wide somatic
mutations, identification of altered epigenomic landscape, and exploring differential RNA expression, respectively. The major application of
proteomics/metabolomics is identification of differentially regulated proteins/phosphoproteins/metabolites. The integration of NGS-based
techniques can identify the concordance or discordance between copy number alterations (CNAs), promoter/gene-body methylation, and
RNA levels. Integration of NGS and LC-MS/MS based techniques may result in the correlation analysis between CNAs, promoter/gene-body
methylation, and mRNA levels with protein/metabolite levels.

candidate biomarkers for cervical cancers [57]. Integration
strategy leads to the reconstruction of an interconnected
gene-metabolic network where seven biochemical pathways
were used to identify five candidate metabolite biomarkers
[57].Themetabolomics integration studies provided systems-
level insights into altered metabolic networks that are tightly
regulatedwith transcriptional network.These interconnected
networks could potentially serve as a platform for the identifi-
cation of novel therapeutic targets and biomarkers for cancer.

In the era of cutting-edge OMICS technologies, the
multi-OMICS integration approaches have emerged as a
powerful strategy to better understand the molecular basis
of cancer and eventually to develop intervention strategies
through the identification of robust patient stratification

methods, biomarker for early cancer diagnosis/prognosis,
and prediction of therapy-outcome. Figure 4 represents the
different methods of multi-OMICS data integration and their
subsequent application in cancer research.

4. TCGA as a Resource for
Multi-OMICS Platform

With the goal of creating a publicly available comprehensive
“atlas” of the molecular alterations in the cancer cells, The
Cancer Genome Atlas (TCGA), so far, has performed inte-
grative analysis of more than 30 human tumor types [13].The
TCGA Research Network is engaged in cataloguing aberra-
tions in the DNA and chromatin of the cancer-genomes from
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thousands of tumors by matching with the normal genomes
and linking these aberrations to RNA and proteins levels.The
main TCGA-strategy of multi-OMICS integration involves
genomics, epigenomics, and transcriptomics which has been
successfully implemented in the investigation of various
cancer types including testicular germ cell tumors [51], soft
tissue sarcomas [58], gastrointestinal adenocarcinomas [59],
clear cell renal cell carcinoma [60], prostate [61], urothe-
lial bladder carcinoma [62], gastric adenocarcinoma [63],
oesophageal carcinoma [64], acute myeloid leukemia [65],
melanoma [66], and lung adenocarcinoma [67] (Table 2). For
colorectal [49], breast [48], and ovarian [48] cancer, mass-
spectrometry-based proteomics data has been integrated into
the existing strategy of OMICS integration as described
earlier (see Table 2). For glioblastoma [68] RPPA based
targeted proteomics was integrated to existing strategy of
OMICS data integration.

The new TCGA-atlas called the “Pan-Cancer initiative”
has been developed and is dedicated to comparing and con-
trasting among the genomic, epigenomic, and transcriptomic
alterations found in numerous tumor types [13]. The pan-
cancer analysis involving multi-OMICS data in combination
with robust bioinformatics methods and statistical tools
offers a unique platform to identify common molecular
signatures for the stratification of patients with different
cancer types and uncover shared molecular pathology of dif-
ferent cancer types for designing targeted therapies. With the
genomics, epigenomics, and transcriptomics data from over
11,000 tumors representing 33 of the most prevalent forms of
cancer, the Pan-CancerAtlas presents the unique opportunity
for comprehensive and integrated analysis to broaden our
current understanding of how, where, and why a normal cell
attains cancer hallmarks. Analysis of the enormous amount
of cancer-specific data deposited in TCGA requires special
bioinformatics methods and techniques to be able to extract
biologically meaningful information. Various data analysis
and visualization platforms have been developed to assist
the rapid analysis of TCGA data. For instance, cBioPortal
originally developed at Memorial Sloan Kettering Cancer
Center provides opportunities like visualization, analysis, and
download of large scale cancer genomics data sets [69].

5. Future of Multi-OMICS Studies: Emerging
Era of Systems Biology

Recent advances in high-throughput NGS and mass-
spectrometric techniques enabled a paradigm shift from
studies involving discrete biochemical reactions and
signalling pathways to large scale studies attempting
to analyze the whole cellular system. With powerful
computational tools one can identify the link between
genomic aberrations with differentially expressed mRNAs,
proteins, and metabolites that are associated with a cancer-
driven cellular perturbation. Integration of multi-OMICS
data provides a platform to link the genomic/epigenomic
alterations to interconnected transcriptome, proteome, and
metabolome networks, which underlie the cellular response
to a perturbation. This vision provides an opportunity

to better understand cellular response on the systems
level but poses a challenge for systems biology driven
modelling at the same time. The next phase of systems
biology research will focus on models that can deal with
thousands of mRNA, protein, and metabolite changes
in a dynamic manner. Systems biology approach has the
potential to develop effective strategies to administer
personalized cancer therapy [70]. The aim of the systems
biology approach is to develop predictive models that
are refined and constrained by experimental validations.
These predictive models will be particularly beneficial to
select patients based on personalized multi-OMICS data
and stratifying the patients to determine who are most
likely to benefit from targeted therapies [71]. In summary
systems biology models driven by multi-OMICS data may
help to increase the onco-drug efficacy and overcome the
chemo-/immunotherapy resistance phenotype of cancer
cells rendering them vulnerable to targeted therapies and
ultimately in improving the quality of life of patients.
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