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ABSTRACT: Small molecule tool compounds have enabled
profound advances in life science research. These chemicals are
potent, cell active, and selective, and, thus, are suitable for
interrogating biological processes. For these chemicals to be
useful they must be correctly characterized and researchers
must be aware of them. We mined the ChEMBL bioactivity
database to identify high quality tool compounds in an
unbiased way. We identified 407 best-in-class compounds for
278 protein targets, and these are reported in an annotated
data set. Additionally, we developed informatics functions and
a web application for data visualization and automated
pharmacological hypothesis generation. These functions were
used to predict inhibitors of the Chromobox Protein
Homologue 5 (CBX5) mediated gene repression pathway that currently lacks appropriate inhibitors. The predictions were
subsequently validated by a highly specific cell based assay, revealing new chemical modulators of CBX5-mediated
heterochromatin formation. This data set and associated functions will help researchers make the best use of these valuable
compounds.

■ INTRODUCTION

Drug-like small molecules can treat disease and also be valuable
reagents for life science research. Small molecules are great
research tools in part because they are easy to use, and their
experimental use typically requires little optimization. The value
of a molecule as a tool to catalyze research is related to its
bioactivity and selectivity, and it must give a robust, on-target
response in cells. If a molecule is promiscuous or generally
reactive, the induced phenotype will not necessarily be linked
to a specific biological target, and the conclusions are spurious.1

Small molecule tool compounds, or chemical probes, are high-
quality research tools with potent, selective, and on-target
cellular effects. Some chemical probes, such as JQ-1 and
rapamycin, have transformed our understanding of epigenetic
regulation of gene expression and the molecular target of
rapamycin (mTOR) signaling pathway, respectively.2−5

For a tool compound to be useful, its activity and selectivity
must be suitable for use in research, its function must be easily
queried, and researchers must know its existence. Crowd-
sourcing initiatives allow users to share information about
chemical probes.6−9 One of these efforts, the Chemical Probes
Portal, is a community-curated web resource that provides
information on many known chemical probes, and serves to
increase awareness of available probes.1 These crowd-sourced
projects offer valuable practical information, have brought

attention to high-quality probes, and use user feedback to
identify the most valuable chemical probes.
These projects typically focus on targets that are the subject

of current research, such as epigenetic targets. Our aim for this
work was to supplement these databases with a database of
chemical tool compounds for targets from medicinal chemistry
literature and patents. The ChEMBL database contains
bioactivity records for millions of chemicals from the medicinal
chemistry literature, but no efforts to specifically mine these
databases for chemical probes have been reported.10 We used a
data-driven approach to uncover best-in-class tool compounds
from this source and created informatics functions to help
researchers make the best use of these chemicals and to easily
locate useful functional inhibitors for a given biological
pathway.

■ RESULTS AND DISCUSSION

Data Analysis. We mined publicly available bioactivity data
to identify tool compounds in an unbiased way, where
classification as a probe depends only on the data meeting
these criteria. We used the ChEMBL database for the
bioactivity data source because it is publicly available in SQL
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format, is one of the largest and highest-quality bioactivity
databases, and contains sufficient annotation for classification of
probes.10,11 We did not use data from PubChem because it
cannot be accessed with SQL.12 ChEMBL and PubChem share
much of their data. A formal definition of a chemical probe was
made by Arrowsmith et al.1 A chemical probe meets the
following criteria: (1) in vitro potency of <100 nM at the
protein target, (2) >30-fold selectivity against other protein
targets, and (3) demonstration of on-target effect in cells at <1
μM. We used a modified set of rules that enabled data mining
of ChEMBL: (1) potency ≤ 100 nM for one primary protein
target, (2) >30-fold selectivity against at least one other protein
target, and (3) cellular activity < 1 μM at the primary target.
ChEMBL version 22, released in October 2016, contains

1 686 695 compounds and 14 371 219 activities, with the
majority of data coming from medicinal chemistry literature.
ChEMBL also contains data from patents, Pubchem bioassays,
and other databases. The data mining was performed using R
with extensive use of the dplyr package for data analysis.13 The
data mining script can be run on any future version of
ChEMBL, provided no changes are made to the schema that
would invalidate the analysis. The script identifies one primary
probe and one orthogonal, structurally dissimilar probe for each
target. The primary probe for each target is the compound that
meets chemical probe criteria and is selective against the
greatest number of other proteins, and the orthogonal probe is
the most selective compound meeting chemical probe criteria
with a Tanimoto similarity score < 0.7 from the primary
probe.14 For receptor targets, the script identifies both the best
agonist (Emax > 25%) and the best nonagonist. Potentially
reactive compounds were filtered using a pan-assay interference
compounds (PAINS) substructure filter.15

Judging selectivity is a challenge for classification of chemical
probes. It is unlikely that any chemical is truly selective for one

target against all others, and apparent selectivity may vanish
when a compound is tested at more targets. We reduced bias
against compounds that were tested against many off-targets in
our data mining script: For each protein target, before filtering
out compounds that did not meet the selectivity criteria, we
found the compound that had been tested against the most off
targets and removed any potential probes for that protein target
that was not tested against more than 1/2 that maximum
number of off targets. For example, if for protein target X, the
best-characterized compound was tested against eight off
targets, we removed potential probes for X that were tested
against four or fewer off targets.
The data mining identified 407 putative chemical probes

targeting a total of 278 protein targets. (Figure 1A). Most
targets were excluded because they did not have any high
affinity ligands. Ninety-eight targets have both a primary and an
orthogonal probe, and 50 probes are agonists. The median
number of non-ADMET bioactivity observations per probe
compound was 11, and the median number of proteins that
probes were tested against was 4 (Figure 1B and C). The most
selective compound is the TGF-beta receptor ligand
GW693481X, which is selective against 188 other proteins.
Here, 156 of the targets are receptors and 130 have transferase
activity.
We combined the probes discovered in ChEMBL with

probes listed in the Chemical Probes Portal (as of August
2016) to create a unified data set. Only 22 targets are common
to both data sources. The main reason for the lack of overlap is
that data from many user-submitted probes are not included in
the ChEMBL database, as ChEMBL is composed of data from
medicinal chemistry literature. Thus, our data set is
complementary to data sets of more contemporary probe
molecules and highlights the best tools to interrogate a different
set of targets. The data set was annotated in a target-centric

Figure 1. Chemical probe data mining. (A) Data flow for construction of the data set. (B) Number of proteins targets tested for probes found in
ChEMBL. (C) Total bioactivity observations for probes found in ChEMBL.

Table 1. Selected Common and Uncommon Gene Ontology and KEGG Pathway Terms for Proteins Targeted by Chemical
Probes

source most common terms least common terms

GO−
molecular
function

G-protein coupled peptide receptor activity; peptide receptor
activity; steroid hormone receptor activity

structural constituent of ribosome; protein binding, bridging; nucleoside-
triphosphatase regulator activity; Ras guanyl-nucleotide exchange factor
activity

GO−
biological
process

positive regulation of blood circulation; digestive system process;
regulation of circadian rhythm; feeding behavior

humoral immune response; electron transport chain; mitochondrial
translation; spermatid differentiation; natural killer cell mediated cytotoxicity

KEGG neuroactive ligand−receptor interaction; FoxO signaling pathway;
calcium signaling pathway

primary immunodeficiency; one carbon pool by folate; bile secretion
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Figure 2. KEGG Ras signaling pathway with targetable nodes highlighted in red.

Figure 3. Probe−target network visualization. Output from the probe−target network visualization function for c-MYC (left) and CBX5 (right),
with an IntAct confidence score cutoff of 0.5.
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way, with the KEGG pathways, gene ontology (GO) terms
(molecular function (MF), biological process (BP), and cellular
compartment (CC)), reactome pathways, Entrez gene IDs, and
Uniprot IDs for each protein target (see supplemental file,
PROBELIST.csv).16,17

Associating the targets with GO and KEGG pathways
allowed us to quantitatively measure how well biological
pathways are associated with chemical probes, revealing gaps
and concentrations in our ability to target biological pathways.
We analyzed the enrichment of probe-associated genes for GO-
MF and GO-BP terms, and for KEGG pathways (Table 1).18

Besides the expected high occurrence of receptor pathway
terms, probes also preferentially target proteins involved in the
FOXO signaling pathway. The list of the least common GO
and KEGG pathways confirms the difficulty in targeting
proteins with bridging protein binding or nucleoside-
triphosphatase regulator activity.
Network Visualization. We also developed functions to

help researchers make the best use of existing chemical probes.
Many “-omics” experiments are interpreted with pathway
analysis, where the data is linked to known biological pathways.
Likewise, complex diseases like cancer are commonly analyzed
at a network level. We leveraged the “pathview” and
“ReactomePA” packages to create functions that visualize how

biological pathways can be targeted with chemical probes.19−21

The functions display Reactome and KEGG pathways and
highlight the targetable nodes and can be accessed through the
scripts or web application associated with this publication.
Output from the KEGG visualization function for the Ras
signaling pathway is shown in Figure 2. One use of this graph is
to generate hypotheses for combination therapies that target
multiple arms of the pathway or suppress feedback loops.
Combination of either AKT or PI3K inhibitors with MEK
inhibitors are promising treatments for Ras-driven cancers, and
it is clear on the pathway graph how these agents target
separate arms of the Ras signaling pathway.22−25 Overall, 32
proteins involved in the KEGG Ras signaling pathway can be
targeted by chemical probes.
Because most proteins cannot be directly targeted by

currently available chemical probes, we created a network
visualization function to help find probes that may indirectly
modulate a target of interest. This could occur through a
number of mechanisms including interfering with protein−
protein interactions, disrupting signaling pathways, or modulat-
ing post-translational modifications. The network used by the
function is a subset of the IntAct database of protein−protein
interactions and contains all proteins that are separated from a
probe target by one or two edges.26,27 Given a protein target,

Figure 4. Cellular assays of CBX5 function. (a) CBX5 (HP1α) was recruited to the engineered CiA:Oct4 locus using chemical induced proximity in
a mouse embryonic stem (ES) cell line. (b) Chemical probes were added in low and high doses to the ± rapamycin containing samples for 2 days in
triplicate. Samples were analyzed by flow cytometry and GFP levels were quantified using FlowJo software. (c) DMSO (− Rap) or (d) 6 nM
rapamycin (+ Rap) was added along with high doses of compounds for 2 days, leading to normal or decreased GFP expression, respectively. Four
biological replicates are shown (n = 4).
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the function displays all nodes that can be targeted by probes in
the local network. We used the function to generate the probe-
target network for c-MYC, with an IntAct confidence score
cutoff of 0.5 (Figure 3). Many known ways to pharmacolog-
ically modulate c-MYC are found in the graph, including BRD3,
GSK3B, EGFR, and PLK1 inhibition.5,28−30 Because we used
the IntAct database to construct the network, the linkages
between c-MYC and these proteins are not based upon
pharmacological evidence, but upon proteomics and
coimmunoprecipitation experiments. Therefore, the network
identifies known pharmacological interactions from independ-
ent data. The network also shows a connection between
CARM1 and c-MYC through SMRC1. In a recent report,
genetic knockdown of CARM1 blocked methylation of
SMRC1, reducing the localization of SMRC1 at c-MYC
pathway genes.31 It is very likely that pharmacological
inhibition of CARM1 will also suppress transcription of genes
driven by c-MYC.
Discovery of Modulators of CBX5 Function. The CBX5

chromodomain-containing protein has no reported direct or
indirect pharmacological modulators. CBX5 binds to methy-
lated lysine 9 on histone H3 (H3K9me3) and facilitates the
spreading of H3K9me3 to nearby nucleosomes via recruitment
of additional methyltransferase enzymes. H3K9me3 marks lead
to a repressive, condensed heterochromatin state of DNA with
decreased gene expression.32,33 We generated the probe−target
network for CBX5 with a confidence score cutoff of 0.5 (Figure
3). Aurora kinase B (AURKB), checkpoint kinase 2 (CHK2),
histone deacetylase 1 (HDAC1), and euchromatic histone-
lysine N-methyltransferase 2 (EHMT2) all appear in the
network. To validate the predictive ability of the function, we
tested chemical probes for these proteins in an assay for CBX5-
mediated gene repression.
In the Chromatin in vivo Assay at Oct4 (CiA:Oct4) cell line,

one allele of the haplosufficient pluripotency factor, Oct4, is
replaced with a Gal4 and Zinc finger DNA binding array
upstream of a nuclear eGFP reporter gene.34 CBX5 is rapidly
recruited to the locus using chemical induced proximity (CIP)
upon the addition of rapamycin. CBX5 recruitment facilitates
the deposition of H3K9me3 marks on the histones leading to
DNA silencing and a decrease in GFP expression. Inhibition of
CBX5-mediated heterochromatin upon addition of chemical
probe results in a larger GFP positive population due to a
failure to repress the reporter gene (Figure 4A).
We tested chemical probes for targets in the CBX5 network

at two doses in the CiA assay: HDAC1/2 inhibitor
CHEMBL235842 (1 μM and 5 μM); AURKB inhibitor
AMG-900 (50 nM and 100 nM); CHK2 inhibitor CCT-
241533 (1 μM and 5 μM); and EHMT2 inhibitor UNC0638
(300 nM and 1 μM).35−38 Upon addition of rapamycin to the
CiA cells, the percent of GFP positive cells decreased from 99%
to 47%, indicating that 52% of cells have a decrease in gene
expression due to CBX5 recruitment. Little to no decrease in
GFP expression was observed in the low dose samples without
rapamycin, though small decreases in GFP expression were
observed in the high doses for CHK2 and HDAC inhibitors
(Figure 4B). This is likely due to cell toxicity at high doses
leading to cell differentiation, and the Oct4 locus being silenced
independent of the chemical probe. The HDAC inhibitor was
effective at blocking heterochromatin formation at both doses
resulting in 66% (low) and 59% (high) GFP+ cells. Histone
acetylation correlates with active gene expression. Inhibiting the
enzymes that remove the active mark leads to the acetyl mark

remaining on the histone, which may compete against the
deposition of repressive H3K9me3 upon CBX5 recruitment.39

Similarly, the EHMT2 inhibitor was also effective at both doses
resulting in 56% and 66% GFP+ populations. EHMT2 is
recruited by CBX5 and adds H3K9 methyl and dimethyl
marks.40 Inhibiting this enzyme directly prevents the increase in
H3K9me3 repressive marks. The CHK2 inhibitor was effective
at the highest dose resulting in 62% GFP+ population. CHK2
phosphorylates the CBX5 binding pocket of KAP-1 at S473. A
mutation to S473A resulted in a mobilization defect in CBX5
during DNA damage response.41 It is plausible that the CHK2
inhibitor may similarly decrease CBX5 recruitment to
chromatin and compromise its ability to form heterochromatin.
The AURKB inhibitor was toxic at all doses tested in this cell
line so the data could not be interpreted.
The KEGG and probe−target network functions, along with

other functions, can also be accessed through an R Shiny web
application, located at chemicalprobesapp.shinyapps.io/
chemicalprobesapp.

■ DISCUSSION
The potential for tool compounds to accelerate life science
research has been fettered by a lack of information. By
identifying these compounds with a data-driven classification
scheme, we have identified best-in-class tool compounds for
targets covered by prior medicinal chemistry research programs.
This approach is complementary to community-driven efforts
to identify chemical probes, as there is relatively little overlap
between the two data sets, and our approach is meant to
discover the best probes from targets in the medicinal
chemistry literature. For the most part, the tool compounds
identified through ChEMBL data mining target well-studied
proteins (GPCRs, kinases), but also some targets that are less
well-known, such as peregrin. Although all chemical probes we
have identified are correctly classified according to the given
data, researchers should thoroughly investigate all of the best
modulators of a given target while planning an experiment
because errors in ChEMBL data can result in misclassification.
The collaborative generosity of many laboratories in the
chemical biology field enables access to a subset of these
compounds, but commercial availability remains a roadblock.
Most of the probes identified through ChEMBL are not
commercially available, but hopefully, identifying these useful
research chemicals will encourage suppliers to make them
available.
The compounds in this data set are precise chemical tools

that can be used to study the covered targets. Compounds
within the set could be included in a phenotypic screening
collection, so that any hits could be immediately linked to a
target likely to be responsible for the phenotype. Because small
molecules are easy to use, they are powerful agents for
phenotypic screening.
Judging selectivity is a challenge for chemical probe

classification. New targets are constantly being found for
established drugs, and it is likely that most bioactive molecules
potently bind to multiple targets.42,43 Requiring chemical
probes to be >30 fold selective against other targets is a bias
against compounds that have been tested at many proteins. But,
this requirement does exclude promiscuous compounds and
gives confidence to the association of a phenotype with the
modulation of a target. More sophisticated measurements of
selectivity will help the identification of useful chemical
research tools.44
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In our data set, chemical probes are linked to target proteins,
and those target proteins are linked to pathways. Many big data
experiments end in pathway analysis, and we provide an easy
way to link those pathways to chemical probes. By profiling the
target proteins at GO and KEGG identifiers, we see the limits
of known probes to target important molecular functions. We
hope that identifying the molecular functions that cannot be
pharmacologically controlled will encourage development of
chemical modulators of these functions. Connecting the probes
with pathways also suggests future experiments. For example, it
would be useful to test all probes involved in the KEGG Ras
signaling pathway pairwise, to investigate synergy.
Life science research could benefit from more straightfor-

ward, visually appealing research tools for hypothesis
generation. To this end, we have merged protein interaction
and pathway databases with our chemical probe data set to
create an integrated informatics toolkit for automated
pharmacological hypothesis generation and visualization. The
probe−target network function was used to discover chemical
probes that block CBX5-mediated formation of heterochroma-
tin. Pharmacological control of CBX5 function has never been
reported, and the information used to inform the prediction of
CBX5 inhibitors came solely from a database of reported
protein−protein interactions. The identification of three
previously unknown modulators of CBX5 activity by this
computing tool supports the use of this tool to rapidly identify
chemical modulators of a protein function of interest. An
advantage of using chemicals rather than genetic methods to
manipulate protein function and quantity is that chemicals can
be used immediately, with little optimization. Thus, the probe−
target network allowed us to use chemicals to quickly identify
three proteins likely to be involved in CBX5 function. The
mechanism by which CBX5 depends upon either CHK2 or
HDAC2 is unclear and will be characterized in future work.
Our chemical probe data set provides researchers with an

exhaustive list of tool compounds. This work also circumscribes
the set of existing tool compounds, and identifies deficits in our
ability to pharmacologically target certain molecular functions.
This data set, together with the computing tools presented
here, will help researchers get the most use out of these
valuable chemicals.

■ METHODS
Chemicals Used. AMG-900 and CCT-241533 were

purchased from MedChemExpress. UNC0638 was prepared
as described.37 CHEMBL235842 was prepared as described.35

Data Analysis. The data was analyzed in the following way:
a short list of compounds with activity ≤100 nM in a “SINGLE
PROTEIN” assay and activity <1000 nM in a cell-based assay
was compiled. Each compound was annotated with the total
number of bioactivity observations, to identify well-charac-
terized compounds, and also with the total number of protein
targets it was assayed against, to measure compound selectivity.
Compounds were excluded if they did not have bioactivity data
against at least two different proteins. Each compound was
associated with the protein target for which it has the greatest
affinity in a dose response assay. To prevent the data mining
from being biased for compounds that were selective against
fewer off targets, we found the compound with the most
selectivity data for each target, and then removed potential
probes for the target that were not tested against more than 0.5
times the highest number of off targets. Next, compounds were
excluded if they did not meet the following selectivity criteria:

no dose−response curve assay values for off targets <30 times
the value for the main protein target, no fold-selectivity or IC50
ratio values <30, no activities >50% in single point activity
assays for off targets, no values <50% in off-target single point
inhibition assays, and no off-target delta Tm >5.0 in thermal
melting shift assays. Compounds also must have activity <1000
nM in a cell based assay for the main target. The cellular assay
condition and the ≤100 nM potency condition can be satisfied
by the same bioactivity observation. Compounds were
designated as agonists if they had an efficacy value >25% for
the main target. Many popular targets were associated with
many possible probes, so for each protein target, we designated
a primary probe as the probe with the greatest number of
selectivity observations, with a tie break on the total number of
bioactivity observations. For targets that have a probe noted to
be an agonist, we kept the best agonist and the best nonagonist
in the final list, giving researchers access to agonists and
antagonists at receptor targets. It is useful to have multiple
orthogonal, or structurally dissimilar, probes for a target. To
find orthogonal probes, for compounds with the same main
protein target we calculated the Tanimoto similarity of each
compound from the primary probe and kept the compound
with the greatest number of selectivity/total observations and a
Tanimoto similarity of T < 0.7. We chose 0.7 because it was an
inflection point on the density plot of all calculated Tanimoto
scores, representing the shift between a population centered
around T = 1 (compounds very similar to the primary probe)
and 0.5 (compounds dissimilar to the primary probe). We then
applied a pan-assay interference compound (PAINS) filter to
remove reactive and promiscuous compounds.15 Compounds
with the following functional groups were exluded: catechols,
push−pull fluorophores, Michael-acceptor rhodanines, phenolic
mannich bases, 2-hydroxy-phenyl-hydrazones, and compounds
with unsubstituted saturated carbon chains >6 atoms. This
removes only the most offensive substructures, because some
PAINS-contianing compounds can be valuable research tools.
The probe−target network is an annotated subset of the

IntAct database. The network includes all nodes connected to a
probe-targetable protein by one or two edges. The database
includes all interactions between the proteins in that set. The
database was accessed with the RefNet package in R/
Bioconductor. Construction of the probe−target network was
accomplished using the script: createProbeTargetNetwork.R
Please see the readme.html for instructions on using the

network visualization functions. Network visualization and data
search functions can also be found at chemicalprobesapp.
shinyapps.io/chemicalprobesapp.
All computer code is freely availabile at https://github.com/

KyleVButler/ChemicalProbesDataMining
HP1-Mediated Heterochromatin Formation Assay.

CiA:Oct4 mouse embryonic stem cells (ES) containing both
viral integrations of N118 and N163 plasmids (N118-nLV EF-
1a-Gal-FKBPx1-HA-PGK-Blast, N163-nLV EF-1a-Hp1a(CS)-
Frbx2(Frb+FrbWobb)-V5-PGK-Puro) were grown in DMEM
supplemented with 4.5 g/L glucose, 15% FBS, L-glutamate,
sodium pyruvate, HEPES buffer, NEAA, 2-mercaptoethanol,
and penicillin/streptomycin. On day 0, cells were seeded into
96 well plate formats with 10 000 cells per well with a minimum
of three replicates. Day 1, media was aspirated and replaced
with fresh culture media containing appropriate chemical probe
doses and ±6 nM rapamycin to recruit HP1 to the Oct4 locus
and initiate heterochromatin formation. Day 2, culture media
was aspirated and fresh media containing chemical probes and
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± rapamycin was added as on day 1. Day 3, media was aspirated
and the cells were washed with PBS and trypsinized using
0.25% trypsin-EDTA. Trypsin was quenched with serum and
the cells were prepared for flow cytometry analysis. The CiA ES
cell line is the same as previously established, has not been
authenticated, and tested negative for mycoplasma contami-
nation.34

Flow Cytometry. Flow cytometry analysis was performed
using an iQue Screener by Intellicyt and FCS data files were
exported and analyzed with FlowJo software. Cell populations
were gated based on forward and side scatter. Single cell
populations were isolated using forward scatter area by forward
scatter height gating. Autofluorescent cells were omitted, and
remaining cells were then analyzed for GFP levels. Percent GFP
was calculated by the FlowJo software.
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