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Background: Albeit considered with superior survival, around 30% of the early-stage non-squamous non-
small cell lung cancer (Ns-NSCLC) patients relapse within 5 years, suggesting unique biology. However, the 
biological characteristics of early-stage Ns-NSCLC, especially in the Chinese population, are still unclear.
Methods: Multi-omics interrogation of early-stage Ns-NSCLC (stage I–III), paired blood samples and 
normal lung tissues (n=76) by whole-exome sequencing (WES), RNA sequencing, and T-cell receptor (TCR) 
sequencing were conducted.
Results: An average of 128 exonic mutations were identified, and the most frequently mutant gene was 
EGFR (55%), followed by TP53 (37%) and TTN (26%). Mutations in MUC17, ABCA2, PDE4DIP, and 
MYO18B predicted significantly unfavorable disease-free survival (DFS). Moreover, cytobands amplifications 
in 8q24.3, 14q13.1, 14q11.2, and deletion in 3p21.1 were highlighted in recurrent cases. Higher incidence 
of human leukocyte antigen loss of heterozygosity (HLA-LOH), higher tumor mutational burden (TMB) 
and tumor neoantigen burden (TNB) were identified in ever-smokers than never-smokers. HLA-LOH 
also correlated with higher TMB, TNB, intratumoral heterogeneity (ITH), and whole chromosomal 
instability (wCIN) scores. Interestingly, higher ITH was an independent predictor of better DFS in early-
stage Ns-NSCLC. Up-regulation of immune-related genes, including CRABP2, ULBP2, IL31RA, and IL1A, 
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Introduction

Lung cancer (LC) is among the most diagnosed cancers and 
the predominant cause of cancer-related death globally (1).  
Despite a dramatic improvement in LC prognoses 

with the advent of targeted therapies, especially in lung 
adenocarcinoma (LUAD), more advances are restricted 
by the poor comprehension of its pathogenesis (2). Non-
small cell lung cancer (NSCLC) is the major subtype of 
LC, and a remarkable increase in detecting early-stage non-
squamous NSCLC (Ns-NSCLC) was observed with the 
growing application of low-dose computed tomography 
screening (3,4). While radical resection is the primary 
treatment option for early-stage Ns-NSCLC, around 30% 
of the patients die of relapse within 5 years (5). Therefore, it 
is essential to comprehensively characterize the early-stage 
Ns-NSCLC by multi-dimension approaches, including 
genomic, transcriptomic, proteomic, and immunological 
profiling, which may help risk stratification and personalized 
strategy development.

Diverse gene mutations, fusions, copy number variations 
(CNVs), and epigenetic variations have been depicted with 
the development of the next-generation sequencing (NGS) 
technique, accentuating the intratumoral and intertumoral 
heterogeneity of NSCLC (6,7). For instance, KRAS and 
EGFR mutations are commonly detected in smoker and 
non-smoker LUAD, respectively (8). Meanwhile, mutations 
in TP53 and PIK3CA are most frequently identified in lung 
squamous cell cancer (LUSC) (9). Moreover, Kadara and 
colleagues reported that mutation in SETD2 correlated 
with poor prognosis, and EGFR and PIK3CA mutations 
predicted unfavorable responses to adjuvant chemotherapy 
of early-stage LUAD in the American population (10). Choi 
et al. further found that MLL2 mutation correlated with 
unfavorable recurrence-free survival of American early-stage 
LUSC patients (11). Although these variations have been 
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implicated in the classical cancer signal pathways and have 
deepened our knowledge of the molecular pathogenesis of 
NSCLC, their associations with prognoses and personalized 
therapeutic strategies in early-stage NSCLC, especially in 
the Chinese population, are still unclear.

At the transcriptomic level, a previous study has classified 
three predominant LUAD subtypes, including the terminal 
respiratory unit, proximal proliferative and proximal 
inflammatory subcluster, indicative of the potential for 
precise treatment (12). Other groups have also established 
gene expression-based models, like immune-related gene 
signature, to predict prognosis and treatment response 
(13,14), underscoring the important role of the immune 
microenvironment in LC pathobiology. 

The essential role of the immune components in the tumor 
microenvironment (TME) is also accentuated by recent 
successes describing durable responses to immune checkpoint 
inhibitors (ICIs) of NSCLC patients (15). The biological 
underpinnings of successful immunotherapy are precisely 
recognizing neoantigen peptides by clonally proliferative 
T-cell receptors (TCRs) and subsequent activation of 
tumoricidal effects by the host immune system (16). TCR 
repertoire represents the strength and breadth of T-cell 
response, undertaking a vital role in antitumor immunity 
across various cancers (17). Recent studies have demonstrated 
the predictive and prognostic roles of peripheral TCR 
repertoire in ICIs therapies of advanced NSCLC (18,19). 
Nonetheless, the TCR repertoire landscape concerning 
different genetic alterations and its prognostic significance of 
early-stage Ns-NSCLC remains to be uncovered.

In the present study, we comprehensively profiled the 
genomic, transcriptomic, and TCR repertoire spectrums of 
Chinese early-stage Ns-NSCLC, accentuating the unique 
biological heterogeneity and biomolecular network. Rich 
annotation of this cohort also enabled us to interrogate the 
relationships between various alterations, either alone or in 
combination, with prognosis. Eventually, a robust multi-
omics prognostic model was established, demonstrating the 
best performer integrating clinical and molecular features. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-23-800/rc).

Methods

Study population and sample collection

Radically resected Ns-NSCLC, matched blood samples, 

and normal lung tissues (n=76 pairs) were collected at the 
First Affiliated Hospital of Guangzhou Medical University 
(GZMU1H) between 2012 and 2015. Eligible patients were 
stage IA–III pathologically confirmed Ns-NSCLC and no 
personal history of cancer (20). Patients who (I) underwent 
neoadjuvant therapy; (II) did not have R0 excision; and (III) 
had multiple primary LCs were excluded. Informed consent 
of included patients was obtained, and this research was 
approved by the GZMU1H Ethics Committee (approval 
No. KLS-17-03). The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013) (21).

Multi-omics detection of the samples was completed at 
Yucebio Technology Co., Ltd. (Shenzhen, China). Details 
of the kits and software used are available in Tables S1,S2.

Processing whole-exome sequencing (WES) data

Library preparation and sequencing
We extracted genomic DNAs from formalin-fixed paraffin-
embedded (FFPE) slides and the matched blood controls 
(BCs) by QIAamp DNA FFPE Tissue Kit and DNeasy 
Blood and Tissue Kit (Qiagen, USA), respectively, 
which were subsequently quantified by Qubit 3.0 via the 
dsDNA HS Assay Kit (ThermoFisher Scientific, USA). 
Library preparations were conducted by KAPA Hyper 
Prep Kit (KAPA Biosystems, USA). Target enrichment 
was performed by the xGen Exome Research Panel and 
Hybridization and Wash Reagents Kit (Integrated DNA 
Technologies, USA). Sequencing was carried out on the 
Illumina HiSeq4000 platform (Illumina, USA), and the 
average sequencing depths were 140× and 64× for tumors 
and normal BCs, respectively.

Data processing of exome libraries
We filtered out the N rate beyond 10% and low-quality 
reads by SOAPnuke. The Burrows-Wheeler Alignment 
tool was utilized to align the clean reads to the human 
reference genome based on the UCSC hg19. Conversing, 
sorting, and indexing alignment data was performed via 
SAMtools. SAMBLASTER was used to mark the duplicates 
for decreasing biases.

Copy number variants and intratumoral heterogeneity 
(ITH) analyses
The VarScan software was employed to identify somatic 
mutations, including small insertions and deletions (indels) 
and single nucleotide variants. Aiming at retrieving false-
negative mutations and removing false-positive mutations, 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-800/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-800/rc
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strict selection was conducted by our in-house variant 
detection tool. Subsequently, each mutation was annotated 
by the SnpEff software. CNVs were determined by exome-
wide profile comparisons between tumors and matched 
BCs via CNVkit. The cancer cell fraction of mutations was 
calculated by PyClone, with the tumor purity computed 
by All-FIT. The proportions of subclone mutations to all 
mutations were defined as ITH (22).

Human leukocyte antigen (HLA) typing and loss of 
heterozygosity (LOH) analysis
HLA typing of the paired tumor and BCs was estimated 
from WES data via POLYSOLVER and Bwakit software. 
Then LOH in the HLA approach was employed, and 
LOH was determined if (I) a copy number <0.5 and (II) 
imbalanced allelic identified by P<0.01 by the paired 
Student’s t-test between the two distributions (23).

Genomic biomarker analyses
Tumor mutational burden (TMB) was defined as the 
number of non-synonymous somatic mutations per mega-
base (Mb) of the genome interrogated. Through in-house 
software centering on mutant amino acids, all indels and 
non-synonymous mutations were translated into 21-mer 
peptide sequences, which were subsequently utilized to 
create a 9- to 11-mer peptide by the sliding window method 
for predicting major histocompatibility complex (MHC) 
class I binding affinity. The NetMHCpan software was 
employed for predicting the binding intensity of mutant 
peptides to patient-specific HLA alleles. The estimated 
binding strength of a peptide with any HLA allele was 
selected if half-maximal inhibitory concentration (IC50) 
<500 nM. Consequently, neoantigen was calculated 
as multifarious selective peptides generated from the 
same mutation. Tumor neoantigen burden (TNB) was 
determined by the number of such peptides per Mb of the 
genome interrogated. The whole chromosomal instability 
(wCIN) score was utilized to assess the copy number burden 
by the allele-specific copy number analysis of tumors 
(ASCAT) approach (24). Gene mutation pathway analyses 
were conducted as previously described (25).

RNA sequencing workflow
We isolated the total RNA of tumor samples from the 
tumor tissues via RNeasy Plus Universal Kit (Qiagen, 
USA). Utilizing the QubitTM RNA HS Assay Kit, the 
concentrations of the extracted RNA were then quantified. 
The integrity and purity of the extracted RNA were tested 

by the RNA Cartridge kit of the Qseq100 Bio-Fragment 
Analyzer (Bioptic, China) and the Take3 kits (BioTek, USA), 
respectively. We then generated the RNA-seq libraries by 
the VAHTS mRNA-seq V3 Library Prep Kit (Vazyme, 
China). Eventually, the libraries were sequenced on the 
NextSeq 550AR (Illumina, USA) with 150-bp paired-end 
reads.

Gene expression analysis
Low-quality adapters and reads from raw RNA sequencing 
data were filtered by trim galore. The read counts and 
transcripts per million values were analyzed via Kallisto 
based on the Gencode database (26). Identification of 
differentially expressed genes (DEGs) was conducted 
based on the read counts matrix, of which DEGs with 
P value <0.05 and |log2foldchange| >1 were considered 
significant. Gene set enrichment and variation analysis 
based on Gene Ontology and Kyoto Encyclopedia of 
Genes and Genomes datasets were utilized to interrogate 
the pathway activity differences between groups (27). 
Enriched pathways with Bonferroni-corrected Padj<0.05 
were considered significant (28).

TCR sequencing
Isolating from peripheral blood mononuclear cells (PBMCs) 
by RNeasy Plus Mini Kit, the concentration of total RNA 
was detected by the Take3 kit. Via iRepertoire Short 
Read iR-Profile Reagent System HTBI-vc (iRepertoire, 
USA), total RNA was synthesized into the cDNA library. 
Sequencing was conducted on the NextSeq 550AR 
system with 150-bp paired-end reads. We then trimmed 
Fastq reads concerning their low-quality 3' ends bases. 
Integration of processed pair-end reads was executed based 
on overlapped alignment with the adjusted Needleman-
Wunsch method. Identification of the CDR3 sequences 
of V-D-J gene fragments with reference sequences from 
the IMGT database (29) was conducted on the MiXCR 
(30). Evaluation of the immune repertoire sequencing was 
carried out on the VDJtools (31). Additionally, we executed 
frequency-based adjustments on samples. The chaoE, 
shannonWiener, Simpson, and d50 indexes were utilized to 
assess the TCR clone diversity.

Estimation of cellular abundance by bulk RNA‑seq data
CIBERSORT, an approach assessing the contents of  
22 kinds of immune cell populations, including natural killer 
(NK) cell, B cell, T cell, dendritic cell (DC), monocyte, 
macrophage, mast cell, neutrophil, eosinophil, and their 
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subclusters, was used to uncover the immune infiltrating 
spectrums by bulk RNA-seq data (32). MCP-counter, a 
versatile computational approach which robustly quantifies 
the absolute abundance of two stromal and eight immune 
cell populations from bulk transcriptomic data, was also 
exploited (33).

Construction and validation of the multi‑omics 
prognostic model
The multi-omics prognostic model was constructed and 
validated according to the TRIPOD checklist (34). The 
machine-learning (ML) framework was built on Python 
(version 3.9.13) using the following libraries: scikit-learn 
(version 1.2.2), pandas (version 1.5.3), scipy (version 1.9.1), 
and imbalanced-learn (version 0.10.1).

We performed combinations of different omics biomarkers: 
(I) Clinical features + DNA; (II) Clinical features + RNA; 
(III) Clinical features + TCR; (IV) Clinical features + DNA 
+ RNA; (V) Clinical features + DNA + RNA + TCR; (VI) 
DNA + RNA; (VII) DNA + RNA + TCR, resulting in seven 
different datasets. Seven ML approaches, including decision 
tree classifier (DTC), extra tree classifier (ETC), gradient 
boosting classifier (GBC), Gaussian process classifier (GPC), 
K-nearest neighbors (KNN), random forest (RF), and 
support vector machine (SVM) were adopted to screen out 
the robust prognosticators and develop the multi-omics 
prognostic model.

Each dataset (n=76) was divided into a training cohort 
(n=60, 80%) and an internal testing cohort (n=16, 20%) 
via stratified sampling (35). For the data input to the KNN 
model, we used Z-score normalization to scale the original 
data and transform it into a standard normal distribution. 
This process eliminated dimensionality differences 
between features, balancing the impact of various features 
on the model. For the data input to the GPC model, we 
applied the Synthetic Minority Over-sampling Technique 
(SMOTE) preprocessing method. SMOTE approach 
generates synthetic samples by computing the differences 
between minority class samples and their nearest neighbors, 
achieving a balance of sample categories in the dataset. 
The remaining models were trained via the original and 
unprocessed data.

Grid search and five-fold cross-validation were employed 
to perform hyperparameter optimization and model 
performance evaluation on five algorithms except for KNN 
and GPC. Specifically, the grid search method exhaustively 
searched all  possible combinations within a given 
parameter space. Table S3 provides detailed information 

on hyperparameter combinations per model. In five-fold 
cross-validation, we divided the training set into five equal-
sized subsets. We selected four subsets as the training set 
and the remaining one subset as the validation set. By 
performing this process five times, with a different subset as 
the validation set per trial, we obtained five sets of training 
results. We compared the performance of each parameter 
combination on training metrics to determine the best 
parameter combination, optimizing model performance 
and preventing overfitting. Accuracy (ACC) and area under 
the curve (AUC) are the major metrics to measure the 
performance of the models. Other evaluation indices like 
precision, recall, and F1-score were also employed. 

After training on all datasets, we selected the more 
accurate and stabler tree-based algorithms: RF and ETC. 
Gini importance analysis was subsequently used to assess the 
importance of specific features within each dataset. The Gini 
index measured the purity or impurity of samples within a 
node. In binary classification issues, the calculation formula 

for the Gini index is given by ( )2 2
1 2Gini index 1 p p= − + ,  

where 1p  and 2p  represents the proportions of samples 

belonging to two different classes within the node. Gini 
importance measures the importance of a feature by 
calculating the reduction in the average Gini index for each 
feature over all nodes of the decision tree. Given that RF 
and ETC are both ensemble methods of decision trees, 
we aggregated the Gini importance of each corresponding 
feature across all trees, resulting in the final Gini index.

External dataset utilized for analyses
The genomic profiles, mRNA expression, and clinical 
characteristics data of LUAD samples from The Cancer 
Genome Atlas (TCGA)-LUAD cohort were downloaded 
from the UCSC Xena (https://xena.ucsc.edu/) database 
(acquisition date, 2023/1/11).

Statistical analysis

The Mann-Whitney U test, Wilcoxon t-test, and Kruskal-
Wallis test were employed to compare the differences of 
continuous and categorical data. Spearman rank correlation 
test was used to evaluate the correlation between two 
variables, and the |correlation coefficient| >0.5 was regarded 
as significant. Survival differences between two groups were 
evaluated by the Kaplan-Meier approach and the log-rank 
test. Univariate and multivariate Cox regression analyses 
correcting for age, sex, and clinical tumor staging (cTNM) 

https://cdn.amegroups.cn/static/public/TLCR-23-800-Supplementary.pdf
https://xena.ucsc.edu/


Peng et al. Multi-omics landscape of early-stage Ns-NSCLC768

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2024;13(4):763-784 | https://dx.doi.org/10.21037/tlcr-23-800

were utilized to assess the prognostic effect of signature. 
The X-tile software was employed to determine the optimal 
cutoff point of continuous variables (36). The receiver 
operating characteristic (ROC) curves and the corresponding 
predictive ACC were analyzed via the AUC values. DeLong’s 
test was utilized to compare the predictivity ACC, evaluated 
by AUCs, between different methods. Statistical analyses 
and plot generation were performed in GraphPad Prism 
(version 8.0), SPSS (version 25.0), and R (version 4.0.4). P 
value <0.05 of statistical analyses was regarded as significant. 
Data were presented by mean ± standard error or by box and 
whisker plots.

Results

Baseline characteristics of the included patients

A total of 76 patients, with the majority of LUAD samples 
(n=68, 89%), meeting the inclusion criteria were recruited 
(Table 1). The median age was 60 (ranging from 36 to 
86) years, and 34.2% of the patients were ever-smokers. 
Twenty-six patients relapsed during the follow-up period, 
and the recurrent rates of IA, IB, II, and III samples were 
11.54%, 15.38%, 23.08%, and 50%, respectively.

Quality control of the multi-omics data

After appropriate sample quality control, a total of 76 paired 
tumor-control WES data, 71 paired tumor-paratumor 
RNA-sequencing data, and 139 cases of TCR-sequencing 
data of tumor-paratumor-blood samples were eligible for 
downstream analyses (Figure 1A).

Molecular profiling of early-stage Ns-NSCLC

The mutation landscape of early-stage Ns-NSCLC was 
depicted, showing that EGFR was the most frequently 
mutant gene (55%), followed by TP53 (37%) and TTN (26%) 
(Figure 1B), accordant with the recent report (37). A mean 
of 128 mutations was observed, and ever-smokers harbored 
significantly more somatic mutations than never-smokers 
(mean: 238 vs. 70, P<0.001), consistent with previous 
literature (38). The most common base substitutions were C 
> A and C > T transversions, and they were more frequently 
detected in ever than never smokers (P<0.01) (Figure 1C).

We also compared the mutation landscape between the 
present and the TCGA-LUAD cohorts (available at https://
xena.ucsc.edu/) (Figure S1A). Among the top ten mutant 
genes in our cohort, the mutation frequencies of EGFR (55% 

Table 1 Baseline characteristics of the included patients

Characteristics
Disease-free Relapse

P value
Number Percentage (%) Number Percentage (%)

Gender 0.23

Female 27 54 10 38.46

Male 23 46 16 61.54

Smoking status 0.45

Never 33 66 17 65.38

Former 10 20 3 11.54

Current 7 14 6 23.08

Stage 0.003

IA 16 32 3 11.54

IB 15 30 4 15.38

II 12 24 6 23.08

III 7 14 13 50

EGFR 0.09

Mutant 24 48 18 69.23

Wild-type 26 52 8 30.77

https://xena.ucsc.edu/
https://xena.ucsc.edu/
https://cdn.amegroups.cn/static/public/TLCR-23-800-Supplementary.pdf
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Figure 1 Mutation landscape of Chinese early-stage Ns-NSCLC in the GZMU1H cohort. Paired sample information for multi-omics 
interrogation (A). Mutation profiles of Chinese early-stage Ns-NSCLC, each column representing an individual patient. The upper barplot 
demonstrates mutational load, and the right barplot shows the mutation frequency of individual genes (B). Summary of genetic variants, 
including numbers, classifications, and types (C). Somatic mutational burden differences concerning different driver genes, including TP53 
(D), KRAS (E), ALK (F), and EGFR (G). DFS differences between different levels of somatic mutational burden (H). Monogenic mutation, 
including MUC17 (I), ABCA2 (J), PDE4DIP (K), and MYO18B (L), showed prognostic significance of DFS. Somatic copy number alteration 
differences of patients without (M) or with (N) relapse. Single-base substitution signature differences concerning smoking status (O) and 
relapse status (P). Comparison of continuous data by Wilcoxon t-test, **, P<0.01. Data were presented by mean ± standard error for (D-
G). Data were presented by box and whisker plots for (C,P). The horizontal bar inside the boxes represents the median, and the lower and 
upper ends of the boxes are the first and third quartiles. The whiskers indicate values within 1.5× the inter-quartile range from the upper or 
lower quartile. The dots represent the value of the individual sample. The meanings of the different colors are presented in (C; bottom left) 
and the colors used are consistent among the top left, bottom left, bottom middle, and bottom right parts of (C). DFS, disease-free survival; 
cTNM, clinical tumor staging; WES, whole-exome sequencing; TCR, T-cell receptor; PBMC, peripheral blood mononuclear cells; TMB, 
tumor mutational burden; DEL, delete; TNP, tri-nucleotide polymorphism; SNP, single nucleotide polymorphism; ONP, oligo-nucleotide 
polymorphism; INS, insert; DNP, di-nucleotide polymorphism; SNV, single nucleotide variation; SBS, single-base substitution; Ns-
NSCLC, non-squamous non-small cell lung cancer; GZMU1H, the First Affiliated Hospital of Guangzhou Medical University.

vs. 13%, P<0.001), TP53 (37% vs. 50%, P=0.03), TTN (26% 
vs. 48%, P=0.02), LRP1B (21% vs. 34%, P=0.02), MUC16 
(20% vs. 42%, P<0.001), RYR2 (17% vs. 37%, P<0.001), and 
CSMD3 (16% vs. 40%, P<0.001), were significantly different 
from Chinese and Caucasian patients (Figure S1B-S1H), 
underscoring LC genome diversity between ethnicities (38).

Ns-NSCLC with mutant TP53 (Figure 1D), KRAS 
(Figure 1E), and ALK (Figure 1F) displayed higher somatic 
mutational burden than wild-type ones (P<0.01). On the 
contrary, the mutation in EGFR (Figure 1G) predicted lower 
somatic mutational burden than wild-type ones (P<0.01). 
Moreover, early-stage Ns-NSCLC harboring higher 
somatic mutational burden exhibited a trend of better DFS 
than fewer ones (Figure 1H). Higher mutation frequencies 
of ASXL1, ANK3, FGD5, FLT4, MYO18B, MYO3A, and 

SELENOV were observed in patients with recurrence than 
without. 

Mutations in MUC17 [hazard ratio (HR) 3.252, 95% 
confidence interval (CI): 1.118–9.463, P=0.02] (Figure 1I), 
ABCA2 (HR 3.363, 95% CI: 1.007–11.232, P=0.03) 
(Figure 1J), PDE4DIP (HR 3.647, 95% CI: 1.250–10.637, 
P=0.01) (Figure 1K), and MYO18B (HR 3.502, 95% CI: 
1.201–10.211, P=0.01) (Figure 1L) were found to predict 
significantly shorter disease-free survival (DFS) in the 
univariate Cox setting. Nonetheless, mutations in these four 
genes did not correlate with prognosis in the TCGA-LUAD 
cohort from Caucasian populations, suggesting genomic 
differences (Figure S2A-S2D). Moreover, the transcriptomic 
spectrums were significantly different between mutant and 
wild-type populations. The DEGs of these four genes were 
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enriched into up-regulation of the cell cycle process and 
down-regulation of epithelial cell development, representing 
malignant transformation of cells (Figure S2E-S2L).  
Intriguingly, the mutation in MUC17 also correlated with 
higher neutrophil-mediated immunity of Ns-NSCLC.

As for somatic copy number alteration (sCNA), more 
frequent deletion (Del) than amplification (Amp) genes 
were observed generally. Significant Dels in 8q24.3, 7q22.1 
(containing COL1A2 gene), and 15q25.2 and Amps in the 
4p16.3 (encoding FGFR3 gene), 5p15.33, and 8q24.21 
(encoding MYC gene) were found in patients without 
relapse (Figure 1M). Significant Amps in 8q24.3, 14q13.1, 
and 14q11.2, and Del in 3p21.1 were highlighted in early-
stage recurrent Ns-NSCLC (Figure 1N). The frequency 
of smoking-related single-base substitution 4 (SBS4) was 
the highest among all SBS signatures (Figure 1O) (39). 
Moreover, the frequency of mismatch-repair-deficient-
related SBS6 signature was higher in patients with relapse 
than without (Figure 1P) (40).

Landscape of genomic biomarkers and their  
prognostic effects

The median values of TMB, TNB, and wCIN-score were 
2.065 mut/Mb, 0.850 na/Mb, and 0.010, respectively  
(Figure 2A). HLA-LOH was discovered in 28.9% (22 of 76) 
of Ns-NSCLC patients and was more frequently identified 
in ever-smokers than never-smokers (P=0.01), consistent 
with previous findings (23). The incidence of lost alleles was 
highest in HLA-A (14.5%) and lowest in HLA-C (2.6%). 

TMB and TNB were significantly higher in ever-
smokers than never-smokers (P<0.001), indicative of a higher 
mutational burden (Figure 2B). Moreover, TP53 mutation 
was associated with significantly higher TMB, TNB, ITH, 
and wCIN-score (P<0.05) (Figure 2C). Likewise, TTN 
mutation correlated with higher TMB and TNB (P<0.001), 
indicative of higher immunogenicity (Figure 2D) and has been 
reported to be a potential predictor of ICIs efficiency (41).  
Additionally, strong correlations of TMB-TNB (R=0.93, 
P<0.001) (Figure 2E) and TMB-wCIN (R=0.40, P<0.001) 
(Figure 2F) were observed.

Significantly higher TMB, TNB, ITH, and wCIN-score 
(P<0.001) were discovered in patients with HLA-LOH than 
without (Figure 2G). Moreover, the mutation frequencies of 
TP53 (36.3% vs. 29.6%, P<0.01) (Figure 2H), TTN (45.4% 
vs. 20.3%, P<0.05) (Figure 2I), and CSMD1 (36.3% vs. 5.5%, 
P<0.01) (Figure 2J) were significantly higher in HLA-LOH 
positive than the negative group.

A higher frequency of wCIN was observed in stage II 
and III patients with relapse than without (Figure 2K). No 
significant associations were found between TMB, TNB, 
ITH, or HLA-LOH and relapse status and disease stages. 
Higher TMB (log-rank test, P=0.02) (Figure 2L) and 
wCIN-score (log-rank test, P=0.03) (Figure 2M) predicted 
unfavorable DFS. Patients with low-TMB & high-ITH 
have significantly better prognoses than those with high-
TMB & low-ITH (log-rank test, P=0.01) (Figure 2N). 
Multivariate Cox regression analysis adjusting for age, sex, 
and cTNM stages indicated that ITH was an independent 
prognostic factor (HR 0.196, 95% CI: 0.043–0.900, 
P=0.03), possibly because most included patients being 
early-stage (Figure 2O).

EGFR mutation status-related analyses

Recurrence probability was significantly higher in stage 
I patients with EGFR mutation than without (P<0.05)  
(Figure 2P). A trend of unfavorable prognosis of patients with 
EGFR mutation was observed, whereas without statistical 
significance (Figure 2Q). In descending order, the DFS days 
concerning EGFR mutation status were wild-type, L858R, 
other mutation types, and 19Del (Figure 2R). Moreover, 
patients with EGFR mutation and median-to-high-TMB 
correlated with significantly shorter DFS than those with 
low-TMB and without EGFR mutation (log-rank test, 
P<0.001) (Figure 2S). Higher TMB, TNB, and ITH were 
found in wild-type EGFR versus mutant EGFR individuals 
(Figure 2T). Additionally, the mutation frequencies of PEG3 
(Figure 2U) and STK11 (Figure 2V) were significantly higher 
in wild-type than in mutant EGFR patients.

Transcriptional landscape of early-stage Ns-NSCLC

Significantly higher expression levels of KDM5D, NLGN4Y, 
and PRAME were found in ever-smokers than never-smokers 
(Figure 3A), which have been reported to correlate with 
tobacco use (42-44). Enhanced DNA repair, replication and 
methylation pathway activities and attenuated cell adhesion 
and epithelium development pathway activities were further 
identified in ever-smokers (Figure 3B), indicative of the 
carcinogenic effects of tobacco (45). Altogether, one hundred 
and forty-three DEGs were identified in patients with 
recurrence than without (Figure 3C), which were associated 
with upregulated mitotic pathway activity and downregulated 
immune-related pathways activity (Figure 3D).

A total of 140 up-regulated genes and 251 down-
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Figure 2 Genomic biomarker spectrums of Chinese early-stage non-squamous NSCLC. Genomic biomarker landscapes, including TMB, 
TNB, wCIN, ITH, and HLA-LOH of each patient, with relapse status as an annotation (A). Genomic biomarker spectrum differences 
concerning smoking status (B), driver gene mutations (C,D,T), and HLA-LOH status (G). Genomic biomarkers of TMB-TNB (E) and 
TMB-wCIN (F) demonstrated strong correlations. Higher mutation frequencies of TP53 (H), TTN (I), and CSMD1 (J) were observed in 
patients with HLA-LOH. A higher wCIN-score was discovered in patients with relapse than without (K). Prognostic significance of TMB 
(L), wCIN (M), and TMB & ITH combination (N) as evaluated by log-rank test. Prognostic effects of genomic biomarkers as evaluated by 
multivariate Cox regression analysis (O). Mutation frequency of EGFR between stage I patients with or without relapse (P). Disease-free 
survival differences concerning EGFR mutation status (Q) and mutation subtypes (R). Prognostic effects of EGFR and TMB combination 
category (S). Co-concurrent variants of PEG3 (U) and STK11 (V) in patients with or without EGFR mutation. The horizontal bar inside the 
boxes represents the median, and the lower and upper ends of the boxes are the first and third quartiles. Comparison of continuous data by 
Kruskal-Wallis test, *, P<0.05; **, P<0.01; ***, P<0.001; ns, non-significant. HLA-LOH, human leukocyte antigen loss of heterozygosity; 
wCIN, whole chromosomal instability; ITH, intratumoral heterogeneity; TMB, tumor mutational burden; TNB, tumor neoantigen burden; 
MSI, microsatellite instability; DFS, disease-free survival; HR, hazard ratio; CI, confidence interval; wEGFR, wild-type EGFR; mEGFR, 
mutated EGFR; NSCLC, non-small cell lung cancer.

regulated genes were discovered in stage II–III compared 
with stage I samples (Figure 3E). The DEGs were enriched 
into up-regulation of cell growth processes like cell cycle 
and DNA replication pathways, whereas downregulated 
cell adhesion and differentiation pathways were observed 
(Figure 3F), indicating the augmented invasive capacity of 
tumor cells (46). A total of 106 DEGs were found in EGFR 
mutation than wild-type patients (Figure 3G), which were 
also correlated with augmented mitotic cell cycle pathway 
activity and muted cell adhesion activity (Figure 3H), 
suggesting higher invasion and metastasis capacity.

We subsequently sought to evaluate the prognostic 
effects of these genes. Firstly, 2,483 immune-related genes 
were extracted referring to the ImmPort database (47), 
among which 1,443 genes were differentially expressed 
between tumor nest (TN) and paratumor tissue in our 

cohort (Table S4). Univariate Cox regression analysis 
further identified 65 genes with prognostic effects, which 
were used as candidate genes (Table S5). Subsequently, the 
least absolute shrinkage and selection operator (LASSO) 
Cox regression model was employed to select the robust 
prognosticators among the candidate factors (Figure 3I,3J). 
Eventually, a total of 14 genes, including KLRD1, NCR1, 
ICAM2, TRIM22, PI3, INHBB, IGHG3, SPP1, CRABP2, 
PLAUR, ULBP2, IL31RA, GDF5, and IL1A were screened 
out (Figure 3K). Up-regulation of KLRD1, NCR1, ICAM2, 
TRIM22, PI3, INHBB, and IGHG3 was associated with 
better DFS, whereas up-regulation of SPP1, CRABP2, 
PLAUR, ULBP2, IL31RA, GDF5, and IL1A predicted the 
unfavorable DFS. Up-regulation of CRABP2 (HR 1.163, 
95% CI: 1.010–1.339, P=0.03), ULBP2 (HR 1.552, 95% 
CI: 1.049–2.296, P=0.02), IL31RA (HR 1.809, 95% CI: 

D
is

ea
se

-f
re

e 
su

rv
iv

al

D
is

ea
se

-f
re

e 
su

rv
iv

al

D
is

ea
se

-f
re

e 
su

rv
iv

al

P
ro

po
rt

io
n,

 %

P
ro

po
rt

io
n,

 %

P
ro

po
rt

io
n,

 %

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

100

75

50

25

0

100

75

50

25

0

100

75

50

25

0

EGFR
Mutation
Wild-type

EGFR

Wild-type

Wild-type Wild-type
PEG3 STK11Mutant

Mutation Mutation

TMB TNB MSI ITH wCIN wEGFR

P<0.05 P<0.05

wEGFRmEGFR mEGFR

ns ns ns ns*

Time, days

Time, days Time, days

0

0Disease-free

P<0.05

Relapse 0

500

500 500

1000

1000 1000

1500

1500 1500

2000

2000 2000

2500

2500 2500

In
de

x

10

8

6

4

2

0

EGFR

EGFR & TMB

Log-rank P<0.001

EGFR− & low-TMB
EGFR+ & low-TMB/EGFR− & median-to-high-TMB
EGFR+ & median-to-high-TMB

EGFR mutation type

Log-rank P=0.11 Log-rank P=0.12

Wild-type

Wild-type
19del
L858R
Other mutationMutation

P

S T U V

Q R

https://cdn.amegroups.cn/static/public/TLCR-23-800-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-800-Supplementary.pdf


Peng et al. Multi-omics landscape of early-stage Ns-NSCLC774

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2024;13(4):763-784 | https://dx.doi.org/10.21037/tlcr-23-800

Figure 3 Transcriptomic spectrums of early-stage non-squamous non-small cell lung cancer. Differentially expressed genes and corresponding 
enriched pathways of ever-smokers vs. never-smokers (A,B), recurrent vs. disease-free (C,D), stage II–III vs. stage I (E,F), EGFR-mutated 
vs. wild-type (G,H). The LASSO Cox regression model screened out robust prognosticators among immune-related genes (I,J), and their 
prognostic effects were evaluated by the univariate Cox regression analysis (K). Red and green dots refer to significantly up-regulated and 
down-regulated genes, respectively. Black dots represent genes with insignificant changes in expression levels. NK, natural killer; HR, hazard 
ratio; CI, confidence interval; LASSO, least absolute shrinkage and selection operator.
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1.096–2.985, P=0.02), and IL1A (HR 5.438, 95% CI: 1.626–
18.184, P=0.006) also independently correlated with dismal 
DFS in the multivariate Cox setting.

Immune infiltration landscape of early-stage Ns-NSCLC

In the tumor tissues, the CIBERSORT approach showed 
that infiltration of activated memory CD4+ T cells increased 
with TMB (Figure 4A) while infiltrating naïve B cells 
increased with TNB (Figure 4B). Lower memory B cell, 
neutrophil and higher plasma cell infiltrates were found 
in patients with HLA-LOH than without (Figure 4C). 
Infiltration of CD8+ T cells, activated memory CD4+ T 
cells, and naïve B cells was significantly lower in patients 
with EGFR mutation than without (Figure 4D), indicating 
impaired antitumor immunity. Lower infiltrating levels of 
CD8+ T cell and higher Treg infiltrates were observed in 
patients with relapse than without (Figure 4E). Enriched 
plasma cells, CD8+ T cells, and resting mast cells in TN 
were observed in patients without relapse. Compared 
with stage II–III, TME in stage I was featured by higher 
infiltrating immune effector cells like plasma cells, CD8+ T 
cells, resting CD4+ memory T cells, and lower infiltrating 
Tregs (Figure 4F), indicative of the “immune-hot” TME. 
Similar findings were validated by the MCP-counter 
approach (Figure S3A-S3F).

In the paratumor tissues, significantly lower CD8+ T cell 
and activated NK cell infiltrates were found in patients with 
relapse than without. Moreover, EGFR mutation correlated 
with higher Tregs and lower CD8+ T cells infiltration, 
indicating underactive TME. Interestingly, the infiltrating 
levels of M0 macrophages and resting DC increased with 
TMB and TNB levels, suggesting higher immunogenicity 
(Figure S3G-S3L). 

The immune infiltration landscapes in the tumor and 
paratumor tissues were subsequently compared. Higher 
plasma cell, Treg, and M2 macrophage infiltrates were 
discovered in the tumor tissue. In contrast, higher infiltrating 
levels of CD8+ T cells, activated NK cells, and activated 
CD4+ memory T cells were found in the paratumor tissue 
(Figure S3M). Overall, immune-enriched TME was 
presented in early-stage Ns-NSCLC, and paratumor tissue 
seemed to hold higher immunoactivity than in tumor tissue. 

Eventually, an unsupervised K-means clustering method 
via the Canberra metric was utilized to characterize the 
immune landscape of early-stage Ns-NSCLC (38). The 
TME could be generally classified into two major groups: 
tumor-inflamed and stroma-inflamed (Figure 4G). The 

stroma-inflamed group was characterized by high infiltrates 
of immune effector cells in paratumor tissue, including 
activated NK cells, activated CD4+ memory T cells, and 
CD8+ T cells, indicative of active immune response. 
Inversely, the tumor-inflamed group contained enriched M2 
macrophages, Tregs and follicular helper T cells in tumor 
tissue, suggesting an immunosuppressive milieu.

TCR repertoire diversity spectrum

The mean values of observedDiversity, chaoE, d50Index, and 
normalizedShannonWienerIndex were utilized to compare 
the TCR repertoire diversity. The TCR repertoire was 
highest in PBMC, followed by tumor and paratumor tumor 
tissues (Figure 5A,5B). As for the TCR repertoire of PBMCs, 
decreased d50Index was observed in stage II–III compared 
with stage I samples (Figure 5C). Mutation in TP53 indicated 
higher normalizedShannonWienerIndex, suggesting 
enhanced TCR diversity (Figure 5D). Inversely, mutations 
in EGFR and ALK correlated with muted TCR diversity  
(Figure 5E,5F). Insignificant differences in TCR diversity 
were found between different mutation types of EGFR. 

As for the TCR repertoire of tumor tissue, augmented 
TCR diversity was demonstrated in ever-smokers than non-
smokers (Figure 5G). Concerning the TCR repertoire of 
paratumor tissue, higher d50Index predicted significantly 
longer DFS (log-rank test, P=0.005) (Figure 5H), whereas 
higher normalizedShannonWienerIndex correlated with 
unfavorable prognosis (log-rank test, P=0.004) (Figure 5I). 
Higher inverseSimpsonIndex predicted significantly longer 
DFS (log-rank test, P=0.03) than lower ones (Figure 5J). 
Nevertheless, none of the above metrics used to estimate 
TCR repertoire diversity significantly correlated with DFS 
in the multivariate Cox analysis.

Prognostic effects of the individual omics/biomarker

The cTNM stage (AUC 0.727, 95% CI: 0.606–0.847) 
independently showed predictive capacity of DFS (Figure 6A).  
Among the genomic features, wCIN (AUC 0.630, 95% 
CI: 0.499–0.762) showed the highest predictive AUC, 
followed by TMB (AUC 0.588, 95% CI: 0.456–0.719) 
and microsatellite instability (MSI) (AUC 0.558, 95% CI: 
0.420–0.695) (Figure 6B-6H). Among the transcriptomic 
characteristics, KLRD1 (AUC 0.730, 95% CI: 0.616–0.844) 
showed the highest effectiveness, followed by NCR1 (AUC 
0.701, 95% CI: 0.573–0.830) and PI3 (AUC 0.701, 95% CI: 
0.577–0.824). None of the AUC values of TCR repertoire 

https://cdn.amegroups.cn/static/public/TLCR-23-800-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-800-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-800-Supplementary.pdf
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Figure 4 Immune infiltration landscapes in the tumor nest of early-stage Ns-NSCLC. Immune infiltration differences between different 
tumor mutational burden levels (A), tumor neoantigen burden levels (B), human leukocyte antigen loss of heterozygosity status (C), EGFR 
mutation status (D), disease-free survival status (E), and cTNM stage level (F), as evaluated by the CIBERSORT algorithm. The K-means 
clustering method identified two major immune subtypes of early-stage Ns-NSCLC (G). Comparison of continuous data by Kruskal-
Wallis test. *, P<0.05; **, P<0.01; ns, non-significant. NK, natural killer; TMB, tumor mutational burden; TNB, tumor neoantigen burden; 
HLA-LOH, human leukocyte antigen loss of heterozygosity; Ns-NSCLC, non-squamous non-small cell lung cancer; WT, wild-type; Mut, 
mutant; DFS, disease-free survival; cTNM, clinical tumor staging.
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Figure 5 TCR repertoire spectrums of early-stage Ns-NSCLC. TCR repertoire diversity differences among peripheral blood, tumor, and 
paratumor samples (A,B). TCR repertoire diversity differences concerning cTNM stage (C), TP53 (D), EGFR (E), and ALK (F) mutation 
status and smoking status (G). The prognostic effects of TCR repertoire diversity, including d50Index (H), normalizedShannonWienerIndex 
(I), and inverseSimpsonIndex (J). Comparison of continuous data by Kruskal-Wallis test, *, P<0.05; ***, P<0.001; ns, non-significant. PBMC, 
peripheral blood mononuclear cells; cTNM, clinical tumor staging; TCR, T-cell receptor; Ns-NSCLC, non-squamous non-small cell lung 
cancer.

biomarkers exceeded 0.6, with the highest of d50Index (AUC 
0.590, 95% CI: 0.446–0.733). Consequently, individual 
omics/biomarker held limited performance to distinguish 
patients more prone to relapse (Figure S4).

Development of the multi-omics prognostic signature

Due to the unsatisfied performance of the individual omics/
biomarker, we further developed the multi-omics prognostic 
signature (Figure 6I). We discovered that the integration 
of genomic, transcriptomic, clinical, and TCR repertoire 
features achieved stable and accurate efficacy across the 

seven methods in the training group (AUC =0.973, 1.000, 
0.986, 0.904, 0.869, 1.000, and 0.735 of DTC, ETC, GBC, 
GPC, KNN, RF, and SVM, respectively) (Figure 6J).  
Feature importance analyses further demonstrated that 
GDF5 expression, cTNM stage, PLAUR expression, 
IL31RA expression, and normalizedShannonWienerIndex 
were the dominant features (Figure 6K), and RNA features 
held the largest contribution generally in the RF model. 
Given the generalization of NGS in clinical practice, we 
further interrogated whether Clinical + RNA or Clinical + 
DNA characteristics could reach comparable performance. 
Surprisingly, both combinations showed precise and stable 
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Figure 6 Construction and validation of multi-omics prognostic model based on clinicopathological, genomic, transcriptomic, and T-cell 
receptors repertoire sequencing data. The predictive accuracy of individual omics/biomarker, including clinicopathological characteristics 
(A) and genomic biomarkers (B-H). Flowchart demonstrating the process of establishing a multi-omics prognostic model via machine-
learning approaches (I). Predictive accuracy of multi-omics prognostic model based on different combination categories in the training 
and testing cohort (J). Feature importance analyses as evaluated by the Gini index of the RF model combining four omics categories (K). 
DFS differences predicted by the RF algorithm in the training (L) and testing (M) cohorts. TPR, true positive rate; FPR, false positive 
rate; cTNM, clinical tumor staging; wCIN, whole chromosomal instability; TMB, tumor mutational burden; CNH, copy number high; 
MSI, microsatellite instability; ITH, intratumoral heterogeneity; LOH, loss of heterozygosity; AUC, area under the curve; CI, confidence 
interval; TCR, T-cell receptor; RF, random forest; DFS, disease-free survival. 
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predictive performance (Clinical + RNA: AUC =0.978, 1.000, 
0.998, 0.999, 0.815, 0.975, and 0.818 of DTC, ETC, GBC, 
GPC, KNN, RF, and SVM, respectively; Clinical + DNA: 
AUC =0.999, 0.988, 1.000, 0.997, 0.803, 0.936, and 0.829 of 
DTC, ETC, GBC, GPC, KNN, RF, and SVM, respectively). 

We then validated these algorithms in the internal 
testing cohort, showing that the Clinical + RNA features 
combination reached the most stable and accurate 
performance generally (AUC =0.692, 0.933, 0.800, 0.733, 
0.867, 0.833, and 0.900 of DTC, ETC, GBC, GPC, KNN, 
RF, and SVM, respectively). The ACC, precision, recall, 
F1-score, and AUC of the seven combination categories 
across the seven ML algorithms in the training and testing 
cohort are listed in Tables S6,S7.

Given that the Clinical + RNA features combination 
of the RF algorithm exhibited stabler and more accurate 
performance than other ML methods (AUC 0.975, 95% 
CI: 0.926–1.000 in the training cohort; AUC 0.833, 95% 
CI: 0.627–1.000 in the testing cohort), it was chosen to be 
the ultimate predictor. The RF algorithm showed better 
AUC than the cTNM stage across the seven combination 
categories (Clinical features + DNA: P=0.14; Clinical 
features + RNA: P<0.001; Clinical features + TCR: P=0.26; 
Clinical features + DNA + RNA: P=0.05; Clinical features 
+ DNA + RNA + TCR: P<0.001; DNA + RNA: P<0.001; 
DNA + RNA + TCR: P<0.001). The predicted high-
risk early-stage Ns-NSCLC population held significantly 
shorter DFS in training (Figure 6L) and testing (Figure 6M) 
cohort (P<0.001).

Discussion

Our study pinpointed the unique molecular and immune 
alterations in the Chinese early-stage Ns-NSCLC cohort, 
which may affect prognosis and influence the crosstalk 
between tumor and the immune system, unveiling novel 
cancer biological meanings.

Our WES analysis identified consistent findings which 
were previously reported on the East-Asian Ns-NSCLC 
population. For instance, EGFR was the most frequently 
mutated gene and C > A base substitution was more 
frequently detected in ever-smokers (48). Frequently 
mutated smoking-related SBS4 signature was also detected, 
which has been reported to be the major feature of smoker 
LCs. Besides, different driver genes mutations may predict 
inverse somatic mutational burden (43). 

Besides corroborating previous findings, several novel 
genomic alterations in recurrent early-stage Ns-NSCLC 

were discovered. For instance, a higher mutation rate of 
FGD5 was found in recurrent patients, which has been 
postulated to maintain breast cancer stem cell characteristics 
and facilitate tumor development (49), whereas no relevant 
findings on Ns-NSCLC were found. A higher mutation 
frequency of FLT4 was also discovered, which may activate 
the PI3K-AKT pathway to promote the angiogenesis 
of LUAD (50). Besides, a higher mutation frequency of 
MYO18B, a tumor suppressor gene (51), was identified in 
recurrent samples, and it was also a negative predictor of 
DFS. Mutations in MUC17, ABCA2, and PDE4DIP were 
also accentuated to play an important role in prognosis. 
Functional analyses further suggested that the mutation 
of these genes correlated with augmented malignant 
transformation of cells, warranting future experimental 
studies to examine the underlying biological implications. 

As for the sCNA spectrum, alterations in cytobands 
of chr4p, chr8q, chr14q, etc., demonstrated significant 
variation of Del or Amp. Significant Amps in 8q24.3, 
14q13.1, 14q11.2, and Del in 3p21.1 were highlighted in 
early-stage recurrent Ns-NSCLC. Amp in 14q13.1 has 
been postulated to be the oncogenic alteration of pulmonary 
lymphoepithelioma-like carcinoma, a rare subtype of 
NSCLC (52). Besides, PSCA at 8q24.3 is among the most 
frequently detected gastric cancer-susceptibility genes (53). 
Del in 3p21.1 has been reported to correlate with metastasis 
of renal and pancreatic cancer (54) while it was first 
described in Ns-NSCLC. Concerning disease-free samples, 
cytoband Amp in the chr7q22.1 region was found, which 
included the COL1A2 gene, and it has been postulated to 
correlate with extracellular matrix-receptor interaction 
in esophageal cancer (55). Amp in the chr8q24.21 that 
included the MYC gene was also found. And MYC is a 
classical oncogene crucial for tumor evolution and immune 
evasion in TME, mainly relating to Wnt/β-catenin signal 
pathways (56). Overall, our findings supplemented the 
repertoire of candidate genomic alterations contained in 
Ns-NSCLC pathogenesis.

We comprehensively depicted the spectrum of genomic 
biomarkers of early-stage Ns-NSCLC, including TMB, 
TNB, ITH, HLA-LOH, and wCIN. The occurrence of 
HLA-LOH was 28.9%, similar to a recent report of the 
Chinese NSCLC cohort (23.8%) (38). HLA-LOH was 
associated with higher mutation frequencies of classical 
oncogene TP53 and immune-related genes like TTN and 
CSMD1. In the context of inconsistent findings concerning 
the role of HLA-LOH in predicting ICI response (57), 
combining HLA-LOH status with concurrent mutated 

https://cdn.amegroups.cn/static/public/TLCR-23-800-Supplementary.pdf
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gene signatures, especially immune-related ones, may 
reach better performance. Moreover, HLA-LOH predicted 
higher TMB, TNB, ITH, and wCIN-score, suggesting 
higher mutational burden and a greater probability of 
tumor immune escape. Mutations in TP53 and TTN 
correlated with higher TMB and TNB, representing higher 
immunogenicity. Higher incidences of HLA-LOH, higher 
TMB and TNB were identified in ever-smokers than never-
smokers, recapitulating previous findings.

We subsequently investigated the associations between 
various biomarkers, either alone or in combination, with 
prognosis. We found that higher TMB and wCIN-score 
predicted unfavorable DFS. On the contrary, higher ITH 
was an independent predictor of better DFS in early-
stage Ns-NSCLC, showing the opposite effect from a 
previous study that focused on advanced NSCLC (22). 
Interestingly, low-TMB & high-ITH correlated with 
significantly longer DFS than those with high-TMB & low-
ITH, implying combining the characteristics of subclonal 
mutations and immunogenic neoantigens may better 
achieve risk stratification. Besides, patients who harbored 
EGFR mutation and median-to-high TMB held worse DFS 
than those with low TMB and without EGFR mutation, 
corroborating previous reports (58). 

Transcriptomic analysis underscored higher cell cycle 
pathway activity and lower cell differentiation and adhesion 
activity in recurrent, relatively advanced-stage, smokers, and 
EGFR-mutated Ns-NSCLC, mirroring the accumulation of 
cancer cell invasion and metastasis capacity that empowered 
the immune escape. The expression patterns of immune-
related genes were fully assessed, pinpointing several 
essential prognosticators of early-stage Ns-NSCLC. 
CRABP2, i.e., cellular retinoic acid-binding protein, has 
been reported to facilitate LC metastasis by integrin β1/
FAK/ERK pathway of in vitro model (59). Likewise, 
up-regulation of CRABP2 was discovered in TN than 
paratumor tissue, and it was an independent prognosticator 
of unfavorable DFS, suggesting a potential target to 
improve prognosis. ULBP2, a ligand of NKG2D that usually 
expresses under tissue stress or injury, is an important 
target of immune surveillance and a trigger of antitumor 
immunity. We found that the expression level of ULBP2 was 
significantly higher in TN than in paratumor tissue, and 
it correlated with dismal DFS, consistent with a previous 
study by Yamaguchi and colleagues (60). Additionally, up-
regulated IL1A, a cytokine with pleiotropic functions in 
tumor evolution, portended a significantly worse prognosis. 
However, we could not further determine the cellular 

sources of expression of these genes and their correlations 
with other known druggable targets like by single-cell RNA 
sequencing (61) and multiplex immunofluorescence (62).

Via the deconvolution algorithm, phenotypic heterogeneity 
in TME was observed, and two major subtypes, including 
the tumor-inflamed and stroma-inflamed groups, were 
generated. The stroma-inflamed group featured by high 
activated NK cell, CD4+ T cell, and CD8+ T cell infiltrates 
indicated the benefit of ICI treatment (63). On the 
contrary, the tumor-inflamed group exhibited enriched 
M2 macrophages and Tregs, indicating ICI plus therapy 
targeting specific cell lineage like macrophages may better 
work (64,65). Additionally, we also parsed the different 
TME landscapes concerning different genomic alteration 
patterns, benefiting from a multi-omics setting.

Through parsing the TCR repertoire spectrum, we 
found that driver gene mutations like EGFR and ALK 
predicted muted TCR diversity while mutation in tumor 
suppressor genes like TP53 correlated with augmented TCR 
diversity inversely. Prognostic effects of TCR diversity of 
PBMCs were noted, demonstrating a noninvasive method 
for relapse surveillance.

Studies using other different omics also succeeded in 
predicting the prognosis and immunotherapy response of 
cancers. For instance, Triozzi and colleagues developed 
a metabolomic signature that correlated with glycolysis 
to characterize the ICI responders of melanoma (66). 
Moreover, they also found that higher extracellular 
acidification rate and lactate-to-pyruvate ratio were 
prognostic of superior outcomes. Proteomics narrows 
the gap between cancer genotypes and phenotypes and 
has paved the way for precision oncology in recent years. 
Recently, Harel et al. proposed a predictive signature of ICI 
response of NSCLC based on plasma proteomic profiling, 
including CXCL8 and CXCL10 proteins (67).

Eventually, seven ML algorithms were employed to 
estimate the predictive accuracy of seven combination 
categories based on clinical, genomic, transcriptomic, 
and TCR repertoire data. Clinical and RNA features 
combination in the RF algorithm, with AUC of 97.5% 
and 83.3% in the training and testing cohort, respectively, 
significantly outperformed other methods. Consequently, 
the model was robust and had the potential to optimize 
risk stratification of early-stage Ns-NSCLC along with the 
increased clinical utility of target panel sequencing. More 
importantly, such a framework underscored the significance 
of data integration via ML approaches for predicting relapse 
and may be feasible for other cancer types.
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Several limitations should be noted. First, our study is 
restricted by the sample size and the number of individuals 
with specific mutant genes. In this sense, the generated 
hypotheses on the effects of molecular alterations on 
prognosis need to be examined in other populations or 
cohorts. Second, the immune subtypes of early-stage Ns-
NSCLC were inferred from the deconvolution algorithm 
of RNA-seq data and lacked validation at the protein level, 
like by multiplex immunofluorescence (62). Third, while 
diversity, clonality, and similarity are the essential features of 
TCR repertoire, only diversity was probed. Moreover, the 
proposed multi-omics prognosticator held the risk of over-
fitting due to limited cohort size and a lack of validation in 
the external cohort. 

In recent years, numerous novel omics techniques have 
empowered researchers to dissect the pathogenesis of cancers 
at unprecedented resolution and scale, demonstrating a 
holistic view of cancer biology. Multi-omics analyses also pose 
the potential to identify innovative druggable targets and 
biomarkers for optimizing treatment benefits. The advent 
of multi-layer and broader data also raises the challenges 
of better synthesizing them and generalizing the findings 
into clinical utility. In our view, first, the employment 
of ML/deep learning algorithms, which could capture 
complex high-dimensional associations of multimodality 
data, is imperative. Second, technical specification and 
standardization across different labs to establish reproducible 
data are indispensable. Third, prospective and cross-
cohort validation examining the associations or causalities 
between experimental findings and clinical outcomes are 
requisite. Overall, great efforts are underway to dissect the 
heterogeneity and plasticity of tumors, and we anticipate 
their integration into precision oncology. 

Conclusions

In brief, this study comprehensively profiled the genomic, 
transcriptomic, and TCR repertoire spectrums of Chinese 
early-stage Ns-NSCLC, shedding light on biological 
underpinnings and candidate biomarkers for prognosis 
development.
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