
ear, as the perception of danger, is an adaptive
response, and fundamental in problem-solving and sur-
vival. In fact, fear is an emotion that likely evolved as part
of problem-solving.1 Appraisal mechanisms which discern
danger become overactive, leading to increased percep-
tion of fear, which then leads to anxious thought, and per-
haps to endless gloom.2,3 In psychological terms, both anx-
ious and depressive states have a common core of
heightened negative affect,4 a product of overactivity of
the neural systems that underlie fear3,5 and that con-
tribute to a number of affective disorders.6 While fear is
a central state of the brain, changes in heart rate, blood
pressure, respiration, facial muscles, and catecholamines,
both peripheral and central, all influence the state of
fear.3,5

One should note at the outset that fear, of which there
are several kinds (conditioned fear, fear of unfamiliar
objects, fear to sensory stimuli, etc7), is more than amyg-
dala function, and amygdala function is more than fear8,9;
however, fear is one thing in which the amygdala partic-
ipates, and exaggerated amygdala activation creates a
vulnerability to affective disorders.6,10,11

Anatomical considerations 
about the amygdala

Regions of the amygdala receive and send information
from both cortical and subcortical regions.12-14 More
specifically, the basolateral complex is comprised of the
lateral, basal, and accessory basal nuclei, which are richly
innervated by neocortical and subcortical uni- and poly-
modal sensory regions,13-15 which then relay information
to the central nucleus of the amygdala.16 Intra-amygdala
connectivity is widespread.13,14
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Fear is an adaptation to danger, but excessive fear under-
lies diverse forms of mental anguish and pathology. One
neural site linked to a sense of adversity is the amygdala,
and one neuropeptide, corticotropin-releasing hormone
(CRH), is localized within the central nucleus of the amyg-
dala. Glucocorticoids enhance the production of CRH in
this region of the brain, resulting in increased attention
to external events and, when sustained for longer periods
of time, perhaps contributing to anxious depression.
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The central nucleus projects to numerous nuclei in the
midbrain and brain stem to orchestrate the rapid and pri-
mary behavioral, autonomic, and endocrine responses to
threat and danger.3,5,17 The central nucleus also receives
visceral information from brain stem sites that include
the solitary and parabrachial nuclei18 and reciprocally
projects to these brain stem regions (eg, ref 19). Regions
of the amygdala directly project to the nucleus accum-
bens, which led investigators20,21,22 to suggest an anatomi-
cal route by which motivation and motor control action
are linked in the organization of active behavior (see also
refs 21-25).
In addition to projections from the central nucleus of the
amygdala to midbrain and brain stem targets important
for mounting quick behavioral, autonomic, and
endocrine responses to danger, the amygdala projections
to the cortex and subcortical structures are also quite
extensive.13,14 In rat, the sources are the lateral, basal, and
accessory basal nuclei, and their projections are fairly
restricted to the multisensory temporal lobe structures
(perirhinal, pyriform, and entorhinal cortices) and pre-
frontal cortex.26 In primate brain, the primary visual cor-
tex also receives input from the amygdala.12 These corti-
cal structures also contribute the heaviest cortical input
to the amygdala, suggesting that many of the connec-
tions between the amygdala and cortex are reciprocal.
This is particularly the case with the amygdala and pre-
frontal cortex, both anatomically12,26 and functionally (for
review see refs 27, 28).
In addition to the basolateral nucleus of the amygdala,
the central nucleus of the amygdala also plays a unique
role in conditioned fear.3,5 The basolateral complex of the
amygdala, with its rich afferents from the thalamus and
cortical regions, is neuroanatomically situated to connect
information about neutral stimuli with those that pro-
duce pain or are harmful.
The central nucleus can orchestrate behavioral responses
related to fear via its direct connections to numerous
midbrain and brain stem regions and circuits instantiat-
ing various fear-related behaviors.17,29-31 Thus, the central

nucleus of the amygdala, via its projections to lower
brain, orchestrates behavioral (freezing5,17), autonomic,
and endocrine responses to fear, while efferents of the
basal nucleus of the amygdala participate in active avoid-
ance behaviors to fear,23,32,33 likely through basal ganglia.
The bed nucleus of the stria terminalis (BNST) is
anatomically linked to the central/medial amygdala34 and
is also distinguished from the basolateral complex as
being part of an autonomic brain system.25 Importantly,
the central nucleus and the BNST are not only the major
efferent sources of input to midbrain and brain stem tar-
gets controlling autonomic responses to fear, but are the
main recipients of autonomic information from the
nucleus of the solitary tract and parabrachial nucleus.13,19,35

Corticotropin-releasing hormone (CRH) is one of the
cell groups (neuropeptides) richly expressed in the cen-
tral nucleus of the amygdala and in the lateral BNST, and
therefore is of special interest, as it is tied to all of these
behavioral and autonomic events (see below).
There are reasonable conceptual issues of what defines the
amygdala,25,36 and the ultimate basis for deciding what is
amygdala is still open to investigation (eg, the extent to
which the amygdala is part of the striatum and/or the
larger cortical areas, the link to the BNST).There is little
doubt that the amygdala is importantly involved in diverse
forms of motivated behaviors (eg, fear) and their aberra-
tion during pathological states.

Fear, uncertainty, unfamiliar objects, 
and the amygdala

Humans with damage to the amygdala have impaired fear-
related behavior and autonomic responses to conditioned
stimuli (eg, refs 37-41).Also, positron emission tomogra-
phy (PET) imaging studies in normals have shown greater
activation of the amygdala during fear and anxiety-pro-
voking stimuli than during presentation of neutral stimuli.42

Such PET studies have revealed that the amygdala is acti-
vated when presented with fearful, unfamiliar, and uncer-
tain faces.2,43,44 With the use of functional magnetic reso-
nance imaging (fMRI), it has further been shown that the
amygdala is activated and then habituates when subjects
are shown fearful faces but not when they are shown neu-
tral or happy faces45,46; however, the amygdala is also
responsive to a variety of facial responses.47,48 A number of
studies have also demonstrated that anxiety disorder
patients have excessive activation in the amygdala when
presented with stimuli that provoke anxiety attacks.6,10,27
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Selected abbreviations and acronyms
ACTH adrenocorticotropic hormone
BNST bed nucleus of stria terminalis
CRH corticotropin-releasing hormone
HPA hypothalamic-pituitary-adrenal
PTSD post-traumatic stress disorder
PVN paraventricular nucleus



CRH expression and the brain

One cell group within the amygdala (and the primary
focus of this review) and elsewhere in the brain is
CRH,24,49,50 which is well known to be both a peptide that
regulates pituitary and adrenal function and an extrahy-
pothalamic peptide hormone linked to a number of
behaviors, including behavioral expressions of fear.51-53

CRH cell bodies are widely distributed in the brain.49,50 The
majority of CRH neurons within the paraventricular
nucleus (PVN) are clustered in the parvicellular division.
Other regions with predominant CRH-containing neurons
are the lateral BNST and the central division of the cen-
tral nucleus of the amygdala.49,54 To a smaller degree, there
are CRH cells in the lateral hypothalamus and the pre-
frontal and cingulate cortex. In brain stem regions, CRH
cells are clustered near the locus coeruleus (Barrington’s
nucleus), parabrachial region, and regions of the solitary
nucleus.49,50,55,56

The CRH family has at least two receptors, CRH1 and
CRH2, localized in rodent and primate brain (eg, refs 57-
60).Activation of both the CRH1 and CRH2 receptors is
linked to a G protein, and activates adenylate cyclase cas-
cade and an increase in intracellular cyclic adenosine
monophosphate (cAMP) and calcium levels; CRH
appears to bind primarily to CRH1 receptors.60,61

The distribution of CRH1 receptor sites includes regions
of the hippocampus, septum, and amygdala (medial and
lateral region) and neocortex, ventral thalamic, and
medial hypothalamic sites; sparse receptors are located
in the PVN and the pituitary gland. The distribution is
widespread in cerebellum in addition to brain stem sites
such as major sensory nerves and the solitary nucleus.62,63

The distribution of CRH2 receptors is more limited than
that of CRH1 receptors and is found primarily in sub-
cortical regions including the amygdala, septum, BNST,
and PVN and ventral medial nucleus of the hypothala-
mus.63,64

Differential regulation of CRH 
by glucocorticoids

Glucocorticoids are importantly involved in the restraint
of CRH production in regions of the PVN.65,66 This nega-
tive feedback is a fundamental way in which the hypo-
thalamic-pituitary-adrenal (HPA) axis is restrained during
stress and activity.67 Glucocorticoids directly control neu-
ronal excitability.68 Some of the glucocorticoid effects on

the brain are quite rapid, suggesting that corticosterone
has nongenomic membrane effects via γ–aminobutyric
acid(GABA)-ergic mechanisms.69 Neurons within the lat-
eral BNST and within the PVN may activate or inhibit
PVN function via GABAergic mechanisms.70,71

While the profound effect of inhibition is indisputable,
there are neuronal populations within the PVN that pro-
ject to the brain stem that are not inhibited by glucocor-
ticoids, and the activity of which is actually enhanced.66,72

That is, CRH neurons en route to the pituitary are
restrained by glucocorticoids, but CRH en route to other
regions of the brain appears not to be restrained.66,73-75

Moreover, the activity of extrahypothalamic regions of
the brain in which CRH is expressed (central nucleus of
the amygdala or lateral BNST) is actually increased by
glucocorticoid hormones.54,66,75,76

CRH, glucocorticoids, and 
fear-related behaviors

Central CRH activation has been consistently linked to
the induction of fear, uncertainty, unfamiliarity, and
uncontrollability in animal studies.9, 52,53,77-79 Central infu-
sions of CRH induce or potentiate a number of fear-
related behavioral responses,80 and infusion of CRH
antagonists both within and outside the amygdala reduce
fear-related responses.52,81 One study, for example,
reported that injection of a CRH antagonist into the
basolateral complex of the amygdala, one of the regions
in the amygdala which contains glucocorticoid recep-
tors,82 immediately following footshock diminished reten-
tion of aversive conditioning in an inhibitory avoidance
task.32 It was also shown in this study that the expression
of CRH in the central nucleus of the amygdala increased
30 minutes following footshock. The results indicated
that, similar to glucocorticoids and norepinephrine mag-
nifying memory,33 CRH in the amygdala modulated
learning and memory for aversive events.83

While glucocorticoids are essential in the development
of fear,84 perhaps by the induction of central CRH, glu-
cocorticoids, and CRH both play a larger role in the orga-
nization of behavior.85-87 Nonetheless, glucocorticoids are
secreted under a number of experimental conditions in
which fear, anxiety, novelty, and uncertainty are experi-
mental manipulations.9,78,88-90 In contexts where there is
loss of control, or the perception of a loss of control
(worry is associated with the loss of control), glucocor-
ticoids are secreted. This holds across a number of
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species, including humans; perceived control reduces the
levels of glucocorticoids.88 These findings are congruent
with those of Curt Richter91 who observed an enlarged
adrenal gland in stressed, fearful wild rats when com-
pared with unstressed laboratory analogs.
Glucocorticoids in the basolateral complex of the amyg-
dala appear to be necessary for aversive and fear condi-
tioning. For example, injection of the glucocorticoid
receptor antagonist RU-486 into the basolateral complex
of the amygdala will reduce the consolidation of aversive
conditioning92 in addition to other forms of conditioning,
including contextual fear.93 Other experiments have
shown that glucocorticoid injections into the amygdala
can facilitate aversive conditioning.33 Experiments like
these, which use post-training injection procedures,
demonstrate that glucocorticoids are necessary for con-
solidation of the memory of aversive conditioning and
may facilitate the memory process.94,95

Glucocorticoid levels impact on learned fear.94-97 For
example, in one study rats received conditioning trials in
which the unconditioned stimulus (footshock) was pre-
sented concurrently with the conditioned stimulus (audi-
tory tone). For several days after conditioning the rats
were treated with corticosterone; conditioned fear-
induced freezing was enhanced.96

Corticosterone, by the induction of central CRH expres-
sion, facilitates fear-related behavioral responses.76 Thus,
in one study looking at contextual fear conditioning,
groups of rats that were chronically treated with corti-
costerone displayed more fear conditioning than the
vehicle-treated rats. Glucocorticoid antagonists disrupt
contextual fear conditioning.94,95 Thus, the data suggest
that repeated high levels of corticosterone can facilitate
the retention of contextual fear conditioning, perhaps by
the induction of CRH gene expression in critical regions
of the brain such as the amygdala.
Importantly, amygdala infusion of corticosterone aimed at
the central nucleus also increases milder forms of anxiety
as measured with rats in the elevated plus maze.98 Shepard
et al have, furthermore, demonstrated that implants of cor-
ticosterone resulted in an increase in CRH expression in
the central nucleus of the amygdala. In addition, the cor-
ticosterone implants to the central nucleus of the amyg-
dala increased levels of CRH expression in the dorsal lat-
eral BNST99 and administration of the type 1 CRH
receptors decreased this fear-related response.100 In other
tests, pretreatment with the type-l receptor CRH antago-
nist ameliorated fear-inducing events, or reactivity to the

events,100 (see also refs 101-103 for the role of the CRH
type-1 receptor; and 104, 105 for the role of the type II
receptor).
Furthermore, Cook demonstrated that the CRH
response in the amygdala of sheep to a natural (dog) and
unnatural (footshock) adversity is regulated by gluco-
corticoids.106 Following acute exposure to the dog, for
example, amygdala CRH had a large increase during
exposure to the dog and a second peak corresponding to
the increase in cortisol. Administration of a glucocorti-
coid receptor antagonist blocked the second CRH peak
in the amygdala without affecting the first peak.
There is a body of evidence suggesting that the BNST
may be important for unconditioned fear107 and that per-
haps CRH plays an important role.83 Lesions of the
BNST do not interfere with conditioned fear-related
responses, unlike lesions of regions of the amygdala
which interfere with fear-potentiated startle or condi-
tioned freezing.108,109 However, inactivation of the BNST
can interfere with unconditioned startle responses109 and
with longer-term CRH effects on behavior.109 High
chronic plasma levels of corticosterone in adrenally intact
rats facilitated CRH-induced startle responses.110 Perhaps
what occurs normally is that the glucocorticoids, by
increasing CRH gene expression, increase the likelihood
that something will be perceived as a threat, which results
in a startle response.
Lesions of the BNST also interfere with unconditioned
freezing of rats to a fox odor,111 while amygdala lesions
do not.11,112 Corticosterone can potentiate freezing to
predator odor,113 (Rosen et al, unpublished observations).
Perhaps the BNST may be linked to CRH-facilitated
unconditioned adaptive anxiety and to general anxiety
associated with drug abuse and to symptoms associated
with pathological generalized anxiety disorder.114-116

Depression, anxiety, CRH, cortisol, brain

A genetic predisposition for a hyperactive amygdala has
long been thought to result in a vulnerability to exag-
gerated fear and perhaps anxiety/depression.11,117 There
is a substantial number of findings of increased activity
in the amygdala of depressive patients.27,44,118 correlating
with negative affect in other medication-free depres-
sives119 and patients suffering from a number of anxiety
disorders.2 In addition, a finding in depressive patients,
particularly in those with comorbid anxiety, is hypercor-
tisolemia.120-122 Interestingly, antiglucorticoids are, in a
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number of contexts, reported to ameliorate depressive
symptoms,123,124 which perhaps results in a reduction in
central CRH expression. Importantly, depressive
patients tend to have higher levels of CRH in cere-
brospinal fluid than normal controls.125-129 There is some
evidence that TYPE 1 receptor regulation can impact on
depression.130

One study has found a significant positive correlation
between activity in the amygdala measured by PET and
plasma cortisol levels in both unipolar and bipolar
depressives.118 Interestingly, patients with major depres-
sion show exaggerated responses in the left amygdala to
sad facial expressions.131,132 Acute infusions of cortisol in
normal patients resulted in exaggerated amygdala
responses to sad faces.46

This correlation may reflect either the effect of amygdala
activity on CRH secretion or cortisol actions directly in
amygdala. It is intriguing to speculate that the findings
that patients with a first episode of depression have an
enlarged amygdala133 may be due to increased chronic
levels of glucocorticoids and blood flow in the amyg-
dala.134 Interestingly, fearful anxious children in whom
cortisol was elevated in development117,135 also display a
hyperactive amygdala to social performance as adults.11

Importantly, there is evidence of increased dendritic
hybridization in amygdala and decreased dendritic
hybridization of the hippocampus in animals under
duress.136 Glucocortiocoids are known to produce mor-
phological changes in brain, typically decreases in hip-
pocampal and prefrontal neurons’ dendritic trees.137,138

Moreover, studies have linked increased glucocorticoid
production to changes in neuronal morphology in the
basolateral complex of the amygdala following repeated
stress136,139 and such changes in plasminogen activator in
cell bodies within the amygdala promotes corticotropin-
releasing factor (CRF) activity; the administration of
antalarmin, a CRF TYPE 1 antagonist, does the con-
verse.140

An fMRI study reported that, whereas the amygdala in
both normals and depressives responded to aversive
stimuli, the amygdala response of normals habituated
quickly while the familial depressives’ amygdala
remained active significantly longer.141 Whether CRH and
cortisol are involved in the sensitized responses awaits
further study. We do know that in animal studies,
increased CRH increases the salience of familiar incen-
tives9, 87,142 and perhaps glucocorticoids magnify the CRH
effect.83,85,142

Data on anxiety also indicate that the amygdala and cor-
tisol are interactive in several anxiety disorders and for
which cortisol, and the return to normal function, may be
therapeutic.143 Although the research has developed
along two separate paths, activity in the amygdala in a
number of different anxiety disorders has been shown to
be highly reactive to triggers that evoke anxious reac-
tions2,6 and the HPA axis is hyper-responsive in anxiety
disorders, particularly post-traumatic stress disorder
(PTSD).144-46 PTSD patients also have high norepineph-
rine/cortisol ratios144,147 In research on cortisol measures,
PTSD patients have basal hypocortisolemia but
increased reactivity of the HPA axis to cortisol, suggest-
ing that CRH and adrenocorticotropic hormone
(ACTH)-secreting cells are sensitized to cortisol in PTSD
patients.145 Indeed, CRH has been found to be elevated
in cerebrospinal fluid of PSTD patients.147,148

PTSD patients have normal resting (nonprovoked) lev-
els of amygdala activity, but the amygdala is highly
responsive to anxiety provocation.149-152 While most of
these studies do not demonstrate an abnormal response
of the amygdala per se, particularly because normal
humans also demonstrate increased amygdala activity to
fearful or aversive stimuli (however, they do suggest that
the amygdala has a lower threshold for responding to
fearful stimuli in anxiety disorder patients).153

While focus here has been on the amygdala and, to a
lesser extent, on the BNST, a fundamental part of fear
circuitry is the prefrontal cortex (eg, refs 27,154,155).The
medial prefrontal cortex (mPFC), for example, plays a
role in inhibition of fear responses and extinction.154,156

There is evidence that regions of the prefrontal cortex
regulate glucocorticoid responses to duress.157-159 The pre-
frontal cortex has relatively dense expression of gluco-
corticoid receptors in most regions, including the infral-
imbic cortical areas and CRH neurons are also located
in most regions of the prefrontal cortex,49,50 Rosen and
Schulkin, unpublished data. Chronic glucocorticoid treat-
ment has been shown to alter apical dendrites of medial
prefrontal neurons.137

Conclusions

Although the amygdala has been known to be involved in
the emotion of fear since the seminal studies of Kluver and
Bucy160 showed a taming effect of amygdala lesions in
monkeys, research in the last two decades has produced
great advances in determining the neuroanatomy of fear
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circuits. Not only has the amygdala been found to be crit-
ical for many types of fear, but fear circuits that connect
the amygdala to many other brain regions have been
described, which suggests that these circuits have evolved
to function as neurobehavioral systems for particular kinds
of cognitive and behavioral strategies. Understanding the
neural circuitry that underlies fear/anxiety leads one to be
in a better position for clinical judgment about treatment
for states such anxious depression.
Normal fear is an adaptation to danger; chronic anxiety
and depression are the overexpression of the neural sys-
tems involved in adaptation to danger. Coping with anx-
ious depression is metabolically expensive; expectations

of adversity predominate. Moreover, anxious depression
is a condition in which there can be both high systemic
cortisol and elevated CRH in the cerebrospinal
fluid118,125,161,162 Anxious depressed patients also tend to
have increased glucose metabolic rates in the amyg-
dala.118,134 The cortisol that regulates CRH gene expres-
sion in the amygdala may underlie the fear and anxiety
of the anxiously depressed person.3,85 The exaggerated
amygdala response that can occur because of life events
and genetic predisposition (eg, refs 11, 77, 90, 129) con-
tributes to the anxious/depressed person’s altered per-
ception and experience of the world, leading to a chronic
sense of anticipatory angst. ❏
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