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Abstract: Major progress has occurred during the last decade in the field of tremor. From the clinical
standpoint, a new classification has completely revised the nosology of tremor syndromes and has
re-conceptualized essential tremor as a syndrome rather than a single disease entity, fueling an ongoing
enlightened debate. Significant advances have been obtained in terms of instrumental measurement of
tremor, remarking on the possibility of developing novel treatment strategies based on tremor
characteristics, namely tremor-phase. Moreover, a better understanding of the pathophysiological
mechanisms has further led to the suggestion of refining the classification of tremor syndromes according
to their driving underpinnings. Finally, surgical options such as deep brain stimulation and focused
ultrasound thalamotomy are now part of the therapeutic portfolio for tremor, but several oral drugs,
including long-chain alcohols, T-channel blockers, allosteric modulators of potassium channels, and of
GABA-A receptors, are currently being tested and hold promise. This review will discuss the key milestones
in tremor research of the last 10 years, with a focus on the most common tremor syndromes, namely
essential tremor, dystonic tremor, and Parkinsonian tremor.

At the time of writing, 10 years has passed since the article
“Milestones in Tremor Research” by Rodger Elbe and Gun-
ther Deuschl was published in Movement Disorders.1 Based on a
review of the previous 25 years, they highlighted the advances
in tremor research and eventually concluded that it was “time
to refine the classification and diagnostic criteria for various
tremor disorders, particularly Essential Tremor (ET) and dys-
tonic tremor (DT)”.1 This paper will serve as a starting point
for the current work, in which we discuss the key advances of
the last decade in terms of clinical concepts, tremor measure-
ment, pathophysiology, and treatment approaches with a focus
on the most common tremor syndromes, namely ET, DT, and
Parkinson’s disease (PD) related tremor. Conversely, this
review will not go into etiological considerations, owing to
the lack of consistent findings especially with regard to
ET. The interested readership is referred elsewhere for consid-
eration of the diverse etiologies, including genetics, that might

sustain the syndrome of ET2–4 as well as its heterogeneous
post-mortem findings.5–8

Clinical Concepts
In 2018, the Tremor Task Force of the International Parkinson’s
and Movement Disorders Society (IPMDS) published the new
tremor classification,9 this probably being the most notable advance
of the last decade. Mirroring the recent changes in the dystonia
field, the main structure of the classification is based on two axes:
clinical features (axis I) and etiology (axis II). The inspiring aim of
the new classification is to facilitate deeper and detailed
phenotyping of patients with tremor, given the failure of having
identified robust pathophysiologic and etiologic correlates of any
tremor syndromes, particularly of ET. In fact, decades of research
on ET with its loosely defined boundaries have led to a lack of
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consensus about its epidemiology, defining clinical features and
prognosis, neurophysiologic markers, and pathology.10 Therefore,
the argument has been put forward that “ET may have more than
one etiology and vice-versa an etiology of ET could conceivably
produce more than one clinical syndrome”.9 Accordingly, ET has
been re-conceptualized as a clinical syndrome (axis I), rather than a
single disease entity, consisting of an isolated bi-brachial action
tremor of at least 3-year duration.9 The 3-year time frame is admit-
tedly arbitrary, and the entity of “indeterminate tremor” was coined
for those seemingly ET patients with a shorter disease duration.

Furthermore, the construct of “ET-plus” was introduced for
those patients fulfilling the criteria of ET, but also having either a
rest tremor or additional “soft signs” that do not suffice to make
an alternative diagnosis.9 Reclassification of formerly diagnosed
ET patients according to the new criteria has evidenced that ET
in absence of soft signs would be less common than ET-plus.11

The construct of ET-plus represents another notable departure
from the former tremor classification and owes to the lack of
consensus among the panel of experts on which of these addi-
tional (soft) signs were acceptable within the definition of ET.4

The most prominent criticism raised by some researchers against
the construct of ET-plus stands in the lack of pathological differ-
ences between ET and ET-plus.12 However, this criticism misin-
terprets that: (1) for neither tremor syndrome is there a generally
accepted underlying pathology; and (2) that both ET and ET-
plus are currently viewed as syndromes rather than single dis-
eases.13 Nonetheless, the construct of ET-plus has generated an
enlightened debate about its validity,12,14 with some researchers
proposing that it could represent a later stage of ET based on the
evidence that its defining characteristics vary as a function of dis-
ease duration.15 It should be noted, however, that the transition
between syndromic allocations (ie, from ET to ET-plus) can
occur in the other direction (ie, from ET-plus to ET because of
the resolution of the soft signs).16 This example highlights one of
the novelties of the current classification, that is, the possibility
that one syndrome might “evolve” over time into another.
Tracking transitions across different tremor syndromes will even-
tually clarify the controversial relationship between them, for
example between ET and ET-plus or between ET and PD,17

which is the reason why the idea of diseases with “antecedent
ET” are described in the new classification.9

Importantly, some tremor syndromes that were loosely consid-
ered within the ET spectrum, including isolated head/voice tremor,
task-specific tremors and orthostatic tremor, have been now concep-
tualized as different and discreet entities,9 owing to accumulating
evidence pointing to different pathophysiology.18–20

As discussed in more detail in the corresponding section, one
possible caveat of the current classification is the lack of mention of
pathophysiological mechanisms sustaining a particular syndrome.
Using as an extreme example the recently described rare entity of
“myogenic tremor”,21 the ET label might appear far-fetched, given
that the pacemaker has been construed to be located at the level of
the myofilaments, although neurophysiologic studies have
suggested tremor amplification by an additional central loop modu-
lating the clinical phenomenology.22 Likewise, the border between
ET and enhanced physiological tremor with a central component

can be blurred and clinical differentiation between phenomenolog-
ically similar syndromes difficult in the absence of pathophysiologi-
cal markers. Notwithstanding, the strict operational clinical criteria
of the new classification will likely provide a rigorous framework
for future translational research.

Tremor Measurement
Transducers have been used in the study of tremor for more than
100 years, but the large infusion of smartphones, tablets, and
smartwatches has fostered the development of specialized software
especially in the last decade, which by using on-board sensors, pro-
vide very precise linear measures of tremor as opposed to imprecise
non-linear measures obtained by clinical ratings.23 However, it
should be noted that these recording and analysis procedures have
not been strictly defined, so that the best protocol for tremor assess-
ment has not yet been determined.23 A number of factors including
anatomic placement of the transducer, selection of motor task versus
recording during spontaneous unconstrained activities, duration of
sampling, and methods of spectral analysis, will influence tremor
measurements.23 Probably the hardest challenge to face relates to an
inherent feature of tremor, namely within-subject fluctuations.
Tremor changes because of disease progression or treatment cannot
be captured until they exceed this natural variability. This likely
explains the failure in detecting tremor progression using sensor-
based measures rather than what would be obtained by clinical
ratings alone.24 Nonetheless, detailed characterization of tremor fea-
tures by means of sensors may be helpful in the differential diagnosis
between tremor syndromes,25,26 to predict therapeutic outcomes,27

and to adapt deep-brain stimulation (DBS) paradigms to individual
tremor physiology.28,29 It is, therefore, expected that transducers
will be increasingly used in both clinical and research settings, also
because they enable more frequent and/or longer tremor assess-
ments, and they can be used almost anywhere without clinician
raters and/or might be exploited to substantiate clinical ratings.23

The advances in the instrumental measurement of tremor
reflect on the possibility of developing novel treatment strategies
based on tremor characteristics, which can be sensitively mea-
sured only by means of sensors, which is why they are discussed
in this section. For example, the detailed exploration of tremor
characteristics with transducers, namely tremor phase, might
allow phase-locked non-invasive stimulation as a new tool for
treatment. Therefore, both in-phase and out-of-phase electrical
muscle stimulation paradigms with pulse intensity over the motor
threshold (ie, able to induce a muscle contraction) have been
used with promising results.30,31 The rationale is either to
increase impedance at the tremulous joint or to generate coun-
teracting forces in antagonist muscles that are opposite to those
that generate tremor. Similarly, low-level, afferent electrical stim-
ulation tuned to the tremor frequency has been also shown to
reduce tremor.32,33 Finally, a recent work has developed a strat-
egy to compute the instantaneous phase of tremor in ET and
applied a phase-locked cerebellar transcranial alternating current
stimulation (tACS), further demonstrating that tremor amplitude

430 MOVEMENT DISORDERS CLINICAL PRACTICE 2022; 9(4): 429–435. doi: 10.1002/mdc3.13418

REVIEW MILESTONES IN TREMOR RESEARCH



reduction was attributable to a disruption of the cascade of
coherent activities in the downstream loop.34

Pathophysiology
One aspect that has been overlooked by the current classification
of tremor, arguably because is out of its scope, is related to the
pathophysiology. This let some authors to propose a
pathophysiology-guided axis III.35 In fact, different pathophysio-
logical processes sustaining a similar syndrome are likely related to
diverse etiologies. On the other hand, in a single disease multiple
tremor types might be present as result of different pathophysio-
logical processes. Both examples highlight how a
pathophysiology-guided axis III might fill the gap between clinical
aspects (axis I) and etiology (axis II). This is particularly relevant to
the relationship between dystonia and both the ET-like tremors
that some patients might present (the so-called “tremor associated
with dystonia” [TAWD]) as well as ET in general. Likewise, such
pathophysiology-guided axis might be useful in understanding the
biological underpinnings of rarer forms of tremor, including task/
position-specific tremor and isolated head/voice tremor.18,19

Expanding on, yet somehow diverging from the “olivary
model” of ET,36 it is now accepted that the key system involved
in the pathophysiology of many tremors is the cerebello-thalamo-
cortical (CTC) circuit, with other inter-connected areas including
the basal ganglia,37 the supplemental motor area and other cortical
areas,38–40 and the brainstem,20 also being affected and potentially
explaining the clinical differences between tremor syndromes.
Notably, evidence from imaging and well as electroencephalo-
graphic/magnetoencephalographic studies have revealed a dynamic
entrainment of multiple nodes of this network,41–44 which would
lead to a rhythmic modulation of muscle activity becoming

apparent as tremor. However, it remains unclear where the oscilla-
tions primarily originate within the CTC network with different,
alternative hypotheses being proposed.

A body of work suggested an increased cerebellar drive in ET
(cerebellar oscillator hypothesis).39,45 This might be sustained by
synaptic pruning deficits of climbing fiber to Purkinje cell
synapses,45 which retrieves the inferior olive as a major spot of
tremor generation.36 Moreover, alternative evidence has suggested a
key mechanism in the disconnection of cerebellar output pathways
(cerebellar decoupling hypothesis).40,46 Notably, each of these
abnormalities might not be present in all ET patients as suggested
by studies comparing early- and late-onset cases,47 sporadic and
familial patients,48 or by indirect clinical evidence demonstrating dif-
ferent tremor characteristics across different activating conditions in
ET,49 which would point to different pathophysiological mecha-
nisms.50 Of note, most of these studies have been carried out before
the new tremor classification was published and it is, therefore,
unknown whether these concepts apply to both ET and ET-plus.

Interestingly, the spectrum of tremor types occurring in dystonia
syndromes might be also sustained by different mechanisms.
Although some authors suggested a cerebellar involvement in both
DT and TAWD,37,51 others supported a prominent role of basal
ganglia in DT52 or suggested differential pathophysiology between
the two types of tremor, with DT being closer to non-tremulous
dystonia and TAWD to ET.53 Furthermore, evidence arising from
pallidal single-neuron recordings in cervical dystonia would support
the notion that phenomenologically different tremors (ie, sinusoidal
vs. jerky tremor) might have different pathophysiology,54 arguably
independent from tremor distribution. Therefore, sinusoidal tremor
(ie, “ET-like”) would be driven by cerebellar alterations whereas
jerky tremor by pallidal alterations.54

Somewhat similarly, it has been shown that different types of
tremor occurring in PD might relate to different pathophysiologic

FIG. 1. Suggested pathophysiological mechanisms sustaining essential tremor, dystonic tremors, and parkinsonian tremors (whitened
boxes indicate a possible but minor contribution; redrawn from van der Stouwe et al).35 ET, essential tremor; TAWD, tremor associated
with dystonia; DT, dystonic tremor.
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mechanisms. Therefore, some PD patients exhibit a pure postural
tremor, which is not re-emergent, has a higher frequency than the
rest component, and does not respond to levodopa, all features con-
trasting with the re-emergent tremor that is highly correlated with
resting tremor.55 Interestingly, such dopamine-resistant tremor
depends on an increased tremor-related activity in the cerebellum,
whereas patients with dopamine-responsive tremor have increased
thalamic ventralis intermediate nucleus (VIM)-cortical activity.56,57

These concepts have been summarized as the “dimmer-switch” the-
ory of PD tremor formulated by Rick Helmich and colleagues.58

In summary, significant advances in the last decade have highlighted
that different pathophysiologic mechanisms, at least in terms of
involved circuitry, might occur across and within different tremor syn-
dromes (Fig. 1). It should be noted however, that the demonstration
of specific neuro-imaging and/or electrophysiological changes are per-
missible within axis I of the new tremor classification, according to
which information from four main domains (ie, historical features,
tremor characteristics, associated signs, and, indeed, findings from addi-
tional laboratory tests) should be gathered.9 This emphasizes the con-
cept that the definition of a clinical syndrome by axis I should not be
made solely on features that can be collected with the naked eye.
Nonetheless, the current classification does not require any additional
testing for the formal definition of the proposed tremor syndromes,9

not even the loading test for the distinction between mechanical-reflex
and central neurogenic tremors. On the contrary, some easy-to-collect
neurophysiological measures (ie, the tremor stability index, which is a
proxy of variability in the tremor period or frequency) have been
suggested to accurately differentiate between different tremor syn-
dromes, namely ET and PD-related tremor.59

Hence, the identification of the pathophysiological underpin-
nings sustaining the clinical variability within and between differ-
ent tremor syndromes and/or the recognition of physiological
markers reflecting this variability might theoretically have thera-
peutic implications, as continued below.

Treatment
There have not been significant advances in the commercialized
pharmacological treatment of tremor, as appraised in the 2019
IPMDS evidence-based review.60 Nonetheless, it is worth noting
that, based on positive preclinical evidence, long-chain alcohols
including 1-octanol and its metabolite octanoic acid (OA) have
been recently tested in ET. Despite some evidence of efficacy, the
actual viability of 1-octanol therapy is limited by its pharmacologi-
cal properties that require large volumes to be orally adminis-
tered.61 Conversely, the first trial using OA demonstrated excellent
safety as well as efficacy in secondary, but not primary, outcome
measures of tremor amplitude.61 It is expected that OA will be
tested in additional phase-2 trials, perhaps targeting different tremor
syndromes. More importantly, for the first time in history a num-
ber of companies have anti-tremor drugs in the pipeline. These are
T-channel blocking agents (CX-8998, PRAX-944), an allosteric
modulator of small conductance calcium-activated potassium chan-
nels (CAD-1883), and allosteric modulators of GABA-A receptors
(brexanolone, SAGE 217 and 234).62

Surgical treatment of tremor has become standard of care in many
countries and is now an integral part of the anti-tremor portfolio. New
technologies are being implemented for VIMDBS in particular. These
include the use of directional stimulation63 and/or short pulse width,64

technologies able to expand the therapeutic window of stimulation,
also making safer the use of bilateral DBS in terms of balance and other
ataxia side effects of stimulation.65 Adaptive DBS (aDBS) of VIM is
only investigational at the moment but preliminary reports on two
subjects also implanted with electrocorticography strips over the hand
portion of M1 to close the loop, have provided initial evidence of its
feasibility.66,67 Building on previous pathophysiological studies,29,43

future aDBS approaches will use thalamic recordings to close the loop
thereby stimulating the oscillatory activity of these neurons only during
certain phases. The possibility of thalamic recording in tremor patients
is already feasible with recently commercialized DBS devices.68 How
these new technologies will reduce the still unclear phenomenon of
DBS “habituation” (or “tolerance”) is uncertain although aDBS seems
to be the most promising approach in this regard.69 Nevertheless,
long-term prospective studies of patients treated with VIM DBS are
now available and overall indicate a reasonably sustained benefit in
most ET patients.70

MRI-guided focused ultrasound (MRgFUS) thalamotomy has
been the most interesting advance in the surgical treatment of
tremor during the past 10 years. MRgFUS uses over a thousand
transducers to focus ultrasound beams on a precise brain location,
therefore, creating a coagulative lesion, a thalamotomy in the
case of tremor.71 This therapy is now approved for ET in many
countries, as a number of prospective studies—including a ran-
domized sham-controlled blind trial—have been conducted.72

MRgFUS thalamotomy has been conducted also in other tremor
syndromes, including DT and PD-related tremor.73 Tremor out-
come in the short term is comparable to VIM DBS although a
decay of benefit, requiring repeated treatment, has been consis-
tently reported.74 Safety profile is satisfactory and the absence of
craniectomy and general anesthesia makes elderly patients suitable
candidates.75 More recently, staged bilateral MRgFUS
thalamotomy has been shown to be both effective and safe in ET
patients.76

Moreover, the advances in neuroimaging have allowed a
more precise targeting for all surgical therapies of tremor, partic-
ularly through the direct visualization of the dento-rubro-
thalamic tract.77 Imaging has also allowed the understanding of
the “sweet spots” of VIM DBS78 as well as MRgFUS.79,80

Last, a novel venue of research has recently explored the possibility
of suppressing tremor by means of non-invasive stimulation
approaches. Therefore, expanding on the results of Schreglmann and
colleagues34 who successfully applied a phase-locked cerebellar tACS
in ET, Nieuwhof et al81 adopted an identical approach to dystonic
tremors demonstrating that phase-locked cerebellar tACS modulated
tremor amplitude solely in patients with sinusoidal tremor, but not in
patients with jerky (irregular) tremor. This reflects on the concept
that the cerebellum plays a causal role in the generation of sinusoidal
dystonic tremor syndromes (Fig. 1) and further opens the question of
whether differential targets of DBS (ie, cerebellar relay vs pallidal relay
thalamic nuclei) should be tailored according to the specific circuitry
involved in tremor generation.49,82
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Conclusions
The past decade has generated major advances in our knowledge
about tremor, paving the way toward the unmet needs in the
field, which are the discovery of the different etiologies that
cause tremor and the development of pathophysiology-driven
treatments. The next steps on the roadmap to attain these objec-
tives will keep us busy for the next decade.
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