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Wearable robots are envisioned to amplify the independence of people with movement
impairments by providing daily physical assistance. For portable, comfortable, and safe
devices, soft pneumatic-based robots are emerging as a potential solution. However, due
to the inherent complexities, including compliance and nonlinear mechanical behavior,
feedback control for facilitating human–robot interaction remains a challenge. Herein, we
present the design, fabrication, and control architecture of a soft wearable robot that
assists in supination and pronation of the forearm. The soft wearable robot integrates an
antagonistic pair of pneumatic-based helical actuators to provide active pronation and
supination torques. Our main contribution is a bio-inspired equilibrium-point control
scheme for integrating proprioceptive feedback and exteroceptive input (e.g., the
user’s muscle activation signals) directly with the on/off valve behavior of the soft
pneumatic actuators. The proposed human–robot controller is directly inspired by the
equilibrium-point hypothesis of motor control, which suggests that voluntary movements
arise through shifts in the equilibrium state of the antagonistic muscle pair spanning a joint.
We hypothesized that the proposed method would reduce the required effort during
dynamic manipulation without affecting the error. In order to evaluate our proposed
method, we recruited seven pediatric participants with movement disorders to perform
two dynamic interaction tasks with a haptic manipulandum. Each task required the
participant to track a sinusoidal trajectory while the haptic manipulandum behaved as
a Spring-Dominate system or Inertia-Dominate system. Our results reveal that the soft
wearable robot, when active, reduced user effort on average by 14%. This work
demonstrates the practical implementation of an equilibrium-point volitional controller
for wearable robots and provides a foundational path toward versatile, low-cost, and soft
wearable robots.
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1 INTRODUCTION

The ability to manipulate and interact with the environment
through one’s upper extremities is fundamental to physical
health and overall well-being. Cerebral palsy, the most common
cause of serious physical disability in childhood, has no known
curative treatment (Morris, 2007; Maenner et al., 2016) and can
severely limit physical mobility. Secondary conditions are common
and extend into adulthood, including pain and musculoskeletal
problems (Murphy et al., 1995; Schwartz et al., 1999), often a
consequence of abnormal movements and straining to manage
daily life (Ando and Ueda, 2000). While emerging wearable robots
are envisioned to provide long-term daily physical assistance for
people with mobility impairments (Pons, 2008) and could
therefore become a primary treatment for cerebral palsy and
other movement disorders, they are not yet widely available.

Among the emerging technologies, advances in soft pneumatic-
based actuators are enabling a new generation of lightweight,
compliant, and versatile wearable robots (Koh et al., 2017;
Simpson et al., 2017; Cappello et al., 2018; Sridar et al., 2018;
Realmuto and Sanger, 2019; Zhu et al., 2020; Zhou et al., 2021;
Zhu et al., 2022). This new generation of wearable soft robots solves
some of the fundamental limitations of rigid robotic structures,
including non-portability (Maciejasz et al., 2014), kinematic
incompatibilities when the robot and human joints are
misaligned (Jarrassé and Morel, 2011), and requiring
compensatory non-physiological muscle strategies during
movement due to added inertia (Laut et al., 2016). However, no
single control strategy has emerged for providing volitionally
controlled assistance that allows the robot to adapt in synchrony
with the human user under changing environmental requirements.

Unique constraints due to the structure and morphology of
soft pneumatic actuators, including limited bandwidth and high
compliance, prohibit the use of advanced control techniques
designed for physical interaction. For traditionally engineered
systems that leverage high-bandwidth DCmotors, the impedance
control framework provides the theoretical machinery for
designing stable interactive behavior (Hogan, 1985; Lee and
Hogan, 2016; Hogan and Buerger, 2018; Hogan, 2021). The
framework has been successfully deployed for a variety of
interactive applications, including industrial robots (Lopes and
Almeida, 2008), legged robots (Semini et al., 2015), haptic
displays (Mehling et al., 2005), rehabilitation robots (Jamwal
et al., 2016), and lower limb wearable robots (Rajasekaran
et al., 2015). Although an attractive framework for dealing
with physical interaction, impedance control requires high
sampling rates and rigid links with high-bandwidth motors to
properly render desired impedance (Colgate and Brown, 1994).
Soft pneumatic actuators achieve motions through the injection
of compressed air (Chou and Hannaford, 1996; Daerden and
Lefeber, 2002; Niiyama et al., 2015; Nesler et al., 2018; Zhang
et al., 2019; Veale et al., 2021) and are therefore not a good
candidate for impedance control in the traditional sense.
However, because soft pneumatic actuators can change their
intrinsic compliance, they have the ability for direct
impedance modulation, meaning that the actuator itself can be
modulated to the required impedance for physical interaction.

While initials solutions exist (Hajian et al., 1997; Ariga et al.,
2012b; Paoletti et al., 2017; Slightam et al., 2018), a generalized
approach for impedance modulation has not yet emerged.

The inherent compliance of soft pneumatic actuators allows
for a safe and comfortable physical interaction between the user
and the robot, but also a large degree of complexity in sensing and
control. Emerging devices have limited control capabilities, with
many operating in binary modes of assistance/no assistance
(Simpson et al., 2017; Cappello et al., 2018; Zhou et al., 2021),
or leveraging closed-loop bang–bang or model-based control to
maintain a desired internal pressure (Skorina et al., 2015; Koh
et al., 2017; Sridar et al., 2018; Chen C. et al., 2020; Park et al.,
2020) where the desired state is inferred from other external
sensors. To the degree possible, in order to minimize space,
complexity, and manufacturing cost, it is desirable to
minimize the need for sophisticated electromechanical sensors,
motivating new techniques for perception. In fact, inherent
compliance can be leveraged for proprioception, that is, an
intrinsic sense of the kinematic configuration, thereby
reducing the need for other sensor modalities (Wirekoh et al.,
2019; Chen W.-H. et al., 2020; Park et al., 2021). Since external
forces change the volume (therefore the internal pressure) of the
actuator, a pressure sensor can readily detect the interaction.
However, if the internal pressure is continuously regulated, it
becomes difficult to distinguish physical interactions with the
environment from the self-induced variations of the controller,
requiring a sophisticated estimator to model the complex
dynamics of the soft actuator (Georgiou and Lindquist, 2013).
Because of the inherent compliance of soft pneumatic actuators,
which behave in a similar fashion to muscle, there should be a
clear nexus with biological sensorimotor principles.

Our main idea is that the equilibrium-point hypothesis of
motor control provides a framework for facilitating physical
interaction with soft pneumatic actuators. The hypothesis
posits that voluntary movement results from shifts in the
equilibrium angle of a joint, and a combination of the stretch
reflex with the passive mechanical properties of the muscles
provides restoring torques if the joint angle deviates from the
equilibrium point (Feldman, 1966; Feldman, 1986; Flash, 1987;
Feldman and Levin, 2009; Latash, 2010). In this way, the
equilibrium point represents a point attractor that the stretch
reflex drives the joint toward, and a sequence of such equilibria
produce movement. The key benefits of harnessing equilibrium-
point control for robots are the ability to control the equilibrium
configuration independently and joint impedance (e.g., variable
impedance behavior) and in a simplified (parametric) manner.
Control techniques inspired by the equilibrium-point hypothesis
have been investigated in robot walking (Chen et al., 2021),
pedaling (Watanabe et al., 2020), opening doors and drawers
(Jain and Kemp, 2010), human neuromuscular surrogate models
(Lenzi et al., 2011), and controlling antagonist soft actuators
(Ariga et al., 2012a; Ariga et al., 2012b).

The aim of this work is to investigate equilibrium-point control for
use in wearable robots. To leverage the equilibrium-point idea, we
harness the passive properties of antagonistically arranged soft
actuators to provide restoring torques if the joint angle deviates
from the desired equilibrium point rather than continuously
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regulating the internal pressure. When sufficient environment
interaction or movement intention is detected, a reflex is triggered,
which shifts the equilibrium point in the direction of interaction or
intention, thereby providing assistive torques in that direction. The
proposed method is an instantiation of asynchronous and event-
driven control (Aström, 2008).Our current focus is onmodulating the
equilibrium point and not yet full impedance modulation, and
therefore, the proposed wearable robot has an approximately
constant net stiffness. However, if proven successful, the method
provides the necessary framework for achieving stiffness modulation.
We test the proposed method in experiments with human
participants using a soft wearable robot designed to provide
pronation and supination torques across the forearm, which is an
essential degree of freedom in many activities of daily living (Morrey
et al., 1981). Our central hypothesis is that the equilibrium-point
controller will reduce the required effort to complete dynamic tracking
tasks while not affecting the tracking error.

2 MATERIALS AND METHODS

2.1 Equilibrium-Point Controller
2.1.1 Problem Statement
The problem is conceptually illustrated in Figure 1 and consists of
choosing the appropriate on/off valve states of the soft pneumatic

actuators to provide physical assistance to the user. The two
actuators are arranged antagonistically across the human joint,
and each one is connected to a pair of solenoid valves: one for high
pressure and one for exhaust. The perception of the robot includes
the internal pressures of each pneumatic actuator and the surface
electromyographic (sEMG) signals corresponding to the biological
agonist and antagonist. The problem is mapping the pressure and
sEMG signals (sensory inputs) into the solenoid valve states (motor
outputs). Note that the illustrative model depicts an elbow-based
wearable robot with contractile pneumatic actuators to more
clearly communicate the essential idea. However, the forearm
robot used in the subsequent study uses helical actuators that
operate under the same mechanical principles.

2.1.2 Biological Inspiration
The main idea of our approach is to leverage the passive stiffness
properties of the soft actuators to produce stable equilibria, which
are then shifted to assist the user. To understand the concept, first,
consider a single contractile pneumatic actuator (Figure 2A).
When pressurized to a nominal pressure P0, the actuator behaves
as a (nonlinear) spring under loading. If the nominal pressure is
increased to P1, the stiffness curve is shifted so that more force is
required to produce the same end-point displacement. If two
pneumatic actuators are configured antagonistically across a joint
and inflated to the same nominal pressure (Pg,0 for the agonist,
and Pn,0 for the antagonist), the opposing torques will produce an
equilibrium-point (at θ = 0) where the net torque is zero
(Figure 2B). If the agonist’s internal pressure is increased to
Pg,1 > Pg,0 and the antagonist is deflated to Pn,1 < Pn,0, then the
equilibrium point will shift in the direction of the agonist. If the
stiffness characteristics are invariant to shifts in nominal
pressures, the net stiffness will remain identical in both
configurations (seen as the dashed traces in Figure 2B). While
biological muscles under control of their stretch reflex have
invariant characteristic stiffness curves (Gottlieb and Agarwal,
1988), pneumatic actuators do not (Ariga et al., 2012a).
Therefore, the conceptual model in Figure 2 is an idealization.
In practice, the net stiffness would change according to the
intrinsic properties of the actuators. Nevertheless, the shifting
of the equilibria still applies.

2.1.3 Triggered Shifts in Equilibrium Point
In order to provide physical assistance, the equilibrium point of
the robot must be shifted congruent with the user’s intention and
ideally lead the user’s motion toward their new equilibrium point,
which is unknown to the robot. Therefore, when the user’s intent
is detected, the robot’s equilibrium point jumps to a new position
in the same direction as the user’s intention and, in this way,
provides physical assistance. To accomplish this, the robot
controller takes the form of a finite-state machine with two
states: the perception state and the action state. During the
perception state, the robot continuously monitors the sensors.
The transition from the perception state to the action state is
triggered only if a threshold condition is detected. Once in the
action state, the robot completes a predefined action before
returning to the perception state. We use the term reflex (e.g.,
an automatic response to stimuli) to describe the transition from

FIGURE 1 | Schematic representation of an elbow assist wearable robot
used as an idealized model to conceptually demonstrate our proposed
equilibrium-point controller. The wearable robot exerts a torque τ about the
elbow joint with angle θ. The wearable robot consists of two antagonistic
soft pneumatic actuators and a support structure and is attached across the
human user’s elbow joint. The soft actuators are driven through solenoid
valves, one for high pressure and one for exhaust. Pressure sensors monitor
the internal pressure of each pneumatic actuator, while two sEMG sensors
monitor the agonist (bicep) and antagonist (tricep) biological muscles. The
research problemwe aim to solve is given the sensory inputs (internal pressure
and sEMG) to choose the appropriate motor outputs (valve on/off states) in
order to provide physical assistance to the user.
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the perception state to the action state and back to the perception
state. We use two types of reflexes: the F-Reflex, which responds
to the user’s intentions detected via physical human–robot
interactions (e.g., proprioception), and the M-Reflex, which
responds to the user’s intentions detected via the sEMG neural
interface (e.g., exteroception). The reflex finite-state machine is
illustrated in Figure 3A.

2.1.3.1 F-Reflexes
To detect physical interaction between the user and the wearable
robot, the internal pressure signals are processed through the
proprioceptive activation function:

af t( ) � hHP t( )* Pg,0 − P̂g t( )( ) − Pn,0 − P̂n t( )( )( ), (1)
where Pi,0 are the nominal pressures of the agonist/antagonist
(subscript i denotes either actuator) and P̂i(t) are the current
estimated pressures of the actuators computed as the low-pass
filtered output of the pressure sensors with cutoff fsens, * is the
time-domain convolution operator, hHP(t) is the impulse
response of a high-pass filter with cutoff fHP. The purpose of
Eq. 1 is to detect high-frequency variations in the internal
pressure of the actuators which corresponds to physical
interactions between the human user and the robot. The sign
of Eq. 1 determines the direction of physical interaction: if af(t) >

FIGURE 2 | Conceptual overview of the equilibrium-point hypothesis applied to soft pneumatic actuators. (A) Idealized force-deflection curves for three different
nominal internal pressures of a contraction-type soft actuator. Nominal pressure refers to the internal pressure before the external load is applied, which invariably
changes the internal pressure do to volume changes. As the nominal pressure of the actuator is increased, the force-deflection curve is shifted. (B) Idealized force-
deflection curves for antagonistically configured contraction-type soft pneumatic actuator for three different nominal internal pressures demonstrate a shift in the
equilibrium position of the joint, while the net force-deflection curve (dashed traces) is maintained constant. The depicted shift in equilibrium occurs by increasing the
agonist actuator’s internal pressure (Pg,0 < Pg,1< Pg,2) and decreasing the antagonist actuator’s internal pressure (Pg,0 > Pg,1 > Pg,2).

FIGURE 3 | | Schematic representation of the equilibrium-point controller consists of the reflex and bang–bang finite-state machines. (A) The reflex finite-state
machine triggers the appropriate action based on the outputs of the activation functions. The proprioceptive inputs include the internal pressure of the actuators (Pg and
Pn) and are processed by the proprioceptive activation function (Eq. 1). The exteroceptive inputs include the biological muscle sEMG signals (Mg and Mn), which are
processed with the exteroceptive activation function (Eq. 2). The reflex finite-state machine consists of the perception-state (event detector) and the two possible
action states (either agonist- or antagonist-shift). The action states, triggered via threshold crossings, set the desired pressures which are then achieved via the
bang–bang controller. Once an action is completed, the robot returns to the perception state. (B) The bang–bang pressure controller sets the valve configurations. If the
internal pressure of the actuator P̂ (subscripts dropped for convenience) is less than the desired pressure Pd, then the actuator is inflated. If the P̂ is greater than the
desired pressure Pd, the actuator is deflated. After the internal pressure has been achieved, there is a refractory period T* before returning to the perception state.
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0, then P̂g(t) has decreased below the nominal Pg,0 while P̂n(t)
has increased above the nominal Pn,0 corresponding to the
shortening of agonist and lengthening of the antagonist
pneumatic actuators. The opposite is true if af(t) < 0:
lengthening of agonist and shortening of the antagonist
actuator. Importantly, the high-pass filter in Eq. 1, which has
DC-blocking characteristics, produces a bias-corrected
comparative signal allowing the activation function to be
tuned to detect a minimum rate of change of the internal
pressures so that low-frequency variations due to bladder
leakages or slow user movements do not trigger reflexes.

2.1.3.2 M-Reflexes
In order to detect volitional movements of the user, the
exteroceptive activation function takes the following form:

am t( ) � M̂g − M̂n, (2)
where M̂i are the rectified, low-pass filtered, and normalized
sEMG signals from each muscle. Note that if am is positive, the
agonist is more active and, therefore, motion is in the agonist
direction. The opposite is true if am is negative. In contrast to
direct proportional sEMG control, where the actuator is activated
in proportion to the underlying muscle activation (Hogan, 1976;
Kao et al., 2010; Fougner et al., 2012; Lenzi et al., 2012; Lince et al.,
2017), Eq. 2 is more aligned with correlating the muscle pair
(agonist–antagonist) together to a joint’s kinematic configuration
(Iimura et al., 2011; Ariga et al., 2012a; Ariga et al., 2012b; Hirai
et al., 2015).

2.1.3.3 Agonist- and Antagonist-Shift Actions
The reflexes are initiated when a threshold crossing of either
activation function is detected, and therefore, the perception
event detector in Figure 3 continuously evaluates for a
potential crossing:

if am > �am or af > a f → Agonist − Shift
if am < �am or af < a f → Antagonist − Shift{ (3)

with the thresholds parameterized by �ai and a i for each activation
function. The first step in the action sequence is to shift the
desired internal pressures of each muscle:

Pg,d �
Pg,d + ΔP if Agonist − Shift

Pg,d − ΔP if Antagonist − Shift
{

Pn,d � Pn,d − ΔP if Agonist − Shift

Pn,d + ΔP if Antagonist − Shift
{

(4)

where Pn,d is the desired internal pressure of the agonist, Pn,d is
the desired internal pressure of the antagonist, and ΔP is the jump
(shift) in the desired pressure and corresponds to the
equilibrium-point shift. After the desired pressures have been
set, a bang–bang controller, illustrated as a finite-state machine in
Figure 3B, activates the valves to drive the internal pressures to
the desired pressures. Note that each actuator utilizes
independent bang–bang controllers. Before exiting the action
state, the actuator has a refractory period T*, which allows the
internal pressure signals to settle to avoid the possibility of chatter

(e.g., rapidly alternating between reflexes). Immediately after the
refractory period, the nominal pressure of each actuator are
updated with the current pressure samples (e.g., Pn,0 and Pg,0
in Eq. 1), which ensures the activation function is initially smooth
after the refractory period.

2.2 Soft Wearable Robot Design
2.2.1 Overview
The soft wearable robot is fabricated from two actuator modules,
each consisting of two parallel actuators. The modules are
attached to the ventral and dorsal sides of the forearm and
secured near the wrist and elbow. The ventral module
provides motion in the supination direction, and the dorsal
module provides motion in the pronation direction. A
sequence of forearm motions illustrating the behavior of the
device is provided in Figure 4A. The overall design used here is a
variation of our previous work (Realmuto and Sanger, 2019).
Three sizes of the soft wearable robot were fabricated (small,
medium, and large) with lengths of 13, 16, and 19 cm,
respectively, and the total on-body weight of each was
approximately 100, 114, and 117 g, respectively. Based on
previous empirical evaluations of the pneumatic helical
actuators, we estimate they can produce approximately
1.5–2 Nm of assistive torque at maximum inflation used in
this study (441 kPa (64 psi)) (Realmuto and Sanger, 2019).

2.2.2 Actuator Design and Fabrication
The actuator fabrication process and inflation sequence are
shown in Figure 4B. In the following, we briefly summarize
the process. First, a pattern is cut to the desired actuator
dimensions using a knit elastic band for the top layer (Heavy
Stretch Knit Elastic Band, Cisone) and ballistic nylon for the
bottom (1,050 Denier Coated Ballistic Nylon Fabric, Magna
Fabrics). Note that the bottom layer is practically inextensible,
while the knit elastic band has anisotropic stiffness characteristics
and only stretches in the longitudinal direction. Therefore, prior
to pattern cutting, the knit elastic band must be aligned with the
chosen knit angle to produce helical motion. In this study, we use
a knit angle of 45°. The two layers can be sewn together to form a
sleeve. Next, the bladder is assembled. We use two push-to-
connect tube fittings (adapter, 3/16 “Stem OD x 5/32” Tube OD,
McMaster-Carr) inserted and glued into a latex rubber tubing (1/
4“ ID, 5/16” OD, McMaster-Carr). Brass hose ferrules (0.38”
Hose End ID, McMaster-Carr) are also crimped at the ends
(before the glue dries) to seal the bladder. The bladder can then be
inserted into the sleeve.

2.2.3 Conformable Human–Robot Interface
Each end of the bladder-sleeve assembly is attached to the 3D
printed human–robot interface via dedicated actuator housing
and cable ties, as seen in the schematic representation of a single
soft wearable robot module in Figure 4C. The human–robot
interface is designed to conform to the user’s body and therefore
consists of a thin layer of 3D printed material. The human–robot
interface includes special housing protrusions for the actuators to
fit into and, with a housing cap, become fixed to the interface, as
shown in Figure 4D. A hydrogel skin adhesive (TENS electrodes,
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FITOP Store), attached to the underside of the human–robot
interface, adheres to the skin of the user to minimize the relative
skin-robot displacements. The hydrogel skin adhesives are
repurposed skin electrodes commonly used during
transcutaneous electrical nerve stimulation. After attaching
both modules to the user’s arm, the wearable robot is secured
to the body with self-adherent elastic wrap (Coban, 3 M) and
medical tape (micropore cloth medical tape, 3 M).

2.2.4 Control System
The equilibrium-point controller is implemented in digital hardware
(Beaglebone Black) with a loop frequency of 1 kHz. The sEMG
electrodes (DE–2.1 electrodes, Delsys) have a custom second stage
amplifier to condition the signals prior to digitizing and are
downsampled to 250Hz due to limitations in the analog-to-digital
converter. After digitizing, the signals are full-wave rectified and low-
pass filtered with a first-order digital low-pass with a 3 Hz cutoff. The
actuators of each module are connected together to form a single
pneumatic unit with the pressure sensor arranged external to the
wearable robot and connected to both pneumatic units through
pneumatic tubing. Each pneumatic unit is connected to two solenoid
valves (SY113-SMO-PM-F, SMC): one valve connected to an air
reservoir (maintained at 860 kPa (125 psi)) and the other an exhaust
valve. Digital signals from the Beaglebone Black activate each solenoid
via externally powered Darlington transistors. The reflexes are
implemented in software with the M-Reflex (EMG) always taking
precedence over the F-Reflex (Interaction). Therefore, at any given
time step, if the two activation signals (am and af in Eq. 3) are
contradictory, the action triggered will follow that of the am trigger.
During the experiments, the control system is placed on a table next
to the participants.

2.3 Experimental Methods
2.3.1 Participants
Seven children with clinically diagnosed cerebral palsy or an acquired
static motor deficit between 8 and 22 years old (6 men, 1 woman;
mean = 15 years old; standard deviation = 4 years) were recruited
from the Pediatric Movement Disorders Clinic at Children’s Hospital
of Los Angeles. The characteristics of each participant are collected in
Table 1, including their rating on the Barry–Albright Dystonia (BAD)
scale (Barry et al., 1999), which quantifies the severity of posturing and
involuntary movements (higher values correspond to more severe
motor impairments). A parent or guardian of each participant gave
written informed consent, and all children gave verbal or written
assent to participate, including USHealth Information Portability and
Accountability Act (HIPAA) authorization for the use of medical and
research records, according to the approval of University of Southern
California’s Institutional Review Board1. Four other children initially
enrolled in the study were excluded. One of the excluded participants
could not complete the tracking task due to bradykinesia; one
participant elected to stop part way through the experiments; and
two participants could not activate the wearable robot with their
sEMG signal.

2.3.2 Haptic Environment and Tracking Task
The experimental setup is illustrated in Figure 5A. The setup
consisted of the participant physically grasping the handle of a
one-degree-of-freedom rotational haptic device with an
adjacent computer screen that displayed the desired tracking

FIGURE 4 | The soft wearable robot hardware characteristics. (A)Medial view of the soft robotic orthosis during supination, neutral, and pronation configurations.
Two antagonistic robotic orthosis elements are worn by the user on either side of the forearm. The element on the dorsal side is configured to provide a pronating torque,
while the element on the ventral side provides a supinating torque. Cohesive bandage (Coban) and medical tape secure the human–robotic interface to the human user.
(B) Inflation sequence of a soft helical actuator and actuator construction details. A knit elastic fabric layer (with knit angle ϕ) and an inextensible fabric layer are sewn
together with a latex bladder enclosed. (C) Side and top view schematics of a one soft wearable robot module. A pair of helical actuators are attached at both ends to
conformable human–robot interfaces. The conformable human–robot interfaces include actuator housing sections that fasten and secure the actuators to the interfaces
through cable ties (not shown). Removable hydrogel skin adhesives help attach the robotic orthosis to the human skin. (D) Conformable human–robot interface details.
The conformable human–robot interface is designed to bend around and adhere to humans. Disposable hydrogel adhesives are attached via hook-and-loop fasteners to
the underside of the human–robot interface and adhere to the user’s skin reducing the relative motion between the human and robot.

1Both authors were previously affiliated with the University of Southern California,
where the studies took place.
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trajectory and the participant’s current position. The haptic
device consisted of a brushless DC motor and gearhead (EC 45
Flat, 42.9 mm, 30 W brushless motor, and 36:1 Planetary
Gearhead, Maxon) attached to a shaft with a handle for the
user to interact with. The motor assembly was securely fixed to a
table. An encoder at the shaft supplied the requisite angular
feedback (AMT20 Series, CUI Devices). The motor behavior
was directly controlled by the Beaglebone Black hardware, with
a 1 kHz loop frequency, via an external motor current control
board (ESCON 36/3 EC, 4-Q Servocontroller for EC motors,
Maxon) that took as input an analog set point for the desired
motor current. In order to render the dynamic environments, an
impedance controller was used to produce the interaction
torques (Hogan and Buerger, 2018). The control law for the
impedance controller took the form:

im � −Jv€θp − Kvθ, (5)
where im is the motor command current, €θp is an estimate of the
angular acceleration of the interface shaft, θ is the angular

position of the shaft, Jv is the virtual inertia constant, and Kv

is the virtual stiffness constant. The acceleration estimate €θp is
computed via a series of two digital impulse response filters with a
cutoff frequency 5 Hz. The total external torque felt by the human
at the handle interface is approximately equal to the product of
the desired current, motor torque constant, and the gear ratio:

τe � Rkτ im, (6)
with the torque constant kτ = 0.0255 Nm/A and the gear ration
R = 36. Eq. 6 ignores the friction in the shaft and motor inertia;
therefore, τe is just an estimate. A schematic of the impedance
controller can be seen in Figure 4B. The goal of the participant
was to track 15 cycles of 0.2 Hz sinusoid trajectory, which ranges
from −80° to 80°, as shown in Figure 5C.

2.3.3 Experimental Conditions
In this study, we analyze the behavior of the participants in two
specific haptic environments (Inertia-Dominant and Stiffness-
Dominant environments) under two specific conditions (the

TABLE 1 | Study participant details.

Participant
ID

Diagnosis Upper
extremity
BAD score
(out of 8)

Total
BAD
score

(out of 32)

Age Gender Dominant
hand

Orthosis
size

F-Reflex
threshold

M-Reflex
threshold

P1 Glutaric acidemia type I 4 17 12 Male Left Medium ±0.025 ±1
P2 Cerebral palsy 6 17 16 Male Right Large ±0.025 ±1
P3 Cerebral palsy 3 6 22 Male Left Large ±0.025 ±1
P4 Cerebral palsy 6 11 18 Male Left Medium ±0.025 ±1
P5 ATP1A3 gene mutation 3 11 13 Male Left Medium ±0.025 ±1
P6 Cerebral palsy 4 15 8 Female Left Small ±0.025 (−1, 4)
P7 Cerebral palsy 5 16 14 Male Left Large ±0.025 ±1

FIGURE 5 | An overview of the experimental design. (A) The experiment consists of a participant with the soft wearable robot interacting with a one-degree-of-
freedom rotational haptic interface. The total external torque τe depends on the haptic environment (Eq. 5). For each trial, the goal is to track the moving target with the
cursor, directly controlled by the haptic interface. A display provides the participant with visual feedback of the target (red circle) and cursor (blue pointer) positions. The
haptic interface supplies an external torque τe determined by either Stiffness-Dominate or Inertia-Dominate dynamics. (B) The haptic interface uses an impedance
controller with an optical encoder on the shaft, providing the requisite feedback to render the appropriate torque at the interface. (C) A sample trial illustrating typical
target (red) and interface (black) trajectories. In this study, the target trajectory consists of 15 cycles of a 0.2 Hz sinusoid with the amplitude spanning ± 80°. (D) Visual
description of the four experimental conditions analyzed. (E) Example of one experimental timeline. During each block, the participant completed 12 distinct trials, four of
which consisted of one of the experiment conditions analyzed in this study and described in (D) or an alternative task depicted as grey boxes and not included in the data
analysis.
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baseline condition, where the robot is inactive, and the assistance
condition, where the robot is activate. Figure 5D provides a
summary of the experimental conditions. During the Inertia-
Dominant environment, the virtual impedance constants in Eq. 5
were chosen as Jv = 4 and Kv = 0. During the Stiffness-Dominant
environment, the virtual impedance constants in Eq. 5 were
chosen as Jv = 0 and Kv = 0.03. The impedance constants were
chosen through trial and error, and particular care was used in
choosing the stiffness impedance constants in order not to cause
instabilities during the human interactions.

2.3.4 Equilibrium-Point Controller Settings
The nominal parameters of the equilibrium-point controller were
selected iteratively, through trial and error, to produce stable
human–robot interactions. The primary challenge is that if the
transients do not settle following an equilibrium shift, the
F-Reflex activation function (Eq. 1) could rapidly spike, causing
another reflex. Therefore, we first tuned the F-Reflex parameters to
eliminate this possibility. First, we selected the high pass filter cutoff
fHP such that signal bias from bladder leakage and slow user motions
were removed. Starting with a small jump parameter ΔP, a large
refractory period T*, and large thresholds for stable interactions (no
self-induced reflexes), we next iteratively increased the jump
parameter ΔP and decreased the refractory period T* until
satisfactory responsiveness. The jump parameter ΔP effectively
determines the amount of assistance the human user receives at
each equilibrium shift. If the parameter is too small, the assistance
will lag the user. If the parameter is too large, the assistance could
overshoot the user and induce human reflexes.We selected the jump
parameter ΔP such that assistance was clearly felt but did not induce
a reflexive response from the human. The nominal thresholds
(which could be tuned to each individual) were next fine-tuned
to provide a higher degree of responsiveness. The nominal M-Reflex
threshold parameters were subsequently chosen to ensure volitional
control through the sEMG interface. The M-Reflex activation
function (Eq. 2), which uses the sEMG signal envelops (rectified
low-pass filtered, see Section 2.2.4), did not require the same
considerations, and the most important parameters were the
M-Reflex thresholds. We arrived at nominal thresholds (which
could be tuned to each individual) by starting with large
thresholds and iteratively decreasing them until satisfactory
volitional control was possible. The parameters were selected as
follows: the jump parameter was set to ΔP = 55 kPa (8 psi); the
refractory period was chosen as T* = 150 milliseconds; the initial
desired pressure Pn,d = Pg,d = 276 kPa (40 psi); the cutoff of the high-
pass, which was implemented as a first-order digital infinite impulse
response filter, was chosen as fHP = 223 Hz; and the cutoff frequency
of the low-pass filter for pressure sensors, also implemented as finite
infinite response filters, was set to fsens = 3Hz. The maximum
internal pressure of the actuators was capped to Pmax = 441 kPa (64
psi) and the minimum Pmin = 103 kPa (15 psi). The nominal
F-Reflex thresholds (�af and a f) were chosen as ± 0.025, and the
nominal M-Reflex thresholds (�am and a m) were chosen as ± 1.

2.3.5 Protocol
After the participant completed the informed consent process, the
two electrodes were placed on the bicep and pronator teres, which

are known to correlate with supination and pronation,
respectively (Bader et al., 2018). The ventral (supinator) pair
of actuators were arranged alongside and/or slightly on top of the
low-profile surface EMG electrode located over the pronator
teres. We used medical tape in conjunction with the standard
electrode adhesive to minimize possible electrode migration. The
conformable human–robot interface, which had the hydrogel
pads attached to the underside, was always placed proximal to the
electrodes and therefore did not interfere. Our preliminary
exploratory experiments did not indicate any substantial effect
on signal quality or the ability of the user to activate the wearable
robot when the supinator pair of actuators were inflated, and
therefore, we do not believe there is a strong effect of the
supinator actuator compromising the sEMG signal quality.
After the wearable robot was attached to the participant, they
were given a few minutes to become acclimated to the device,
including the equilibrium-point controller. If the participant
could not trigger the M-Reflex or F-Reflex, the nominal
threshold parameters were adjusted until they could. For all
but one participant (P6), the nominal parameters were
sufficient. The reflex parameters are recorded in Table 1. The
experiment was divided into blocks, with each block consisting of
a series of 12 distinct tasks. In this study, we only compare and
analyze four tasks, as previously elaborated and summarized in
Figure 5D. Six of the other tasks were related to a ballistic
reaching task, and the other two had an alternative setting of
the soft wearable robot (M-Reflex only), both of which we do not
analyze in this study. During the first experimental block, the
experimental conditions were presented in the following order:
baseline/Stiffness-Dominate, baseline/Inertia-Dominate,
assistance/Stiffness-Dominate, and assistance/Inertia-Dominate.
For each of the subsequent experimental blocks, the conditions
were presented in random order. An example of one of the
experimental timelines is illustrated in Figure 5E. Between each
trial (task), the participant was given up to a 1 min break but was
allowed to proceed if they wanted to. After each block, the
participant was given a 5-minute break. Each participant was
required to complete three experimental blocks, after which they
were asked to complete a fourth. Three participants completed
four blocks, while the other four completed three blocks.

2.3.6 Demonstration Videos
In order to highlight and clarify the equilibrium-point control
method, a video of the F-Reflex response in real time during a
bench-top experiment is included as shown in Supplementary
Video S1, and the data are also shown in Supplementary Figure
S1. The demonstration video shows the wearable robot
responding to external interactions while mounted to a bench-
top with corresponding real-time data, including traces of the
activation signal, the internal pressures, the desired pressures, and
the solenoid valve states. In addition, a video of one of the
experimental trials (Participant P7, Block 1, Trial 9, assistance/
Stiffness-Dominant condition) is included as shown in
Supplementary Video S2, and the data are also shown in
Supplementary Figure S2. These demonstrations provide
concrete examples of the underlying activation signals and
subsequent reflexes during the interaction.
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2.3.7 Code
All codes used in the experiment, including those for the
equilibrium-point controller and the haptic interface, are
open-source and available for download2.

3 RESULTS

3.1 Inertia-Dominant Haptic Environment
To understand participant performance and the effect of robotic
assistance, we segmented the data into individual cycles,
discarding the first five cycles of each trial to reduce the initial
transient effects and using the last 10 cycles per trial to find the
point-wise mean over all cycles of each of the following outcomes:
error, calculated as the difference between the desired and actual
position of the haptic interface; interaction power, calculated as
the product of the angular velocity of the haptic interface and the
torque command of the haptic interface; effort, calculated as the
sum of the linear envelop of the bicep and pronator teres sEMG
signals, with each channel normalized by their respective
ensemble peak values (Besomi et al., 2020); robot equilibrium
point, calculated as the difference between the filtered versions of
the internal pressures of each actuator; and reflex timing for both
types of reflexes, which is the time the trigger activated within
each cycle. We note that the equilibrium point of the robot is
reported as the pressure differential between the antagonistic
actuators because the true equilibrium is not easily measured due
to the compliant nature of the soft actuators (see Figure 4B and
Supplementary Video S1). As reported in this way, the
maximum differential corresponds to maximal supination, the
minimum differential corresponds tomaximal pronation, and the
zero differential corresponds to neutral equilibrium. The
participants’ performances were highly variable, as seen in
Figure 6, which shows the participant-specific outcomes for
each cycle with their respective point-wise mean over all
cycles. For example, while Participant P3 had peak mean
tracking errors on the order of 45° during baseline and 90°

during assistance, Participant P7 had a peak mean tracking
error below 10° for both baseline and assistance. Similar
participant-specific trends can be seen for each outcome,
confirming the highly variable abilities of the participants.

To understand the ability of participants to activate reflexes,
we calculated the average reflex per cycle, shown in
Supplementary Figure S3. Participant P7 averaged the highest
M-type reflex per cycle (9.9), followed by P5 (8.7), P3 (7.1), P2 (7.0),
P1 (3.1), and P6 (2.8). The participants triggered the F-type reflex
less frequently, with all participants except for P6 averaging
approximately 1–2 per cycle and P6 averaging below one. We
also calculated the equilibrium point of the robot for each cycle
(fourth row of Figure 6). Because the underlying desired trajectory is
a sinusoid, we would expect the robot’s equilibrium point to also be
sinusoidal, as in Participants P2 and P7, and to a lesser degree P3 and
P5. Participant P7 appears to have leveraged the robotic assistance
best, with large decreases in effort corresponding to the maximum

equilibrium points of the robot (compare rows three and four of
Figure 6). A similar trend is seen for P2, who is right-handed and
therefore has a robot equilibrium point that appears inverted relative
to the other participants. These results confirm that all participants,
to varying degrees, could modulate the equilibrium point of
the robot.

To further explore the participant-specific performances and
the effect of robot assistance during the Inertia-Dominant
environment, we used the cycle-segmented data to calculate
the root mean square (RMS) error and the integral of effort,
calculated with the trapezoid rule for each individual cycle,
thereby generating a single observation for each cycle. We then
rescale the data within each subject to between zero and one.
The resulting scatter plot, with the mean, median, and
interquartile ranges, is shown in Figure 7, which compares
the baseline and assistance conditions. Each data point is
plotted in order of observation, from 1 to NB (number of
baseline cycles) and from 1 to NA (number of assistance
cycles). The outcomes are correlated in time, which can be
seen by comparing each cycle observation over subsequent
experimental blocks (denoted as increasing shaded regions).
Qualitatively, subjects seem to decrease effort with increasing
cycle number.

Using the two-sample Kolmogorov–Smirnov test (Berger and
Zhou, 2014), we tested the hypothesis that the undying
distributions, for effort and error, differed between the
baseline and assistance conditions (all distributions failed a
normality test, one-sample Kolmogorov–Smirnov test with
p < 0.05). We found that the test decision of five of the
participants rejected the null hypothesis (p < 0.05) that data
were from the same underlying distributions for the effort
outcome, with all five subjects having mean effort during the
assistance condition lower than the mean effort during the
baseline condition (denoted with an asterisk in Figure 7). On
the contrary, we found that the test decision of three of the
participants rejected the null hypothesis (p < 0.05) that data
were from the same underlying distributions for the error
outcome, with all three subjects having a mean error during
the assistance condition higher than the mean error during the
baseline condition (denoted with an asterisk in Figure 7). Of the
three participants observed to have significantly increased error
between the baseline and assistance condition, only one (P6)
was also observed to have significantly decreased effort. We
repeated the analysis on the aggregate data (last column in
Figure 7), with the results rejecting the null hypothesis for both
the effort and error outcomes, providing mixed support to our
central hypothesis that the robot will reduce user effort without
increasing error. Summary statistics are presented in
Supplementary Table S1.

3.2 Stiffness-Dominant Environment
To understand participant performance during the Stiffness-
Dominant environment, we repeated the individual cycle
analysis exactly as in the Inertia-Dominant case. The
participants’ performances were again highly variable, as
shown in Figure 8, presenting the participant-specific
outcomes for each cycle with their respective point-wise cycle2https://github.com/jonreal/openWearable/tree/equilbrium-point-study.
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means. For example, while Participant P5 had peak mean
tracking errors on the order of 60° during baseline and
assistance conditions, Participant P7 again had peak mean
tracking error below 10° for both baseline and assistance
conditions. Similar participant-specific trends can be seen for
each outcome, confirming the highly variable abilities of the
participants.

To understand the ability of participants to activate reflexes
during the Stiffness-Dominant environment, we calculated the
average reflex per cycle, which is shown in Supplementary
Figure S3. Participants P7 (11.4) and P2 (10.8) averaged the
highest M-type reflex, followed by P3 (10.5), P4 (7.1), P1 (4.4),
and P6 (1.6). The participants triggered the F-type reflex much
less frequently, with most participants averaging less than one
per cycle and P6 and P7 averaging nearly zero (~0.07). In terms
of the equilibrium point of the robot for each cycle (fourth row
of Figure 8), the participants follow the same trend as the
Inertia-Dominant environment, with P2, P3, and P7 producing

clear sinusoids and the others having more variations.
Participant P7 again appears to have leveraged the robotic
assistance best, with large decreases in effort corresponding to
the maximum equilibrium points of the robot (compare rows three
and four of Figure 8). A similar trend is also seen for P2 (who is
right-handed). These results confirm that the participants, to
varying degrees, could modulate the equilibrium point of the
robot during the Stiffness-Dominant condition.

The Stiffness-Dominant environment required more
mechanical power during the task. This can be seen by
comparing the interaction power between the two conditions
(the second row in Figure 6 versus second row in Figure 8). Peak
mean power during the Stiffness-Dominant environment was
often above 2 W, which is substantially more than that during the
Inertia-Dominant environment. The underlying effort signals are
also qualitatively different between the two environments,
suggesting that the motor strategies are tailored to the
dynamic environment.

FIGURE 6 | Time-domain experimental results during the Inertia-Dominant environment. Each pair of columns (one for baseline and one for assistance conditions)
represents a single participant. Each row shows a different experimental variable. The dark line represents mean. Shaded lines are individual cycles. The last two rows
show cycle time histograms (timing of each reflex within a cycle) of each type of triggered reflex (F-Reflex, M-Reflex).
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We further explored the participant-specific performances
and the effect of robot assistance during the Stiffness-
Dominant tracking environment using the identical analysis
for the Inertia-Dominant environment, where we used
segmented cycles to calculate the root mean square (RMS)
error and the integral of effort per cycle. The resulting scatter
plot, with the mean, median, and interquartile ranges, is shown in
Figure 7, comparing the baseline and assistance conditions.
Qualitatively, most subjects seem to decrease effort with
increasing cycle number.

We again used the two-sample Kolmogorov–Smirnov test to
test the hypothesis that the undying distributions, for effort and
error, differed between the baseline and assistance conditions. We
found that the test decisions of three participants rejected the null
hypothesis (p < 0.05) that data were from the same underlying
distributions for the effort outcome, with two participants (P5
and P7) having mean effort during the assistance condition lower
than the mean effort during the baseline condition and one
participants (P3) having an increase in mean effort during the
assistance condition (denoted with an asterisk in Figure 9). We
found that the test decision of one participant rejected the null
hypothesis (p < 0.05) that data were from the same underlying
distributions for the error outcome, with the participant having a
mean error during the assistance condition higher than the mean
error during the baseline condition (denoted with an asterisk in
Figure 9). We repeated the analysis on the aggregate data (last
column in Figure 9, with the results rejecting the null hypothesis
for only the effort outcomes, supporting our central hypothesis
that the robot will reduce user effort without increasing effort.
Summary statistics are presented in Supplementary Table S2.

3.3 Linear Mixed-Effects Model
The dataset from this study is correlated within each participant,
trial, and haptic environment. To account for these correlations,
gain insights into the important predictors of user effort and

error, and further test our hypotheses, we fit a linear mixed-effects
model to the cycle level observations (Figures 7, 9). Our mixed-
effects model took the form

Ei,j � β0 + α0,i,j( ) + β1Pi,j + β2 + α2,i,j( )Ci,j + β3 + α3,i,j( )ti,j + ϵi,j,
(7)

where Ei,j is the integral of effort during each cycle for
participant i during haptic environment j, predictor Pi,j
corresponds to the RMS interaction power during each cycle,
predictor Ci,j is the (categorical) assist condition (baseline or
assistance), predictor ti,j is the cycle number scaled to between 0
(first cycle on first trial of all experimental trials, including those
not analyzed in the study) and 1 (last cycle on last trial of all
experimental trials, see Figure 5E), ϵi,j is the random errors
term, β′s are the fixed effects, and α′s are the random effects. The
random effects are assumed independent and normally
distributed, that is, α0,i,j ~ N (0, σ20), α2,i,j ~ N (0, σ22), and
α3,i,j ~ N (0, σ23), where σ2’s are the components of variation
for each random effect. The residual is also assumed normally
distributed, that is, ϵi,j ~ N (0, σ2ϵ), with σ2ϵ the residual
component of variation. The model in Eq. 7 represents a
random intercept and random slope model with uncorrelated
random effects and was chosen through a model selection
process where candidate models were fit using the
experimental data and evaluated based on the Bayesian
information criterion (BIC). A summary of the candidate
models is provided in Supplementary Figure S4. All models
were fit using maximum-likelihood with the fitlme method in
MATLAB (MathWorks).

A summary of the fitted fixed-effects parameters and the
random-effects variance parameters are provided in Table 2.
For the purpose of our hypothesis, the most important predictor
is the categorical assist, which was found to have a coefficient of β2
= −0.059 (95% confidence intervals from −0.092 to −0.027 p ≈
3.8e-4), supporting part of our hypothesis that the robot

FIGURE 7 | Scatter plots and corresponding interquartile range (Q3-Q1) shown as vertical lines, mean value (solid circle), median value (horizontal line), and the
trend line for scaled error and scaled effort for each cycle during the Inertia-Dominate condition. Observations are plotted in order (1 toNB for the baseline condition and 1
to NA for the assistance condition). Increasing shaded regions denote each experimental block. Asterisks denote a significant (p≤0.05) test decision for the null
hypothesis that the data from both conditions are from the same distribution using a two-sample Kolmogorov–Smirnov test.
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assistance will decrease user effort. To visualize the fitted model,
Supplementary Figure S5 presents the partial residual plots,
which show each dependent variable corrected for all
independent variables except the one of interest (Larsen and
McCleary, 1972). To visualize the fixed and random effects of the
intercept (β0 + α0,i,j) and assist predictor (β2 + α2,i,j), we plotted
the trend lines from each intercept during the baseline condition
to the fitted assist condition for all subjects in Figure 10A. The
results show that the assistance from the wearable robot reduced
effort in both haptic environments for all but two participants (P3
& P5), and the fixed effect corresponds to a 14% decrease in effort
with a 95% confidence interval from a 6.5% to 22.4% decrease in
the effort.

To assess the random effect contributions to the total variance
of the outcome, we calculated the variance partition coefficient
(VPC) for each of the random effects (Monsalves et al., 2020). The
VPC indicates the proportion of total variance that is accounted

for by between-group variation, that is, the random effects
clustered by participant and dynamic environment (the i, j
subscripts in Eq. 7). The VPC for random-effect k was
calculated as

VPCk � σ2k
σ20 + σ2

2 + σ2
3 + σ2ϵ

. (8)

The calculated VPCs show that a large part of the total variance is
explained by the participant/environment variance of the intercept
random effects (σ0, VPC0 = 0.5829) and the cycle time random
effects (σ3, VPC3 = 0.2318), while a smaller portion is explained by
the variance of the assist random effects (σ2, VPC2 = 0.0524).

To analyze the effect of the robot assistance on error, we used
the same linear mixed-effects model structure in Eq. 7 with the
RMS cycle errors as the outcome variable. A summary of the fitted
fixed-effects parameters and the random-effects variance
parameters is provided in Table 3. To visualize the fitted

FIGURE 8 | Time-domain experimental results during Stiffness-Dominant environment. Each pair of columns (one for baseline and one for assistance conditions)
represents a single participant. Each row shows a different experimental variable. The dark line represents mean. Shaded lines are individual cycles. The last two rows
show cycle time histograms (timing of each reflex within a cycle) of each type of triggered reflex (F-Reflex, M-Reflex).
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model, Supplementary Figure S6 shows the partial residual plots,
which show each dependent variable corrected for all
independent variables except for the one of interest. For the
purpose of our hypothesis, the most important predictor is the
categorical assistance condition, which was found as β2 = 3.4026
(95% confidence intervals from 0.83 to 5.98 p ≈ 0.01), not
supporting our hypothesis that the robot assistance will not
increase error. To visualize the fixed and random effects of the
intercept and condition independent variables for the error
outcome, we plotted the trend lines from the intercept
during the baseline condition to the fitted assistance
condition for all subjects in Figure 10B. The results show
that the assistance from the wearable robot increased error in
both conditions for all but two participants (P2 and P6), both of

which had a decrease in error during the Stiffness-Dominant
environment. The fixed effect corresponds to a 13% increase in
error with a 95% confidence interval from a 3.2% to 23.1%
increase in error.

To assess the random effect contributions to the total variance of
the error outcome, we again calculated the variance partition
coefficient (VPC) for each of the random effects (Monsalves et al.,
2020). The calculated VPCs show that some part of the total variance
is explained by the participant/environment variance of the intercept
random effects (σ0, VPC0 = 0.3326) and the cycle time random effects
(σ3, VPC3= 0.1729), while a small portion is explained by the variance
of the assist random effects (σ2, VPC2 = 0.0604).

The model fits provide a different level of predictive power. In
order to visualize this, the participant-specific and aggregate

TABLE 2 | Mixed-effects model for user effort.

Model: effort ~ 1 + power + assist + cycle number + (1|ID:dynamic) + (−1 + assist|ID:dynamic) + (−1 + cycle number|ID:dynamic)

Number of observations 960 AIC −1,697.7
Fixed-effects coefficients 4 BIC −1,658.8
Random-effects coefficients 42 Log-likelihood 856.87
Covariance parameters 4 Deviance −1,713.7
Fixed-effects coefficients (95% CIs)
Name Estimate SE t statistic df p-value Lower Upper
Intercept 0.40871 0.053393 7.6548 956 4.7e − 14 0.30393 0.51349
Power 0.084505 0.01185 7.131 956 2.0e − 12 0.061249 0.10776
Assist −0.05902 0.016569 −3.562 956 0.00039 −0.091537 −0.026504
Cycle number −0.083379 0.033781 −2.4682 956 0.014 −0.14967 −0.017085
Random-effects variance parameters (95% CIs)
Name Levels Type Estimate Lower Upper VPC1

Intercept 14 SD 0.19252 0.13215 0.28048 0.5829
Assist 14 SD 0.057724 0.037737 0.088296 0.0524
Cycle number 14 SD 0.12141 0.081131 0.18169 0.2318
Error NA Residual SD 0.091925 0.087811 0.096231 NA

1VPC, variance partition coefficient calculated as shown in Eq. 8 with the estimated (mean) random-effects variance parameters.
Model formula is provided in Wilkinson notation (Wilkinson and Rogers, 1973). The grouping variable “ID” represents the participant and the grouping variable “dynamic” represents the
haptic environment (Inertia- or Stiffness-Dominant).

FIGURE 9 | Scatter plots and corresponding interquartile range (Q3-Q1) shown as vertical lines, mean value (solid circle), median value (horizontal line), and trend
line for scaled error and scaled effort for each cycle during the Stiffness-Dominate condition. Observations are plotted in order (1 toNB for the baseline condition and 1 to
NA for the assistance condition). Increasing shaded regions denote each experimental block. Asterisks denote a significant (p≤0.05) test decision for the null hypothesis
that the data from both conditions are from the same distribution using a two-sample Kolmogorov–Smirnov test.
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model fits are shown in Figure 11, which plots the observations
versus the predictions for both outcome variables (effort and
error). If the fit was perfect, the data points would fall on the y = x
line. The error model is substantially less powerful, as evident by
the lower R-squared measure.

In summary, according to our linear mixed-effects models,
for six out of the seven participants, the robot assistance reduced
their required effort in at least one of the haptic environments,
and for five of the participants, the assistance reduced effort in
both haptic environments. On the contrary, the robot assistance

TABLE 3 | Mixed-effects model for user error.

Model: error ~ 1 + power + assist + cycle number + (1|ID:dynamic) + (−1 + assist|ID:dynamic) + (−1 + cycle number|ID:dynamic)

Number of observations 960 AIC 7433.8
Fixed-effects coefficients 4 BIC 7472.7
Random-effects coefficients 42 Log-likelihood −3708.9
Covariance parameters 4 Deviance 7417.8
Fixed-effects coefficients (95% CIs)
Name Estimate SE t statistic df p-value Lower Upper
Intercept 25.918 3.0671 8.4504 956 1.0722e − 16 19.899 31.937
Power −2.4973 1.3869 −1.8006 956 0.072085 −5.219 0.22451
Assist 3.4026 1.3108 2.5958 956 0.0095817 0.83021 5.975
Cycle number −0.62148 2.1642 −0.28716 956 0.77405 −4.8687 3.6257
Random-effects variance parameters (95% CIs)
Name Levels Type Estimate Lower Upper VPC1

Intercept 14 SD 9.617 6.4639 14.308 0.3326
Assist 14 SD 4.0992 2.4414 6.8828 0.0604
Cycle number 14 SD 6.9348 4.2439 11.332 0.1729
Error NA Residual SD 10.986 10.495 11.5 NA

1VPC, variance partition coefficient calculated as shown in Eq. 8 with the estimated (mean) random-effects variance parameters.
Model formula is provided in Wilkinson notation (Wilkinson and Rogers, 1973). The grouping variable “ID” represents the participant and the grouping variable “dynamic” represents the
haptic environment (Inertia- or Stiffness-Dominant).

FIGURE 10 | Visual representation of the fixed and random effects from the fitted mixed-effects models for the intercept and assist independent variables. Fixed
effects are denoted by gray squares, and the trend line with the shaded region represents 95% confidence intervals. Random-effects trend lines for each participant are
denoted by different colors, and random effects for the dynamic (Stiffness- or Inertia-Dominate) are denoted by open and closed circles, respectively. Corresponding bar
plots depict the subject-specific and dynamic-specific percent change in outcome (e.g., random effects). (A)Model for effort as the outcome variable. (B)Model for
error as the outcome variable.
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increased the tracking error in all participants during the
Inertia-Dominant environment and in all but two during the
Stiffness-Dominant environment.

4 DISCUSSION

Soft pneumatic-based actuators are difficult to control due to
inherent compliance and nonlinear effects. To circumvent these
difficulties, we proposed a bio-inspired control approach to
leverage the passive mechanical properties of the actuators
together with their proprioceptive capabilities. By arranging
them antagonistically, the actuators produced stable equilibria
without direct feedback control. Using proprioception and with
human input in the form of sEMG, our wearable robot shifted its
equilibrium congruent with the user’s intentions, thereby
providing physical assistance. The method is the first step in
an impedance modulation framework.

Our main objective was to evaluate the ability of the soft
wearable robot with equilibrium-point control to provide
physical assistance to forearm rotations in pediatric users who
have movement disorders. We evaluated the participants through
a tracking task in two different haptic environments designed to
require different movement strategies, confirmed by the
markedly different effort signals between the two tasks (the
third row in Figures 6, 8). Though, the proposed control
method achieved volitional assistance for most users in both
dynamic environments.

The two linear mixed-effects models, one with effort as the
outcome and the other with error as the outcome, provide
insights into the primary factors associated with participant
performance. The models captured the highly variable
capabilities of the participant population within each haptic
environment through the random-effects intercept term,
which explained a large portion of the variance in the
models (VPC of 58% and 33% for the effort and error
models, respectively). The cycle number predictor showed
that the participants expended less effort over time, with
the coefficient β3 = −0.083 (95% confidence intervals from
−0.15 to 0.02 p = 0.014), while the same predictor in the error
model was not significant. This suggests a learning effect,

where the participants adapted their motor strategies
resulting in less effort with increasing time while not
significantly altering the tasks error. The power predictor,
which did not have an associated random effect, shows an
effort increase with increasing mechanical interaction (β1 =
0.085 (95% confidence intervals from 0.061 to 0.11 p < 0.01),
while not reaching significance in the error model. The assist
predictor did not explain a substantial portion of the variance
in either model (VPC of 5% and 6% for the effort and error
models, respectively), suggesting that the assist random effects
had a relatively small associated variance and therefore the
assistance from the wearable robot was consistent in reducing
effort and increasing error across all participants and the two
haptic environments.

Our results show that the soft wearable robot with the
equilibrium-point controller provided physical assistance to the
pediatric participants. The integral of effort was reduced for most
participants in both dynamic manipulation tasks. However, the soft
wearable robot also increased the resulting RMS error. Because the
model fit is stronger for the effort outcome (Figure 11), we havemore
confidence in the reported effort metrics than the error outcome.
However, there is clear evidence that wearable robots increase errors
to some degree. We believe the increase in error can be explained by
the relatively coarse assistance (equilibrium-point) profiles (see the
fourth row in Figures 6, 8). Because the jump parameter was chosen
as a fixed value (ΔP = 55 kPa) and the minimum internal pressure
was set to Pmin = 103 kPa, the equilibrium point could only take on
seven unique equilibria, which would not be enough to produce fine
motor control. The effect is clearer in the Inertia-Dominant condition
(Figure 6) due to the subtle motor control required, including
breaking and accelerating when changing direction.

All participants activated the M-Reflex (sEMG) at higher rates
compared to the F-Reflex (Interaction), as shown in the reflex
histograms (last two rows) in Figures 6, 8. This is expected
because sEMG signals lead motion in phase and therefore provide
a superior prediction of the user’s volitional movement. Based on
our results, the F-Reflex was triggered more often during the
Inertia-Dominant environment, which requires substantial
acceleration/deceleration when switching directions and also
very little joint torque (therefore muscle activation) during the
constant velocity portions of the trajectory (i.e., between the

FIGURE 11 | Summary of linear mixed-effects model fits. Each plot shows the observations versus predictions for each participant and overall. The red line denotes
the perfect model. (A) Model with effort as the outcome variable. (B) Model with error as the outcome variable.
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crests/troughs of the sine signal). This may explain why, for many
participants, the F-Reflex was triggered most often early, in the
middle, and late during the cycle (see P1, P2, P3, P4, and P7
histograms in Figure 6). These instances corresponded to when
the desired trajectory was approximately constant velocity.
Combined with the momentum of the Inertia-Dominant
interface, little muscle activation was necessary to keep the
interface moving, confirming that the F-Reflex could provide
assistance during these portions of the trajectory in the absence of
strong muscle activations.

Based on the results and the observations obtained in this study,
we believe that the performance of our soft wearable robot could be
further improved. The role and individual benefit of each reflex
(M-Reflex and F-Reflex) require further investigation. In this study,
the M-Reflex (EMG) always takes precedence over the F-Reflex
(interaction). However, there are conceivable scenarios where the
two corresponding activation functions could give contradictory
reflex actions, for example, during eccentric contractions, where the
human’s muscle is lengthened while tension is produced (e.g., slowly
lowering a weight). Future investigation should be designed to
determine when or how to choose one over the other.

Our future work will also focus on enhancing the resolution of
the equilibrium-point controller. In order to accomplish this, new
innovations are necessary to extend the bandwidth of the
actuators, which would allow for a reduced refractory period
in our algorithm and a smaller jump parameter ΔP, because with
a shorter refractory period, the reflex frequency can be increased.
We accomplished the equilibrium-point controller with only a
few low-cost sensors and simple automata in the form of finite-
state machines, minimizing the requirement for sophisticated
electromechanical sensors. This lays the foundation for
producing affordable, mass-producible wearable robots. We
envision extending the equilibrium-point controller to multiple
joints, including modules for the shoulder (Simpson et al., 2017;
Zhou et al., 2021) and elbow (Koh et al., 2017) and adapting the
technique for rehabilitation via preprogrammed trajectories
(Chaparro-Rico et al., 2020).

Another direction is developing an analytical model via hybrid
dynamical systems theory to understand the stability bounds in
terms of the equilibrium-point controller parameters. A similar
model has been applied to proprioceptive soft grippers (Park
et al., 2021). Additionally, a more comprehensive study with
human participants, including the participation of control
subjects, would provide further opportunities for
understanding the device’s influence on muscle coordination,
skill acquisitions, and object manipulation.

5 CONCLUSION

In this study, we presented a soft wearable robot with a novel
equilibrium-point controller intended to provide physical assistance
to the forearm rotations of children with motor impairments. Through
an experiment with human participants that consisted of trajectory

tracking in different dynamic environments, the wearable robot
demonstrated the ability to be volitionally controlled by all the users,
which was achieved through triggered shifts in the robot’s equilibrium
position. We analyzed the data with two linear mixed-effects models:
onewith participant effort as the outcomeand the otherwith participant
error as the outcome. The results provide a strong indication that the
wearable robot reduces user effort. In addition, the models provided
insight into the other main factors affecting effort and error, including
the participant-specific capabilities and learning over time. Although the
resulting physical assistance significantly reduced the required effort to
complete the tracking task, it also significantly increased the error. We
speculate that this is most likely due to the coarse nature of the
assistance, which is a limitation of the prototype device. We envision
several future advancements to the equilibrium-point control method,
including the possibility of general impedance modulation capabilities.
In summary, the equilibrium-point control method provides a new
framework for facilitating human–robot interactions.
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