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Abstract: Intracerebral hemorrhage (ICH) is a major public health problem and devastating subtype
of stroke with high morbidity and mortality. Notably, there is no effective treatment for ICH.
Neuroinflammation, a pathological hallmark of ICH, contributes to both brain injury and repair and
hence, it is regarded as a potential target for therapeutic intervention. Recent studies document that
microRNAs, small non-coding RNA molecules, can regulate inflammatory brain response after ICH
and are viable molecular targets to alter brain function. Therefore, there is an escalating interest in
studying the role of microRNAs in the pathophysiology of ICH. Herein, we provide, for the first time,
an overview of the microRNAs that play roles in ICH-induced neuroinflammation and identify the
critical knowledge gap in the field, as it would help design future studies.
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1. Introduction

Intracerebral hemorrhage (ICH) is one of the most devastating subtypes of stroke,
accounting for 10–15% of all stroke cases [1]. The mortality rate of ICH is 45.4% within one
year of initial ictus [2] and around 74% of ICH survivors remain functionally dependent at
one year after the onset of symptoms [3]. Moreover, the incidence of ICH is expected to
increase due to population aging and the spreading use of anticoagulants [4]. Despite recent
advances in preclinical research, effective treatments for ICH have not been found, which
partly attributes to the lack of understanding of the complex pathophysiology of ICH.

Intracerebral hemorrhage refers to the spontaneous extravasation of blood in the brain
parenchyma and typically occurs in the basal ganglia, thalamus and cerebral lobes [5].
Patients with hypertension or cerebral amyloid angiopathy have a higher disposition
to ICH, mainly because hypertension and cerebral amyloid angiopathy contribute to
structural and functional vascular abnormalities and make blood vessels more vulnerable
to rupture [6]. ICH often results in severe brain damage, which is categorized into primary
and secondary brain injuries. The primary injury is mostly physical damage to the brain
resulting from the rapid formation as well as the mass effect of the hematoma. The
secondary injury evolves as an overlapping continuum to primary damage and results
from extravasated blood components and associated neurotoxicity. The mechanisms of
secondary brain damage include, but are not limited to, neuroinflammation, oxidative
stress, apoptosis, and excitotoxicity [7,8]. Among these, a growing body of evidence reveals
the potential of therapeutically targeting neuroinflammation to modulate both brain injury
and repair after ICH.

MicroRNAs (miRNA, miR) are small conserved non-coding single-stranded RNA that
can be transcribed from intronic, intergenic, and protein-coding regions in the genome
by RNA polymerase II [9] or RNA polymerase III [10]. The promoters for transcription
are found either upstream or downstream of miR sequences [11] and the primary tran-
scription product (pri-miRNA) can code for several miRs or only one miR. The pri-miRNA
undergoes enzymatic processing into the pre-miRNA transcript, a 60 to 70 nucleotides
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long hairpin structure, which subsequently gets translocated from the nucleus [12–14]. The
cytoplasmic RNase III Dicer cleaves the pre-miRNA into a 19 to 23 nucleotides long mature
miRNA [15–18]. Functionally, microRNAs control gene expression by binding with the 3′

untranslated region (UTR) of the target messenger RNA (mRNA). As a consequence, the
target mRNA will either be degraded or preserved and translated later [19,20]. A single
miR could regulate hundreds or even thousands of transcripts and modulate multiple
signaling cascades [21,22]. Notably, miRs contribute to various biological processes such
as cell differentiation, proliferation, metabolism, death, and innate immune response [23].
Though the vast majority of miRs are intracellular, there are miRs in the extracellular body
fluids that play a role in cell-cell signaling [24,25]. However, most of the circulating miRs
are non-functional and passively released from cells through apoptosis or necrosis [26].

The mammalian brain expresses the highest number of microRNAs [27] in comparison
to other organs. Recent evidence reveals several distinct mechanisms by which microR-
NAs regulate brain disease [28,29] and pathological conditions are often associated with
dysregulated miR expression. Neuroinflammation is characterized by increased activation
of microglia (the innate immune cells of the central nervous system (CNS)) and the subse-
quent release of pro-inflammatory and anti-inflammatory mediators. The inflammatory
brain response also involves the interplay between the cells within the CNS and in the
periphery [30]. miRs are ideal candidates to be explored for the treatment of various neu-
roinflammatory conditions since they can have a unique cellular or tissue expression profile
in response to neuroinflammation [31]. Moreover, the aberrant miR expression could result
in altered inflammatory responses in the microglia [32]. Consistently, Dicer (a protein
that is critical for the biogenesis of miR)-deficient microglia exhibited enhanced activation
in response to inflammatory stimuli [33]. Additionally, miRs can be released from cells
such as neurons facilitating neuronal-glial communication and thereby contributing to
neuroinflammation [34–37]. Taken together, miR is emerging as a promising therapeutic
target to modulate neuroinflammation and improve neurological function. Herein, we
provide, for the first time, an overview of microRNAs that play a role in neuroinflammatory
response after ICH.

2. MicroRNA and ICH-Induced Neuroinflammation

The applications of miR as potential therapeutic agents and diagnostic markers con-
tinue to evolve as more and more studies investigate the involvements of miR in various
pathologies. The last four years have seen a surge in research questioning the role of various
miRs in the pathophysiology of ICH. Functional studies were often conducted using miR
mimics, which supplement miR expression, or with miR antagonists, which downregulate
miR expression. ICH results in profound neuroinflammation and herein, we discuss the
miRs that could serve as potential regulators of ICH-induced neuroinflammation, a com-
plex pathological process contributing to neuroprotective and neurodegenerative effects.

2.1. miR-144

Altered miR-144 expression is associated with a multitude of neuropathologies and
is implicated in cellular proliferation [38], inflammatory response [39,40], and β-amyloid
deposition [41]. The expression of miR-144 was studied in preclinical models of ICH. To
this end, the experimental induction of ICH in mice by the brain injection of autologous
blood was associated with significantly enhanced miR-144 levels in the perihematomal
brain region at 24 h post-ICH [39]. Further, the brain administration of miR-144 inhibitor
improved neurobehavioral outcomes with a concomitant reduction in cerebral edema and
RNA levels of proinflammatory cytokines such as IL-6, IL-1β, and TNF-α, implicating a
role of miR-144 in neuroinflammatory response and brain injury after ICH [39]. In addition,
inhibition of miR-144-3p, a member of the miR-144 family, attenuated cerebral edema and
neurobehavioral deficits in a blood model of ICH in rats via formyl peptide receptor 2
(FPR2), a key regulator PI3K/AKT signaling and inflammation [42].
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Free hemoglobin is regarded as a potent inducer of ICH-induced oxidative [43] as well
as inflammatory brain damage [44]. After intracerebral hemorrhage (ICH), the erythrocytes
that accumulate in the brain parenchyma undergo lysis and subsequently hemoglobin gets
released. Employing in vitro studies, Wang et al., 2017 [40] demonstrated that hemoglobin
could enhance miR-144 expression in microglia, the inflammatory cells of the CNS, a possi-
ble mechanism by which miR-144 levels are increased after ICH. In addition, Wang et al.,
2017 [40] showed that inhibition of miR-144 attenuates hemoglobin-mediated microglial
inflammatory response and autophagy via the mTOR (mammalian Target of Rapamycin)
signaling pathway, further implicating its role in inflammatory brain damage. However,
a recent report employing the collagenase injection model of ICH did not demonstrate a
significant increase in miR-144 expression in the perihematomal brain region, though there
was an upward trend in comparison to control [45]. Additionally, the genetic deletion of
miR-144 along with miR-451 augmented neuroinflammation and brain injury after ICH
implicating a neuroprotective role of the miR-144/451 cluster [45]. Altogether, the data in-
dicate the need to conduct further longitudinal studies establishing the efficacy of miR-144
as a viable therapeutic target.

2.2. miR-155

The expression of miR-155, a marker of inflammation [46–48] was studied in ICH
patients and animal models of ICH. Of note, the serum level of miR-155 was significantly
elevated in patients with ICH and was associated with hematoma volume, a critical de-
terminant of neurological outcomes after ICH [49]. Moreover, serum level of miR-155
was positively correlated with 6 months-mortality and unfavorable outcomes after ICH
implicating its potential to serve as a prognostic marker [49]. Though studies are yet to
be conducted to determine whether there is an elevated serum level of miR-155 in animal
subjects with ICH, the collagenase injection mouse model of ICH showed an increase in
miR-155 in the brain tissue 3 days post-injury [50]. Furthermore, dexamethasone-mediated
attenuation of the expression of proinflammatory cytokines such as IFN-β, IL-6, and TNF-
α after ICH in mice was associated with a reduction in miR-155, implicating its role in
neuroinflammation [50]. Moreover, a recent preclinical study reported the efficacy of miR-
155 inhibitors in improving acute neurological outcomes after ICH [51]. In line with this
observation, the genetic inhibition of miR-155 attenuated ischemic brain damage with a
reduction in the release of proinflammatory cytokines in a mouse model of MCAO and at-
tenuated glucose deprivation/oxygenation-induced proinflammatory cytokine expression
in vitro [52]. Moreover, increased expression of miR-155 in glioma patients is associated
with poor prognosis [53], and miR-155 is implicated in the inflammatory response asso-
ciated with several neurodegenerative disorders [54,55]. Altogether, further studies are
highly required to explore its potential as a therapeutic target after ICH.

2.3. miR-222

miR-222 has been shown to be associated with cardiovascular diseases and various
inflammatory conditions. A recent study by Bai and colleagues [56] found increased
brain expression of miR-222 at 72 h post-injury in a blood injection model of ICH in mice.
Furthermore, cerebroventricular administration of miR-222 inhibitor reduced the brain
water content, release of proinflammatory mediators, and acute neurological deficits in
mice after ICH implicating its critical role in secondary brain damage [56]. In line with
this observation, miR-222 mimics significantly augmented ICH-induced acute neurological
deficits in mice. Bai and colleagues [56] also demonstrated that erythrocyte lysate is a
potent inducer of miR-222 expression in cultured microglia and inhibition of miR-222
significantly attenuated erythrocyte lysate-induced microglial release of proinflammatory
cytokines, further implicating its role in neuroinflammation. Additionally, studies from
the same group revealed that miR-222 regulates the release of inflammatory cytokines by
negatively targeting integrin subunit β8 (ITGB8), a member of the integrin family, which
mediates cell-extracellular matrix interactions. Of note, ITGB8 up-regulation has shown
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to attenuate inflammation in vitro [56], whereas its deletion enhances the formation of
dysplastic blood vessels and hemorrhage [57,58]. However, studies need to be conducted
to determine the precise molecular mechanisms of miR-222-mediated neurotoxic effects
after ICH.

2.4. miR-145

miR-145 expression was found to be significantly increased in the blood plasma of ICH
patients in comparison to control [59]. Therefore, it may have the potential to be a biomarker
of ICH warranting further investigation. Notably, apart from its well-documented role in
tumor suppression [60], miR-145 is implicated in IL-4 and IFNβ mediated brain immune
responses [31,61] and regulates the release of TNF-α from adipocytes [62]. In addition, miR-
145 regulates SMAD-3, an activator of the anti-inflammatory mediator transforming growth
factor-β (TGFβ). SMAD-3 is a transcription factor, which plays a role in neuronal apoptosis
after ICH [63]. Therefore, studies need to be conducted determining the functional role
of miR-145 in the blood plasma or in systemic inflammatory responses, which is often
associated with brain injuries and its expression level changes in the brain after ICH.

2.5. miR-494

Both preclinical and clinical studies suggest that microglia/macrophage-mediated in-
flammatory response plays an important role in hemorrhage-induced brain damage [64,65].
ICH results in very profound activation of microglia/macrophages, highly plastic cells,
which display diverse phenotypes [66]. To this end, M1 microglia/macrophage release proin-
flammatory mediators and contribute to brain damage, whereas M2 microglia/macrophage
generate anti-inflammatory cytokines and promote brain recovery. Hence, the molecular mech-
anisms that decrease M1 activation and augment M2 activation of microglia/macrophages are
identified and characterized to improve neurological outcomes. Recent studies document
the role of microRNA in the regulation of microglia/macrophage polarization [67]. To
this end, treatment with miR-494 mimics elevated the M1 macrophage polarization, with
an increase in brain water content and neurological damage at 3 days post-ICH in mice
suggesting a detrimental role of miR-494 after ICH [67]. Additionally, when microglia
were treated with miR-494 mimics, it augmented M1 polarization in vitro [67]. Moreover,
miR-494 expression levels were increased in the perihematomal brain area at day 1, day 3,
and day 5 post-ICH, a time course that exhibits a prominent inflammatory response after
ICH in mice [67]. Mechanistically, miR-494 targets the E3 ubiquitin protein ligase, NRDP1, a
protein that plays a critical role in macrophage polarization [67]. miR-494 mimics downreg-
ulated the expression of NRDP1 and that was associated with an increase in ICH-induced
inflammation, neurological deficits, and cerebral edema [67]. In contrast, Changlong Zhou
et al. documented that NRDP1 promotes inflammation after ICH [68]. These conflicting
results demand further investigation validating the functional role of NRDP1 after ICH.

2.6. miR-223

Reduced expression of miR-223, a hematopoietic specific microRNA [69] with crucial
functions in myeloid lineage development [70], was observed in the ipsilateral brain region
in mice after ICH [71]. Functionally, miR-223 exerts acute neuroprotection after ICH as the
intracerebroventricular administration of miR-223 mimics attenuated neurological deficits
and cerebral edema in mice at 48 h post-ICH [71] and that was associated with a reduction in
the expression of NLRP3 and proinflammatory cytokines [71]. NLRP3 is a key component
of NLRP3 inflammasome, a protein complex that plays a critical role in ICH-induced
neuroinflammation [72]. In vitro studies further confirmed the anti-inflammatory role of
miR-223. Along these lines, miR-223 mimics significantly attenuated erythrocyte lysate-
induced inflammatory response in microglia with a reduction in NLRP3 expression [71].
Furthermore, NLRP3 mRNA contains conserved miR-223 binding sites in its 3′ UTR,
implicating that miR-223 could be a direct regulator of NLRP3 expression [71], warranting
further investigation. In contrast to preclinical brain samples of ICH, miR-223 expression
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was elevated in the plasma of patients in the acute phase of ICH in comparison to control,
suggesting its potential to serve as a diagnostic marker [59]. Moreover, serum exosomal
levels of miR-223 were associated with the occurrence, severity, and short-term outcomes
of ischemic stroke [73]. Therefore, the functional role or consequence of elevated plasma
expression of miR-223 in the ICH patient population and its implications in neurological
outcomes need to be elucidated.

2.7. miR-7

In normal physiology, miR-7 regulates the development of the pituitary gland, optic
nerve system, and cerebral cortex [74]. In contrast, dysregulated miR-7 expression is associ-
ated with a variety of pathological conditions, such as cellular metastasis [75], α-synuclein
accumulation [76], amyloid peptide accumulation [77], and apoptosis [78]. Moreover,
miR-7 is a highly expressed miR in the mammalian brain [74]. Zhang and colleagues [79]
demonstrated a significant decrease in miR-7 expression in the perihematomal brain re-
gion in patients diagnosed with ICH and in a preclinical rat model of ICH. Employing
an in vitro approach, they also showed that the proinflammatory mediator TLR4 [80] is
a direct target of miR-7 [79], implicating a role of miR-7 in inflammation. Additionally,
mimics of miR-7 were effective in reducing the lipopolysaccharide-induced inflammatory
response in microglia [79]. Consistently, another research group has documented that miR-
7 agomirs attenuated neurological function score and brain water content in a preclinical
model of ICH [81]. Despite its role in inflammation, miR-7 could also reduce 1-methyl-4-
phenylpyridinium (MPP)-induced neuronal apoptosis through inhibition of NF-κB [82]
and regulation of the mTOR signaling pathway [83]. Altogether, further studies are needed
to determine the mechanism by which miR-7 downregulation occurs after ICH and its
effect on ICH-induced oxidative neuronal damage and long-term neurological deficits.

2.8. miR-let-7a

miR-let-7a is regarded as an immunomodulatory microRNA and mainly regulates
anti-inflammatory signaling [84]. Consistently, Yang and colleagues [85] reported that
miR-let-7a promotes M2 microglia polarization in a preclinical model of ICH. Along these
lines, miR-let-7a expression was decreased in the perihematomal brain region at 3 days
post-ICH and intracerebroventricular administration of miR-let-7a mimics attenuated pro-
inflammatory cytokine expression and augmented anti-inflammatory cytokines with a
significant improvement in acute neurological outcomes in mice. It was also demonstrated
that the anti-inflammatory effects of miR-let-7a after ICH were mediated partly via CKIP-1
(Casein Kinase 2 Interacting Protein-1, also known as PLEKHO1), a protein that plays a
role in cellular apoptosis [86], and microglia polarization [87]. However, further studies
need to be conducted with CKIP-1 knockout animals to establish the role of CKIP-1 in
miR-let-7a mediated neuroprotection after ICH. Furthermore, though decreased serum
level expression of miR-let-7a is observed in ICH patients in comparison to controls [88],
its functional significance is yet to be established.

2.9. miR-21-5p

miR-21 is one of the highly expressed miR in many mammalian cell types [89] and its
expression is often altered in pathological conditions [90–93]. Of note, miR-21 can regulate
the Akt [94] and/or ERK/MAPK pathways [95] and the expression of inflammatory
mediator, Toll-like 4 receptor (TLR4) [96]. Moreover, miR-21 has emerged as a key regulator
of the anti-inflammatory signaling in macrophages [97]. Apart from its role in immune
responses, miR-21 is a critical participant in necroptosis [98], a type of cell death observed
in preclinical models of ICH [99]. In the blood injection model of ICH in rats, adenovirus-
mediated overexpression of miR-21-5p attenuated proinflammatory response at 72 h post-
ICH, with a reduction in brain water content and neurological deficits implicating that
miR-21-5p exerts neuroprotection [100]. In contrast, in aged animals, genetic knockdown
of miR-21-5p attenuated neuronal apoptosis, neuroinflammation, and neurobehavioral
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deficits at 24 post-ICH [101], suggesting that miR-21-5p is a contributor to ICH-induced
brain damage. Importantly, serum miR-21-5p levels were elevated in elderly patients in
the acute phase of ICH in comparison to healthy subjects [101]. Additionally, there was
a positive correction between elevated serum miR-21-5p levels and National Institutes
of Health Stroke Scale (NIHSS) scores and clinical outcomes after ICH [101]. Altogether,
there exists a discrepancy in the functional roles of miR-21-5p after ICH and hence, further
studies are required to validate the potential of miR-21-5p as a therapeutic target and
determine whether aging modulates the functional roles of miR-21-5p after ICH.

2.10. miR-23a-3p

Nrf2 is an antioxidant transcription factor that plays roles in both oxidative as well as
inflammatory brain damage [102]. miR-23a-3p regulates cell proliferation and metastasis
through inhibition of PTEN [103], a regulator of Nrf2 [104]. Notably, in a rat blood-injection
model of ICH, the expression of miR-23a-3p was increased in the perihematomal brain
region 3 days after ICH [105], implicating its possible role in the pathophysiology of ICH.
Consistently, the genetic inhibition of miR-23a-3p attenuated ICH-induced neurodegen-
eration, ferroptosis (an iron-dependent cell death), and the release of proinflammatory
cytokines in rats [105]. Of note, miR-23a-3p antagomir-mediated neuroprotection after
ICH was associated with an induction of HO-1, a critical downstream target of Nrf2 [106].
Given the potential of Nrf2 activators in improving neurological outcomes after ICH [102],
further studies are required to characterize the precise molecular mechanisms of miR-23a-
3p-induced brain injury after ICH.

2.11. miR-23b

miR-23b, which plays roles in cell migration [107], proliferation [108], growth [109],
and MAPK signaling pathway [110], is largely understudied in neuropathological con-
ditions. In a rat model of ICH, the expression of miR-23b was downregulated in the
perihematomal brain region at day 1, day 3, and day 5 post-ICH [111]. In addition, hemin,
a hemoglobin metabolite and critical modulator of ICH-induced secondary brain dam-
age [65], attenuated the expression of miR-23b in BV2 mouse microglial cells in vitro [111],
suggesting a possible mechanism for its downregulation in preclinical models of ICH.
Functionally, lentiviral-mediated genetic overexpression of miR-23b reduced inflammatory
response both in vitro and in vivo [111]. Additionally, genetic overexpression of miR-23b
significantly attenuated neurological deficits at day 1, day 3, and day 5 post-ICH [111].
Though in vitro studies report inositol polyphosphate multikinase (IPMK), which promotes
Toll-like receptor-induced inflammation, as a target of miR-23b [111], future studies are
warranted elucidating the molecular mechanisms of miR-23b-mediated neuroprotection in
preclinical models of ICH.

2.12. miR-124

miR-124 is one of the most abundantly expressed miR in the adult mammalian brain
and accounts for 25–48% of all brain microRNAs [112]. Despite its role in neuronal differen-
tiation [113], maturation [114], and survival during CNS development, the role of miR-124
in normal adult brain function is yet to be determined. However, in neuropathological
conditions, miR-124 is implicated in cell survival [115], apoptosis [116], autophagy [117],
neuroinflammation [118] and oxidative damage [119]. Of note, miR-124 is regarded as a
potential biomarker of tissue injury [120] and cerebral infarction [121]. Consistently, in the
collagenase injection model of ICH and human ICH patients, miR-124 is significantly upreg-
ulated in the plasma during the acute phase and downregulated in the recovery phase [122].
Given its prominent induction in human plasma in the acute phase of ICH, miR-124 may
serve as a promising biomarker for the diagnosis of ICH [122]. Furthermore, the brain
expression of miR-124 was significantly elevated in the rat model of ICH in the acute phase
in comparison to sham [122], suggesting that brain damage may result in its release into
the plasma. In contrast to the collagenase injection model, a separate study using the blood-
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injection model reported significantly reduced expression of miR-124 in the perihematomal
region after ICH in mice [123]. Moreover, erythrocyte lysate reduced microglial expression
of miR-124, suggesting the blood extravasation must be contributing to its altered brain
expression after ICH [123]. Additionally, miR-124 mimics significantly attenuated M1 but
increased M2 markers in mice, implicating the role of miR-124 in microglial polarization
both in vitro and in vivo [123]. The anti-inflammatory effects of miR-124 mimics in mice
were associated with improved neurological outcomes and reduced cerebral edema and
apoptotic cell death. Additionally, the inhibitors of miR-124 had an opposite effect and its
administration led to increased ICH-induced inflammatory damage in mice. Based on the
target prediction program TargetScan analysis, a potential mediator that was identified as
a target of miR-124 was CCAAT/enhancer-binding protein alpha (CEBP-α), a regulator of
microglia polarization [123]. However, the study did not present data derived from one
critical experimental group (ICH + vehicle) and hence, caution should be made in drawing
conclusions from it. Moreover, given the discrepancy in the brain expression levels of
miR-124 in preclinical models of ICH, further studies are highly warranted to validate its
role in neuroinflammation. Additionally, a recent study in aged animal subjects reports
that administration of miR-124 antagomir attenuated iron accumulation [124], implicating
a neurotoxic potential of miR-124. Notably, increased serum miR-124 levels were correlated
with poor neurologic scores in aged ICH patients [124]. Overall, despite the potential of
miR-124 inhibitors or agonists in modulating neurological outcomes in preclinical models
of ICH, further studies are required to establish its efficacy as a potential therapeutic target
after ICH.

2.13. miR-126-3p

Reduced expression of miR-126-3p, a regulator of inflammation [125], was observed in
the serum, perihematomal area, and hematoma in a collagenase injection model in rats at
24 h post-ICH [126]. The preclinical studies reported a neuroprotective role of miR-126-3p
after ICH because the administration of miR-126-3p mimics reduced cerebral edema, blood-
brain-barrier permeability, microglia activation, neuronal apoptosis, and acute neurological
deficits in rats through regulation of PIK3R2 (phosphoinositide-3-kinase regulatory subunit
2) and Akt [126]. Additionally, there is a negative correlation between serum miR-126
and perihematomal edema in ICH patients [88]. However, further studies need to be
conducted elucidating the mechanisms of miR-126-3p-mediated neuroprotection after ICH,
as inflammation plays an important role in cerebral edema development after ICH.

2.14. miR-129-5p

In contrast to other miRs, the expression of miR-129-5p was studied at a non-acute
time point post-ICH and there was a reduction in its expression at 7 days and 14 days post-
ICH in the brain tissue of rats [127], possibly suggesting a role of miR-129-5p to modulate
long-term neurological outcomes. Intravenous administration of liposomes expressing
miR-129-5p attenuated ICH-induced induction of high mobility group box-1 (HMGB1),
an endogenous ligand of TLR4 [128,129], implicating its pivotal role in neuroinflamma-
tion [127]. Consistently, miR-129-5p mimic prevented NF-kB signaling in autoimmune
diseases by inhibiting TLR4 or TLR2-HMGB1 pathway [130,131] and attenuated neuroin-
flammation after ischemia-reperfusion by inhibiting HMGB1 and the TLR3-cytokine path-
way [132]. However, neurological outcomes studies are yet to be conducted to demonstrate
the efficacy of targeting miR-129-5p after ICH.

2.15. miR-132

Owing to its dual roles in immune response and neuronal functions, miR-132 is named
“NeurimmiR” [133]. Along these lines, miR-132 has a critical role in brain development,
synapse formation, and synapse maturation [134,135]. Additionally, miR-132 promotes the
cholinergic anti-inflammatory pathway by targeting acetylcholinesterase, culminating in
the reduced release of proinflammatory cytokines [136]. The anti-inflammatory potential
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of miR-132 is explored widely across various pathological conditions. Consistently, a
study by Zhang et al. [137] employing a mouse model of ICH reported that lentiviral-
mediated overexpression for miR-132 in the mouse brain striatum attenuated neurological
deficits, cerebral edema, ICH-induced changes in blood-brain barrier permeability, neu-
roinflammation, and neuronal apoptosis at day 3 post-ICH. It was also proposed that
miR-132-mediated neuroprotection after ICH could be attributed to reduced brain levels of
acetylcholinesterase [137]. However, the study has not evaluated whether ICH modulates
miR-132 expression in the mouse brain and the long-term effects of miR-132 overexpression.
Apart from acetylcholinesterase (AChE) [137], miR-132 also targets IRAK4 [138], a regulator
of proinflammatory signaling [138]. Altogether, further studies are highly required before
miR-132 can be considered a therapeutic target.

2.16. miR-140-5p

Mounting evidence indicates that TLR4 is a promising therapeutic target for ICH. To
this end, the increased expression of TLR4 was associated with poor outcomes in ICH
patients [139]. Moreover, TLR4 inhibitors are effective in reducing secondary brain damage
after ICH [140]. Of note, recent studies document TLR4 as a target of miR-140-5p, a tumor
suppressor in various human cancers [141,142], and a reduction in the brain expression
levels of miR-140-5p was observed after ICH in rats [143]. Therefore, miR-140-5p could
serve as a potential candidate to be considered to improve outcomes after ICH. Along
these lines, administration of miR-140-5p mimics, prior to ICH induction, attenuated
neurological deficits and neuroinflammation in rats [143]. Given the critical role of TLR4 in
ICH-induced neuroinflammation [144,145], studies are highly warranted to test whether
post-injury administration of miR140-5p improves outcomes after ICH.

2.17. miR-146a

miR-146a dysregulation is observed in relation to a large number of neuropathological
conditions where it mainly modulates inflammatory response [146]. Based on preclinical
studies, it is reported that miR-146a-5p exerts neuroprotection after ICH [100]. To this
end, the adenovirus-mediated overexpression of miR-146a in the rat brain attenuated
proinflammatory cytokine levels with an improvement in neurological outcomes at day
3 post-ICH [100]. Subsequently, a study by Qu and colleagues using a preclinical model
reported the downregulation of miR-146a in the perihematomal area at 48 h post-ICH and
validated the anti-inflammatory potential of miR-146a after ICH [147]. Mechanistically, miR-
146a-mediated neuroprotection was associated with a reduction in the brain expression of
TRAF6 [147], which is a key regulator of NF-kB and NLRP3 inflammasome signaling [148].
Additionally, overexpression of miR-146a attenuated the apoptosis of hippocampal neurons
after ICH in rats [149], further implicating its potential to be a viable therapeutic target
after ICH, warranting future studies.

2.18. miR-152

miR-152, a tumor suppressor microRNA that was mostly associated with cell sur-
vival [150–152], was downregulated in the perihematomal brain tissue of rats on day 1, day
3, and day 5 post-ICH [153]. In vitro studies revealed that hemin, a hemoglobin metabo-
lite that accumulates in the brain after ICH, is a regulator of miR-152 expression [153].
Moreover, genetic overexpression of miR-152 attenuated brain water content, neuronal
death, hematoma size, and neurological deficits in rats, implicating a neuroprotective role
of miR-152 [153]. Mechanistically, miR-152 regulated NLRP3 inflammasome activation
by modulating the expression of thioredoxin interacting protein (TXNIP) after ICH [153].
Additionally, lentiviral-mediated overexpression of miR-152 attenuated the serum levels of
proinflammatory cytokines [153], suggesting its possible and unexplored role in systemic
inflammation. Additionally, miR-152 was significantly downregulated in the serum of ICH
patients compared with controls [154]. Overall, dysregulation of miR-152 contributes to the
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pathophysiology of ICH and could be considered as a novel therapeutic target, warranting
further investigation.

2.19. miR-181c

miR-181c, an independent prognostic indicator for glioblastoma multiforme [155],
had altered expression levels in the serum samples of patients diagnosed with various
brain pathologies [156–158] and was associated with irregular cell proliferation, migra-
tion [155,159], Th17 cell differentiation [160], and amyloid-beta plaque buildup [161].
Employing in vitro studies, it was demonstrated that thrombin, a proteolytic enzyme that
contributes to ICH pathology, significantly downregulated the expression of miR-181c in
human microglia [162]. Additionally, miR-181c could modulate thrombin-mediated NF-κB
target gene expression in vitro by negatively regulating NF-κB activity [162], suggesting
that miR-181c is a potential candidate to be considered to modulate thrombin-induced
microglial activation after ICH. A subsequent study by Lu and colleagues [163] reported a
significant decrease in expression levels of miR-181c in the plasma samples of ICH patients
and ipsilateral brain samples derived from rats at an undisclosed time-point after ICH.
Furthermore, miR-181c mimics improved neurological function in rats, whereas miR-181c
inhibitor exacerbated neurological deficits after ICH by modulating neuronal apoptosis.
However, future studies are highly needed to define the unexplored role of miR-181c in
ICH-induced neuroinflammation.

2.20. miR-183-5p

miR-183-5p is a negative regulator of heme oxygenase-1 [164] an enzyme that plays
critical roles in iron homeostasis and oxidative and inflammatory brain damage after
ICH [165]. Though HO-1 augments acute brain damage after ICH in mice [165], the precise
functional role of HO-1 in microglia/macrophages, the prominent cell type that expresses
HO-1 after ICH, is yet to be determined. In the collagenase induction model of ICH in mice,
reduced brain expression of miR-183-5p was observed, and administration of its mimics
attenuated ferrous deposition, ROS (reactive oxygen species) production in the brain,
microglial/macrophage activation, proinflammatory cytokine levels, and neurobehavioral
defects after ICH implying that miR-183-5p exerts acute neuroprotection [164]. Moreover,
miR-183-5p agonists attenuated oxidative neuronal toxicity in vitro [166]. Overall, future
studies are warranted to characterize further the molecular mechanisms of miR-183-5p-
mediated neuroprotection and the functional role of miR-183-5p in long-term neurological
outcomes after ICH.

2.21. miR-194-5p

Reduced expression of miR-194-5p, a miR related to inflammatory responses [167,168]
is observed in the perihematomal brain tissue in rats at 6, 12, 24, and 48 h post-ICH [169].
Functionally, miR-194-5p agomir attenuated neurological deficits and brain water con-
tent via modulating the expression of tumor necrosis factor receptor-associated factor 6
(TRAF6), a protein directly involved in NLRP3 inflammasome expression and activation
after ICH [169]. Given the role of NLRP3 inflammasome in ICH-induced brain damage [72],
additional studies are required to validate the therapeutic potential of miR-194-5p.

3. Therapeutic and Diagnostic Implications of microRNA

Regulation of gene transcription is the most fundamental component of cellular
responsiveness to environmental changes. To this end, one of the evolutionarily conserved
proteins that connects external stimuli with the gene expression changes is NF-κB [170], a
master regulator of inflammation [171–173] and there are a variety of exogenous NF-κB
inhibitors in clinical trials or the market [174]. Notably, NF-κB plays a critical role in brain
damage after ICH [175] and is regarded as a potential target of therapeutic intervention.
Moreover, NF-κB activation in the perihematomal brain region is an independent predictor
of the patient outcome at 6 months after ICH [176]. As illustrated in Figure 1, miRs that
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play roles in the neuroinflammatory response after ICH could be associated with regulation
of NF-κB activation.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 21 
 

 

2.21. miR-194-5p 
Reduced expression of miR-194-5p, a miR related to inflammatory responses 

[167,168] is observed in the perihematomal brain tissue in rats at 6, 12, 24, and 48 h post-
ICH [169]. Functionally, miR-194-5p agomir attenuated neurological deficits and brain 
water content via modulating the expression of tumor necrosis factor receptor-associated 
factor 6 (TRAF6), a protein directly involved in NLRP3 inflammasome expression and 
activation after ICH [169]. Given the role of NLRP3 inflammasome in ICH-induced brain 
damage [72], additional studies are required to validate the therapeutic potential of miR-
194-5p.  

3. Therapeutic and Diagnostic Implications of microRNA 
Regulation of gene transcription is the most fundamental component of cellular re-

sponsiveness to environmental changes. To this end, one of the evolutionarily conserved 
proteins that connects external stimuli with the gene expression changes is NF-κB [170], a 
master regulator of inflammation [171–173] and there are a variety of exogenous NF-κB 
inhibitors in clinical trials or the market [174]. Notably, NF-κB plays a critical role in brain 
damage after ICH [175] and is regarded as a potential target of therapeutic intervention. 
Moreover, NF-κB activation in the perihematomal brain region is an independent predic-
tor of the patient outcome at 6 months after ICH [176]. As illustrated in Figure 1, miRs that 
play roles in the neuroinflammatory response after ICH could be associated with regula-
tion of NF-κB activation.  

 
Figure 1. Mechanism(s) by which miRs possibly regulate neuroinflammation after ICH. Figure 1. Mechanism(s) by which miRs possibly regulate neuroinflammation after ICH.

NF-κB can be activated through MyD88/IRAK1/IRAK4/TRAF6 [177], TRIF [178],
PI3K/Akt [179], and MAPK/ERK pathways [180]. Upon activation, NF-κB translocates to
the nucleus, binds to DNA, and promotes the transcription of proinflammatory cytokines.
The pathways most regulated by miR in the context of ICH-induced neuroinflammation
are TLR (Toll-like receptor)/MyD88/IRAK1/IRAK4/TRAF6 signaling and Akt signaling.
Along these lines, miR-140-5p, miR-7, miR-146a, miR-194-5p, miR-132, and miR-129-5p,
could modulate neuroinflammation possibly via regulating NF-κB activation (Figure 1).
Among these, miR-140-5p [143], miR-7 [79], and miR-129-5p [127] attenuated ICH-induced
neuroinflammation possibly through the inhibition of TLR4 signaling while miR-146a [147],
and miR-194-5p [169] exerted anti-inflammatory effects potentially through TRAF6 inhi-
bition and miR-132 exerted similar effects possibly through IRAK4 inhibition [138]. In
addition, NLRP3, a downstream target of NF-κB [181], can also be regulated by miR. To this
end, miR-223 [71] and miR-152 [153] could negatively regulate NLRP3 inflammasome and
improve acute neurological outcomes after ICH. Furthermore, miR-144-3p [42] and miR-
126-3p [126] potentially regulate neuroinflammation through modulation of Akt signaling,
a known upstream activator of NF-kB [179]. In addition, miR-let-7a [85] also could regulate
Akt signaling and hence neuroinflammation via CKIP-1, a potential upstream regulator
of Akt [182] (Figure 1). However, it would be worth investigating whether miR-mediated
effects occur independently of NF-κB activation. Though the functional roles of M1 or M2
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microglia/macrophages after ICH are yet to be defined, miR-494 augmented M1 microglia
activation and neurological deficits [67], whereas miR-let-7a-mediated neuroprotection
after ICH was associated with an increase in M2 microglia/macrophages polarization [85].
NRDP1 [67] or CKIP-1 [85] was partly responsible for M1 and M2 polarization, respectively.
However, the functional role of NRDP1 on ICH-induced inflammation is largely contro-
versial [67,68], warranting further investigation. Taken together, miR dysfunction after
ICH contributes to microglial polarization and cytokine release, critical brain responses
that play roles in secondary brain damage and brain recovery. Besides neuroinflammation,
miR-23a-3p [105] and miR-183-5p [164] may also regulate oxidative brain damage, further
implicating the potential of targeting miR in improving neurological outcomes after ICH.

Additionally, the members in the same family of miR may exert different functional
roles. To this end, miR-23a-3p has a neurodegenerative role [105], while miR-23b has
a neuroprotective role after ICH [111]. Although they are both derived from the same
double-stranded precursor, they may have different functional targets.

The preclinical studies that were conducted to elucidate the functional roles of miR
employed mostly young animal subjects. Of note, age is an independent predictor of ICH
outcomes [183]. miR-21-5p and miR-124 had neuroprotective roles in young animals [100,123],
but exerted neurodegenerative effects in old animal subjects after ICH [101,124]. Therefore,
additional studies need to be performed to better elucidate the relationship between
advanced age and the functional roles of miR. Additionally, the preclinical studies should
incorporate female subjects to determine the influence of sex in miR-regulated brain
damage after ICH.

The currently established methods of miR detection and quantification include reverse
transcription quantitative polymerase chain reaction (RT-qPCR; TaqMan), SplintR-qPCR,
and miREIA. Although RT-qPCR is a widely used method, it comes with the error-prone
step of converting miRNA to cDNA and difficulty in generating a reliable calibration
curve [184]. In contrast, SplintR-qPCR uses a hybridization and ligation step prior to RT-
PCR, whereas miREIA employs unique hybridization and specific antibody to DNA/RNA
hybrids [184,185] and both approaches generate more precise results. However, despite the
challenges in the detection and quantification of miRs, serum/plasma miRs may serve as
promising diagnostic markers. Along these lines, apart from their possible role in inflamma-
tion, miR-145 [59], miR-223 [59], miR-155 [49], and miR-152 [154] may serve as biomarkers
of ICH, but it is not clear whether they may help discriminate hemorrhagic stroke from
ischemic stroke, requiring additional studies. Additionally, further investigation needs to
be conducted elucidating the source of circulating miRNA whether they are derived from
the injured brain or arise systemically after ICH.

As RNA-based therapeutics enter clinical practice [186,187], it is further affirmed
that miR can serve as a potential target for therapeutic intervention. Clinical therapeu-
tic strategies that are being considered to manipulate miR expression include the use of
oligonucleotides (miR mimics or artificial antagonists). Given the poor pharmacokinetic
properties and insufficient efficiency of oligonucleotides in clinical trials [188], chemical
modifications such as phosphorothioates, 2′-methoxyethyl-nucleotides, and locked nucleic
acids (LNA) with an efficient delivery system or packaging are critical for clinical applica-
bility. To this end, extracellular vesicles (EVs), a heterogeneous group of small membrane
vesicles, including exosomes, can serve as an efficient vehicle for synthetic oligonucleotide
or miR delivery [189], facilitating cell-cell communication because of the natural availabil-
ity, stability, biocompatibility, and low immunogenicity of EVs [190]. Furthermore, stem
cell-derived exosomes can be engineered to carry exogenous miRs [191] targeting specific
cells [188,192].

Given the potential of miRs in modulating various pathological processes, several
phase 1 clinical trials are either completed (pending results) or underway testing the safety
and tolerability of miR-based treatment strategies. For instance, oligonucleotides targeting
miR-155 and miR-21 have completed Phase 1 testing for certain lymphomas [NCT02580552;
clinicaltrials.gov], and Alport syndrome [NCT03373786; clinicaltrials.gov], respectively.
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Though the ongoing clinical trials on various neuropathological conditions are largely
focused on testing whether miR can serve as a biomarker, a clinical trial is currently recruit-
ing patients to evaluate the efficacy of administration of exosomes overexpressing miR-124
in improving outcomes after acute ischemic stroke (NCT03384433; clinicaltrials.gov). How-
ever, despite the progress in preclinical studies, clinical trials are yet to be conducted testing
the therapeutic potential of miRs in improving outcomes after ICH.

4. Conclusions

Altogether, miR dysfunction contributes to the pathophysiology of ICH. To this end,
miR-223, miR-7, miR-let-7a, miR-23b, miR-126-3p, miR-132, miR-140-5p, miR-146a, miR-
152, miR-181c, miR-183-5p and miR-194-5p promote neuroprotective effects, whereas
miR-222, miR-494, miR-23a-3p confer neurodegenerative effects in preclinical models of
ICH. Given the potential of miR as viable therapeutic targets, further studies are required to
elucidate the molecular mechanisms of miR dysregulation after ICH. Additionally, studies
need to be conducted in a sex- and age-independent manner to fully extrapolate the efficacy
of targeting miR to improve neurological outcomes after ICH.
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Abbreviations
AChE acetylcholinesterase
Akt protein kinase B
BBB blood brain barrier
CEBP-α CCAAT/enhancer-binding protein alpha
CKIP-1 Casein Kinase 2 Interacting Protein-1, also known as PLEKHO1
CNS central nervous system
ERK extracellular signal-regulated kinase
FPR2 formyl peptide receptor 2
Hb hemoglobin
HMGB1 high mobility group box-1
HO-1 heme oxygenase 1
ICH intracerebral hemorrhage
IFNβ interferon beta
IGF1 Insulin Like Growth Factor 1
IGF1R Insulin Like Growth Factor 1 Receptor
IkB inhibitory Kappa B
IKK inhibitor of nuclear factor-κB (IκB) kinase
IL-1β interleukin 1 beta
IL-4 interleukin 4
IL-6 interleukin 6
IPMK inositol polyphosphate multikinase
IRAK1 interleukin 1 Receptor Associated Kinase 1
IRAK4 interleukin 1 Receptor Associated Kinase 4
IRF3 Interferon Regulatory Factor 3
IRF7 Interferon Regulatory Factor 7
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ITGB8 integrin subunit β8
LNA locked nucleic acid
MAPK mitogen activated protein kinase
MCAO middle cerebral artery occlusion
miR microRNA(s)
MPP 1-methyl-4-phenylpyridinium
mTOR mammalian target of Rapamycin
MyD88 Myeloid differentiation primary response 88
NEMO NF-kappa-B essential modulator
NF-κB nuclear factor kappa light chain enhancer of activated B cells
NFE2L2 nuclear factor, erythroid 2 like 2
NLR nod like receptor
NLRP3 NLR family pyrin domain containing 3
NRDP1 neuregulin receptor degradation protein-1
Nrf2 nuclear factor erythroid 2-related factor 2
PI(3,4,5)P3 Phosphatidylinositol (3,4,5)-trisphosphate
PI(4,5)P2 Phosphatidylinositol 4,5-bisphosphate
PI3K phosphoinositide 3 kinase
PIK3R2 phosphoinositide 3 kinase regulatory subunit 2
pri-miRNA primary long miRNA transcript
PTEN phosphatase and tensin homolog
RAGE Receptor for advanced glycation endproducts
RNA ribonucleic acid
RNA Pol II RNA polymerase II
RNA Pol III RNA polymerase III
ROS reactive oxygen species
RT-qPCR reverse transcription quantitative polymerase chain reaction
RTK receptor tyrosine kinase
Th17 T helper 17 cells
TLR toll like receptor
TLR2 toll like receptor 2
TLR3 toll like receptor 3
TLR4 toll like receptor 4
TNF-α tumor necrosis factor alpha
TRAF3 TNF receptor-associated factor 3
TRAF6 tumor necrosis factor receptor-associated factor 6
TRIF (Toll/interleukin-1 receptor) domain-containing adaptor inducing IFNβ

TXNIP thioredoxin interacting protein
UTR untranslated region
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