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Abstract. Tumor immunotherapy is considered to be a novel 
and promising therapy for tumors and it has recently become 
a hot research topic. The clinical success of tumor immu‑
notherapy has been notable, but it has been less than totally 
satisfactory because tumor immunotherapy has performed 
poorly in numerous patients although it has shown appreciable 
efficacy in some patients. A minority of patients demonstrate 
durable responses but the majority of patients do not respond 
to tumor immunotherapy as the tumor immune microenviron‑
ment is different in different patients for different tumor types. 
The success of tumor immunotherapy may be affected by the 
heterogeneity of the tumor immune microenvironment and its 
components, as these vary widely during neoplastic progres‑
sion. The deepening of research and the development of 
technology have improved our understanding of the complexity 
and heterogeneity of the tumor immune microenvironment 
and its components, and their effects on response to tumor 
immunotherapy. Therefore, investigating the tumor immune 
microenvironment and its components and elucidating their 
association with tumor immunotherapy should improve the 
ability to study, predict and guide immunotherapeutic respon‑
siveness, and uncover new therapeutic targets.
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1. Introduction

Over the past decade, tumor treatment has been revolution‑
ized by moving away from chemotherapy and radiation and 
toward tumor immunotherapy and targeted therapy. Tumor 
immunotherapy, which modulates immune responses against 
tumors, has shown appreciable efficacy in multiple cancer 
types and is considered to be a novel and promising therapy 
for tumors. However, the efficacy of tumor immunotherapy 
has been found to be poor in the majority of patients, despite 
its notable efficacy in in an appreciable proportion of patients 
with cancer (1‑3). It has been reported that the hyporesponsive‑
ness or unresponsiveness of patients to tumor immunotherapy 
may be due to the heterogeneity of the tumor immune micro‑
environment (TIME) (4,5). The TIME and its components 
may vary widely during neoplastic progression and among 
different patients, and these variations, as well as the heteroge‑
neity of the TIME and its components, have a profound effect 
on the outcome of tumor immunotherapy (4,5). As a result, it 
is crucial to understand the roles of the TIME and its compo‑
nents during neoplastic progression and in different patients in 
order to improve the efficacy of tumor immunotherapy. With 
the deepening of research and the development of technology, 
our understanding of the complexity and heterogeneity of the 
TIME and its components and their effects on the response of 
patients to tumor immunotherapy has also improved. Deeper 
analysis of the complexity and heterogeneity of the TIME and 
its components is likely to uncover advanced biomarkers that 
may prove useful in identifying patient populations responsive 
to current tumor immunotherapy, and will benefit the search 
for novel targets for therapeutic modulation. The aim of the 
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present review was to provide a summary of the current knowl‑
edge centered around the TIME, focusing on its components 
and their association with tumor immunotherapy, in order to 
improve the ability to study, predict and guide immunothera‑
peutic responsiveness and uncover novel therapeutic targets.

2. Tumor cells and their function

Tumor cells, the dominant cellular components of the TIME, 
play an important role in the TIME, and they can directly 
inhibit the function of immune cells via secreting tumor anti‑
gens or creating a microenvironment that is not conducive to 
the metabolism of immune cells, thereby causing inactivation 
and inhibition of immune cell function (6). The tumor cells 
can also inhibit the function of immune cells through secreting 
inhibitory cytokines, capturing chemokines, secreting VEGF, 
which can suppress dendritic cell (DC) maturation and acti‑
vate regulatory T cells (Tregs) directly, and activating immune 
checkpoints (6,7).

3. Immune cells and tumor immunotherapy

Immune cells, also a dominant cellular component of the 
TIME, serve an important role in the TIME, principally 
consist of T cells, B cells, monocytes‑macrophages, natural 
killer (NK) cells, DCs and their subsets.

T cells. T cells, the main immune cells in the TIME, induce an 
antitumor immune response by recognizing antigens on tumor 
cells. The proportion and subsets of T cells in the TIME are 
the major factors affecting tumor progression (8).

Exhaustive T cells, a special subset of T cells, are 
characterized by dysmetabolic disorder, poor self‑renewal 
ability, piecemeal loss of function, as well as sustained 
high expression of inhibitory immune checkpoints like 
cytotoxic lymphocyte antigen‑4 (CTLA‑4), programmed 
cell death protein‑1 (PD‑1), T‑cell immunoglobulin and 
mucin‑domain containing‑3 (TIM‑3), lymphocyte activa‑
tion gene‑3 (LAG‑3) and T‑cell immunoglobulin and ITIM 
domain (TIGIT), among others (8,9). T‑cell exhaustion can 
be classified into ‘pre‑exhaustion’ and ‘terminal exhaustion’ 
stages. ‘Pre‑exhausted’ T cells retaining their T‑cell function 
persist in vivo for 30‑40 days and eventually differentiate 
into ‘terminally exhausted’ T cells (10,11). Studies show that 
‘pre‑exhausted’ T cells express PD‑1, T‑cell‑specific tran‑
scription factor‑1 as well as the chemokine receptor C‑X‑C 
chemokine receptor type 5 (12,13). PD‑1 blockers primarily 
act on ‘pre‑exhausted’ rather than ‘terminally exhausted’ 
T cells (10). Patients with melanoma with more ‘pre‑exhausted’ 
T cells respond better to immune checkpoint blockade therapy 
for longer periods of time (10), indicating that increasing the 
numbers of ‘pre‑exhausted’ T cells may contribute to better 
response to immune checkpoint blockers (10). Therefore, 
various approaches have been employed in an attempt to 
convert ‘terminally exhausted’ T cells into ‘pre‑exhausted’ 
T cells or younger memory T cells (9,14).

Tregs, a CD4+ T‑cell subset, specifically express CD25 and 
Foxp3 (15,16). Tregs bind to antigen‑presenting cells (APCs) 
via expressing CTLA‑4, reduce the secretion of co‑stimulators 
CD80 and CD86, and suppress the co‑stimulatory signals of 

T cells. It has been widely reported that Tregs inhibit the acti‑
vation and function of T cells via these functions or directly act 
on T cells (17). By secreting immunosuppressive molecules, 
such as IL‑10, IL‑35, TGF‑β, indole‑2,3‑dioxygenase and 
adenosine, Tregs lead to exhaustion of T cells (18). Activating 
Tregs can upregulate the expression of multiple suppressive 
immune checkpoints, such as PD‑1, CTLA‑4, TIM‑3 and 
TIGIT (19), and also upregulate the expression of multiple 
molecules, which induce T‑cell dysfunction, and transport 
molecules, such as CD39, CD73 and CCR4 (20). Reducing 
Treg numbers can reverse tumor‑induced dysfunction of 
T cells (20). In brief, these findings indicate that changes of the 
subgroup and proportion of T cells in the TIME may affect the 
outcome of tumor immunotherapy.

B cells. Abundant B cells may be found in tumors and 
tumor‑draining lymph nodes, and they are common immune 
cells of the TIME (21). B cells, serving as APCs or recruiting 
DCs, participate in antigen presentation and consequently 
adjust T‑cell differentiation and activation (22). The extent 
of infiltration by B cells, particularly memory B cells and 
plasma cells, was shown to be associated with the progres‑
sion and prognosis of gastric cancer (23). Antibody‑induced 
circulating immune complexes can inhibit antitumor 
immune response, leading to poor prognosis in patients 
with pancreatic ductal adenocarcinoma and bone marrow 
tumors (24,25). Lymphotoxin secreted by B cells can accel‑
erate tumor angiogenesis via activating STAT3 signaling, 
which in turn promotes cell proliferation in prostate cancer, 
melanoma and lung cancer (26). B cells can also promote 
bladder cancer metastasis by increasing the expression of 
extracellular matrix and remodeling‑related genes (27). 
B cells, by secreting TGF‑β, promote the production of reac‑
tive oxygen species and nitric oxide in myeloid cells, as well 
as the transformation of CD4+ T cells into Tregs, thereby 
suppressing the function of CD4+ T, CD8+ T and NK cells, 
and accelerating tumor growth and metastasis (26,28). CD20 
monoclonal antibody was found to restrain the function of 
CD4+ and CD8+ T cells in melanoma (26).

In addition, B cells can directly destroy tumor cells 
and participate in antitumor immunity; they also express 
TNF‑related apoptosis‑inducing ligand to induce the lysis of 
melanoma cells and granulosin B to trigger the lysis of breast 
cancer cells, serving a protective role in patients with breast 
cancer and melanoma (26,29). Furthermore, activated B cells 
enhance T‑cell‑mediated antitumor responses in patients with 
cervical cancer (30). These findings suggest that B cells in the 
TIME have a dual function, as they may promote as well as 
inhibit tumor growth.

NK cells. NK cells, the predominant members of the innate 
lymphocyte family, are a class of natural immune cells 
that exhibit strong cytolytic activity against tumors (31). 
NK cells may be divided into the immature subset of CD56+ 
CD16‑ cells that can secrete a large quantity of cytokines, 
and the mature subset of CD56‑ CD16+ cells that are 
strongly cytotoxic (32,33). NK cells recognize and destroy 
target cells via surface receptors, such as TIGIT, LAG‑3 
and PD‑1. Allogeneic NK cells can discern and kill acute 
myeloid leukemia (AML) cells in hematopoietic stem cell 
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transplantation (32), which is of significant therapeutic value 
in AML (34,35). NK cell activity is modulated by blocking 
NK cell immune checkpoints, as NK cells express multiple 
immune checkpoint receptors, such as killer cell Ig‑like 
receptor and CD94/NKG2A, and express multiple immune 
checkpoints, including TIM‑3, TIGIT, CD96 and LAG‑3, 
which can interact with their cognate ligands on tumor cells 
or on other immune cells. Moreover, NK cells are innate 
lymphoid cells that efficiently kill tumor cells without 
MHC specificity (36). A novel strategy often employed in 
tumor immunotherapy is through applying NK cell immune 
checkpoint inhibitors (37). The IgG4 anti‑NKG2A antibody 
monalizumab was used to treat various solid tumors, and was 
shown to be generally well‑tolerated (37,38). The combina‑
tion of monalizumab and the PD‑1/PD‑L1 disrupting agent 
durvalumab was used to treat colorectal cancer, which was 
also well‑tolerated. The disease in 11 patients was stable 
and the disease control rate was 24% at 16 weeks in the 
expansion cohort. In addition, the anti‑EGFR antibody 
cetuximab is an established therapeutic approach to squa‑
mous cell carcinoma of the head and neck, acting through 
induction of antibody‑dependent cytotoxicity through the 
CD16 (FcγRIII) receptor expressed on NK cells (39). The 
rationale for this approach relies on evidence that squamous 
cell carcinomas of the head and neck are strongly positive 
for HLA‑E and are infiltrated by NK cells (40). This regimen 
was also well‑tolerated, characterized mostly by grade 1‑2 
adverse events, with an overall response rate of 31% and 
disease stabilization rate of 54% (38). Furthermore, it is not 
necessary for NK cells to go through the process of antigen 
recognition, which indicates that NK cells can eliminate 
tumor cells without sensitization, preferentially eliminating 
tumor stem cells (41). It must be pointed out that the decrease 
in the number of NK cells may be associated with cancer 
risk (42). Compared with T cells, NK cells have a shorter 
persistence and may also represent a safer and more effective 
adoptive immunotherapy for solid tumors and hematological 
malignancies (43). Therefore, regulation of NK cell function 
and enhancement of NK cell toxicity are the dominant means 
of NK cell‑based tumor immunotherapy (44,45).

DCs. DCs mobilize naive T cells differentiate into effector 
cells and, thus, exert antitumor immunomodulatory effects 
by recognizing foreign antigens. Lysosomal‑associated 
membrane glycoprotein 3‑positive DCs, a mature subset of 
DCs, can express a variety of immune‑related ligands and 
regulate the functions of a variety of lymphocytes and their 
subsets (46). Reducing the recruitment and the number of 
CD103+ DC leads to poor infiltration and dysfunction of CD8+ 
T cells in the TIME (8). Compared with the untreated control, 
DC vaccines, alone or in combination with PD‑1 inhibitors, 
have shown better tumor control and milder toxicity compared 
with the untreated control (47,48). The aforementioned find‑
ings indicate that DCs can affect the function of other immune 
cells in TIME.

Mononuclear macrophages. Tumor‑associated macrophages 
(TAMs), the most abundant population of tumor‑infiltrating 
immune cells, refers to the macrophages located in or near 
the tumor (49). In response to tumor antigen stimulation, 

macrophages can differentiate into two subtypes: The M1 
subtype, which promotes antitumor immunity, and the M2 
subtype, which plays a role in tumor progression (49). TAMs, 
which tend to differentiate into the M2 subtype, are involved in 
tumorigenesis and tumor progression (50). It has been reported 
that an increase in TAMs is associated with poor prognosis 
in patients with cancer (51). Nanocomposites can promote the 
transformation of M2 to M1 macrophages, suppress tumor 
angiogenesis, reshape the TIME, present antigens to T cells, 
stimulate T cells to release cytokines, stimulate NK cells 
to infiltrate to tumor cells, and activate antitumor immune 
response to kill tumor cells (52,53). Therefore, TAMs in the 
TIME may also affect the outcome of tumor immunotherapy.

4. Non‑immune cells and tumor immunotherapy

Fibroblasts. Fibroblasts, an important type of mesenchymal 
cells, maintain organ structure and homeostasis by secreting 
cytokines, chemokines, growth factors and extracellular 
matrix. Carcinoma‑associated fibroblasts (CAFs) are among 
the most important immune cells in TIME, which attract 
and mobilize immunocytes with inhibitory function through 
the release of cytokines, such as IL‑6 and TGF‑β, as well 
as chemokines, such as C‑X‑C motif chemokine ligand 
(CXCL)1, CXCL12 and C‑C motif chemokine ligand 2 (54). 
In addition, CAFs attract macrophages, T cells and NK cells 
to the tumor stroma (49) and they also induce resident macro‑
phages and neutrophils to differentiate into M2 macrophages 
and N2 neutrophils, thereby serving an antitumor immuno‑
suppressive role (55). It has been found that tumorigenic 
signals in melanoma interfere with T‑cell‑mediated anti‑
tumor responses by regulating the phenotype of CAFs (8). 
Paracrine signaling between tumor cells and fibroblasts can 
lead to chemoresistance, thereby negatively affecting chemo‑
therapeutic efficacy in patients with breast cancer (56). CAFs 
induce phosphorylation of heat shock transcription factor‑1 
at S326, as well as proliferation, epithelial‑to‑mesenchymal 
transition and cancer stem cell‑like transition of gallbladder 
cancer (GBC) cells by secreting thrombospondin‑4 and 
binding to integrin α2, a transmembrane receptor on GBC 
cells (57). CAF exon LINC00659 accelerates the prolifera‑
tion, invasion and migration of colorectal cancer cells via 
the microRNA‑342‑3p/annexin 2 axis (58). Activated CAFs 
promote the invasion and migration of ovarian cancer cells 
via the TGF‑β/collagen type VI alpha 1 chain signaling 
pathway (59). These findings indicate that CAFs in the 
TIME can affect the functions of other immune cells and 
cytokines, the efficacy of tumor immunotherapy and tumor 
growth.

Vascular endothelial cells. Vascular endothelial cells, another 
non‑immune cell type in the TIME, highly express PD‑L1, 
which suppress CD8+ T‑cell infiltration and facilitate Foxp3+ 
T‑cell aggregation, thus forming a type of ‘immunosup‑
pressive barrier’ (60). There are reports that anlotinib can 
downregulate the expression of PD‑L1 in vascular endothelial 
cells to suppress tumor growth (60). These findings indicate 
that the vascular endothelial cells in the TIME also affect the 
functions of other immune cells and immune checkpoints to 
affect tumor immunotherapy.
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5. Cytokines and tumor immunotherapy

IL‑2, which activates and promotes the proliferation of T cells 
and NK cells, is the most promising cytokine in tumor immu‑
notherapy (49). IL‑2 activates aromatic hydrocarbon receptors 
to regulate CD8+ T‑cell failure (61). Second‑generation IL‑2 
based on CD122 can induce the production of NARA1 inter‑
leukin. NARA1 with longer half‑life in vivo can completely 
avoid binding to CD25 and stimulate proliferation and activa‑
tion of CD8+ T cells and NK cells more effectively (62).

IL‑12 induces immunosuppressive deficiency during CD8+ 
T‑cell differentiation (63). T cells pretreated with IL‑12 can 
prevent CD8+ T cells from failing and enhance T‑cell activa‑
tion, thus boosting tumor clearance rate as well as reducing 
the risk of immune‑related adverse events in patients with 
cancer (64). Recombinant IL‑2, which has been approved by 
the US Food and Drug Administration for antitumor immuno‑
therapy in metastatic kidney cancer and metastatic melanoma, 
has shown considerable therapeutic efficacy (49). It is reported 
that IL‑12 does not only enhance the cytotoxicity of chimeric 
antigen receptor‑T (CAR‑T) cells, but can also reshape the 

TIME with more prominent CD4+ T‑cell infiltration and fewer 
Tregs, which has a significant therapeutic effect on glioblas‑
toma multiforme (65). It may be concluded that cytokines in 
the TIME can affect the function of immune cells and the 
efficacy of tumor immunotherapy.

6. Immune checkpoints and tumor immunotherapy

The application of immune checkpoint inhibitors has been 
a novel approach to and research hotspot in tumor immuno‑
therapy in recent years, and has also shown considerable efficacy 
in the treatment of several tumors (66‑68). First‑generation 
immune checkpoint blockade tumor immunotherapy based on 
antibodies acts by blocking the interaction between receptors 
and/or ligand molecules, such as CTLA‑4 and PD‑1, that are 
involved in T‑cell activation or reduced function (8).

PD‑1 and PD‑L1. PD‑1, a member of the CD28 family, has two 
ligands with different expression patterns, PD‑L1 (B7‑H1) and 
PD‑L2 (49), which can be used not only as an index of predicting 
tumor occurrence, but also as tumor prognostic index (69,70). 

Figure 1. Associations and function of TIME components. TIME, an extremely complex microenvironment, which is mainly composed of tumor cells, 
immunocytes, NICs, stroma, cytokines, chemokines, ICPs and the interactions among them, plays a key role in the occurrence, development and metastasis of 
tumors. NICs, such as fibroblasts, induce the differentiation of immune cells to inhibitory subtypes by producing cytokines and chemokines, which attract the 
inhibitory immune cells to the tumor center and the cytotoxic immune cells, such as macrophages, T cells and NK cells, to the tumor matrix. B cells promote 
the growth and metastasis of tumors by inhibiting the function of immune cells, promoting the production of ECM and tumor angiogenesis. Macrophages 
promote tumorigenesis, progression and metastasis by differentiating into the M2 subtype to express ICPs, secrete cytokines and chemokines, and promote 
EMT, tumor angiogenesis and lymphangiogenesis. Therefore, the TIME can inhibit antitumor immune responses (part A). However, M1‑type macrophages 
exert antitumor activity by secreting cytokines and chemokines. NK cells can induce tumor cell lysis by expressing immune checkpoints, releasing cytolytic 
granule perforin and granular enzyme. DCs present tumor antigens to T cells, which can induce T‑cell activation to kill tumor cells. In conclusion, the TIME 
can enhance antitumor immune response (part B). Immune cells, composed of T cells, B cells, NK cells, macrophages and DCs (part C), can each be divided 
into several different or opposite subtypes that all play a role in inhibiting antitumor immune response or enhancing the different functions of antitumor 
immune response to inhibit or promote the occurrence, development and metastasis of tumors. TIME, tumor immune microenvironment; NICs, non‑immune 
cells; ECM, extracellular matrix; ICP, immune checkpoint; NK, natural killer; DCs, dendritic cells; EMT, epithelial‑to‑mesenchymal transition.
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The combination of PD‑1 with PD‑L1, through the PI3K‑AKT 
signaling pathway, releases immunosuppressive signals to 
inhibit the activation and proliferation of T cells, as well as 
to induce T‑cell tolerance and exhaustion (49,71). It can also 
directly affect the proliferation of cytotoxic T cells through the 
SH2 containing protein tyrosine phosphatase‑2/Ras/MAPK 
signaling pathway (72). PD‑L1 alone or in combination with 
LAG‑3 blocker and CXCL13 can contribute to delayed tumor 
growth and is associated with survival benefits (73,74). It has 
been pointed out that the monovalent bispecific antibody 
MEDI5752 can suppress PD‑1 and CTLA‑4, thus enhancing 
the blocking effect on activated PD‑1+ T cells (75). Tumor 
immunotherapy with CTLA‑4 and PD‑1 monoclonal anti‑
bodies to block immune checkpoints has also achieved notable 
efficacy in a number of tumors (6,20). Pembrolizumab and 
durvalumab, as PD‑1 monoclonal antibodies, have also shown 
marked efficacy in patients with esophageal cancer and are 
available as second‑line treatment in patients with esopha‑
geal squamous cell carcinoma (ESCC) (76), which has been 
approved for clinical use for ESCC in Japan (46).

LAG‑3. LAG‑3 is an immune checkpoint expressed on the 
surface of various lymphocytes, including activated T cells, 
Tregs, B cells, NK cells and plasmacytoid DCs (49). LAG‑3, 
which has a similar structure to CD4 but higher affinity to 
APCs, can compete with MHC Ⅱ complex antigens, thereby 
inhibiting T‑cell activation (49). Anti‑LAG‑3 monoclonal 
antibody, as well as bispecific antibodies targeting LAG‑3 and 
PD‑L1, can block the immunosuppression mediated by LAG‑3 
and PD‑L1, thus enhancing the activity of T cells, in order to 
suppress cell proliferation and tumor growth, which may prove 
beneficial for numerous patients with cancer (77,78).

TIGIT. TIGIT is an immune checkpoint expressed on the 
surface of CD4+ T cells, CD8+ T cells, NK cells and Tregs, 
which has become a new hotspot in tumor immunotherapy in 
recent years. TIGIT combined with CD155 expressed by APCs 
or tumor cells in turn inhibits T cells and NK cells (79,80), 
which means that blocking TIGIT can facilitate the secretion 
of cytokines of CD4+ and CD8+ T cells, as well as restore the 
function of T cells and NK cells (81,82). It has been reported 
that TIGIT‑blocking antibodies can accelerate the expression 
of cytokines and chemokines, thereby enhancing the antitumor 
immune response (83). TIGIT monitoring in the peripheral 
blood of patients with cancer may be used as an early detection 
marker for anti‑PD‑1 immunotherapy (84). Given all the afore‑
mentioned factors, TIGIT is a potential immune checkpoint in 
the TIME that can affect the function of immune cells and the 
efficacy of tumor immunotherapy.

7. Conclusions

In conclusion, the TIME is complex and has numerous 
components that may serve as tumor immunotherapy targets; 
furthermore, these components can interact and affect one 
another, which greatly affects the efficiency of tumor immuno‑
therapy (Fig. 1). Moreover, the TIME differs among different 
patients and at different time points. Therefore, fully eluci‑
dating the changes occurring in the TIME and its components 
during tumor development in specific patients may be the key 

to administering effective tumor immunotherapy. Further 
research must be conducted in follow‑up studies on tumor 
immunotherapy, in order to improve the specificity and effec‑
tiveness of this treatment modality in cancer management.
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