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The basic structure of receptive fields and functional maps in primary visual cortex is established without exposure to normal
sensory experience and before the onset of the critical period. How the brain wires these circuits in the early stages of
development remains unknown. Possible explanations include activity-dependent mechanisms driven by spontaneous activity
in the retina and thalamus, and molecular guidance orchestrating thalamo-cortical connections on a fine spatial scale. Here I
propose an alternative hypothesis: the blueprint for receptive fields, feature maps, and their inter-relationships may reside in
the layout of the retinal ganglion cell mosaics along with a simple statistical connectivity scheme dictating the wiring between
thalamus and cortex. The model is shown to account for a number of experimental findings, including the relationship
between retinotopy, orientation maps, spatial frequency maps and cytochrome oxidase patches. The theory’s simplicity,
explanatory and predictive power makes it a serious candidate for the origin of the functional architecture of primary visual
cortex.
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INTRODUCTION
In tangential electrode penetrations across primary visual cortex

one often observes systematic changes in the receptive field

properties of neurons, such as their preferences for orientation and

ocular dominance. Vertical electrode penetrations, in contrast,

encounter cells sharing similar response properties [1–4]. The full

two-dimensional structure of these ‘functional maps’ has been best

visualized using intrinsic optical imaging [5,6]. Using this

technique, maps of orientation, ocular dominance, spatial

frequency, retinotopy, and color, have been obtained in the early

visual cortex of various species [5–23]. In-vivo, two-photon

microscopy, is now yielding a first look at the organization of

functional maps with cellular resolution [24,25]. Despite years of

research onto the columnar architecture of the cortex there are

many important questions that remain unanswered, including the

actual origin of the maps and their shapes, the reasons underlying

their mutual relationships and, above all, their functional

significance in normal visual processing [26–28].

Here I advance a theory that shows promise in explaining the

development of simple-cell receptive field and feature maps in cat

primary visual cortex [29,30]. The cat was chosen to develop these

ideas because of the wealth of available data in this species. First,

data on orientation maps, ocular dominance and spatial frequency

columns in cat have been described and analyzed in detail in

a number of independent laboratories [7,10–12,14,17,31–42].

Second, the optics, anatomy, and electrophysiology of cells in the

cat early visual pathway, both in the adult and during

development, have been well characterized (see [43,44] for

reviews). Third, the statistics of monosynaptic connectivity

between the thalamus and layer 4 in the adult cortex are, so far,

available only in the cat [45,46]. Finally, the spatial statistics of the

retinal ganglion cell mosaics in cat have been carefully measured

and rigorously modeled [47–51].

In the kitten, orientation columns and simple-cell structure are

all present from the very beginning, as soon as electrophysiological

recordings from cortical cells are feasible. Hubel and Wiesel (1963)

first demonstrated that kittens lacking visual experience have cells

that are both tuned for orientation and cluster according to their

orientation preferences [52]. The first cortical responses are

observed in the input recipient layers 4 and 6 and nearly 90% of

the cells are dominated by the contralateral eye [36,53–55]. These

receptive fields tend to have a single OFF subregion. Neurons with

a single ON subregion and others showing the classical simple-cell

arrangement with ON and OFF subregions side-by-side appear

later [53]. Complex cells, defined by overlapping ON/OFF

responses, are not very numerous in these initial stages of

development [53] (but see Hubel and Wiesel (1963)). These

observations seem at odds with models that posit a competition

between ON/OFF cells where one would expect a refinement of

simple-cell structure from an initial state of substantial ON/OFF

overlap [56,57]. Furthermore, as pointed out by Crair et al (1998),

the fact that segregation of ocular dominance columns develops

from an initial condition of strong contralateral dominance

presents yet another challenge for developmental models. These

investigators have suggested that the early development of the

contralateral input sets up the template for the orientation map

and that the ipsilateral eye goes ‘along for the ride’. How the

ipsilateral input can ‘go along for the ride’ and, at the same time,

overcome the initial contralateral dominance to establish ocular-

dominance columns is unknown.

Theoretical approaches to cortical map formation based on self-

organization and symmetry-breaking normally assume initially

random, or disordered, maps [58–67]. However, we now know

that salient features of the adult cortical organization, including

the sub-region segregation of simple cells, orientation, and ocular

dominance maps, manifest themselves at the earliest stages of

cortical development, before the onset of the critical period. Thus,
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to fully understand cortical map formation we need to answer the

following two separate questions [36,58,59,68]. Initial map

establishment: What are the factors that determine the structure of

maps at the earliest stages of development before the onset of the

critical period? Map maintenance and plasticity: To what extent do

activity-dependent developmental processes maintain, modify, or

refine, this initial state? The relative contributions of these two

stages of development can be properly assessed only after clear

descriptions of both processes are obtained.

Here I focus solely on the first of these questions. How exactly

are the initial cortical maps established? Two main hypotheses

have been considered so far: (a) Correlation-based mechanisms

relying on the pattern of spontaneous activity in the retina and the

LGN [59,69–73], and (b) molecular guidance directing the

developing thalamocortical projections into forming the desired

maps [68,74–78]. The present study elaborates on an alterna-

tive hypothesis: the blueprint for the formation of simple-cells

receptive fields in layer 4, the feature maps in the cortex, and

many of their inter-relationships, may reside in the layout of the

retinal ganglion cell mosaics along with a simple statistical

connectivity scheme between the thalamus and the cortex

[29,30]. In what follows we refer to this idea simply as the

‘statistical connectivity’ model.

The possibility that the structure of the retinal ganglion cell

(RGC) mosaics could influence the development of receptive fields

in the cortex was first formulated by Wassle and co-workers [49].

These investigators noted that nearest neighbors on the X-cell

RGC mosaic tend to be of opposite sign, generating ON/OFF

pairs in close proximity (Fig 1a). As a consequence of this property,

if cortical cells were to pool in space a small number of nearby

receptive fields, the result would be the sum ON and OFF

Gaussian receptive fields slightly displaced in space (ignoring the

surrounds). This would generate a simple-cell RF with a preference

for orientation. Soodak (1987) elaborated on this idea and showed

that such a model generates orientation maps of periodicity

comparable to those observed experimentally [29]. I recently

confirmed these findings and demonstrated that a modified version

of the model further explains aspects of the statistics of

monosynaptic connectivity between the LGN and the cortex

[30,45,46]. These encouraging results motivated the present study,

where I attempt to take these ideas a step forward by asking if the

model can account for the structure of various cortical maps and

their mutual relationships.

Our discussion will center primarily on how receptive fields and

cortical maps are seeded by the initially dominant input from the

contralateral eye. The hope is that once the receptive fields and

maps generated by the contralateral eye are well understood

within the context of the theory, we can proceed to investigate how

the delayed ipsilateral input, and activity-dependent processes,

modify these initial structures during the critical period.

RESULTS

Model description
Here I consider a simplified version of the statistical connectivity

model [30] that reduces to the original proposal by Soodak [29].

The formal relationship between this simplified model and the full

statistical connectivity model, as well as the selection of the

parameters, are described in detail in Experimental Procedures below.

The first layer of the model consists of a simulation of the layout

of the X retinal ganglion cell mosaic. The two key features of the

spatial statistics of the mosaics the model must capture are: (a) the

quasi-regularity of the arrays and (b) the functional independence

between ON/OFF mosaics. Quasi-regularity implies that if we

know that a cell is located in one specific location P, then the

density of cells of the same class as a function of the distance from

P is initially low at small distances, increases to peak above the

mean density, and then settles down to the mean density at large

distances (Fig 1b). The functional independence of the arrays

Figure 1. Spatial statistics of X retinal ganglion cell mosaic. (a) The result
of simulating the layout of the RGC mosaic of ON-center (red) and OFF-
center (blue) ganglion cells using the method of Eglen et al (2005). The
simulation captures the property that ON/OFF cell pairs lying in close
proximity of one another. (b) Conditional density of ON-center cells
given that one ON-center cell is located at the center of the image. The
shape of the conditional density illustrates that there is a disk of low
density surrounding the cell, followed by a rim of high density and then
decaying back to the average level. This is the behavior expected from
a quasiregular distribution of cell bodies. (b) The conditional density of
OFF-center cells given that one ON-center cell is located at the center of
the image. The density is flat except for the fact that it dips at the
center, indicating that cells bodies cannot overlap.
doi:10.1371/journal.pone.0000251.g001
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means that knowing the location of one ON cell only tells us that

an OFF cell cannot lie at the same location (Fig 1c) [51]. The

simulated retinal ganglion cell mosaic in Fig 1a shows how these

two features generate pairs of ON/OFF cells in close proximity.

Receptive field centers are modeled as (isotropic) Gaussians

functions of appropriate size to replicate the experimentally

measured coverage factor (representing the average number of

receptive fields covering one point in visual space) [79]. Geniculate

cells are assumed to get input from only one X-RGC [80,81]. This

is a reasonable approximation because, even if some geniculate

cells receive more than one afferent, the receptive fields of their

inputs overlap almost entirely [82]. Thus, the (adult) cortex can be

thought as effectively sampling directly from the RGC mosaic.

Afferents to the cortex are assumed to reflect the retinotopic

organization of the RGC mosaic.

The second layer in this simplified version of the model

represents layer 4 of the cortex. Each cortical cell weights the input

afferents by a (isotropic) Gaussian function of the distance between

the afferent and the cell body location. The spatial extent of the

Gaussian, determined by its standard deviation ss, is such that only

a few geniculate cells contribute strongly to the cortical receptive

field. The receptive field of the cortical cell is simply the linear sum

of all of its weighted afferents. There is no thresholding or spiking

in the simulated cortical cells. Thus, all the results of the model are

best interpreted as referring to the feed-forward intracellular

response in first-order layer 4 cells.

After computing the receptive field at each cortical location,

a number of its characteristics, including its center in the visual

field, preferred orientation and spatial frequency were computed

as described in Experimental Methods. Having this information at

hand, I investigated the predicted relationships among the

retinotopic, orientation and spatial frequency maps, as well as

how tuning for orientation varies as function of location within the

orientation map.

Receptive fields and orientation maps
To summarize some of our previous results [30], one finds that despite

the fact that there are no anisotropies invoked anywhere in the model

(i.e., the receptive fields of the geniculate cells and connectivity

function are both circularly symmetric), the resulting receptive fields

can be tuned for orientation (Fig 2). The reason is simply that the

tendency for ON/OFF center cells to cluster in the RGC mosaic, the

relative low coverage factor, and the pooling of a small number of

afferents combine to generate oriented receptive fields.

Interestingly, because orientation selectivity arises primarily due

to the pairing of ON- and OFF-center cells as nearest neighbors in

the RGC mosaic, the model explains the tendency of simple cells

to have two effective sub-regions [83,84] and odd-symmetry

[83,85]. Similarly, the model predicts that blocking one of these

classes of cells should prevent the development of normal

orientation selectivity [86]. As explained in a previous study, the

model falls short in accounting for the full elongation of the sub-

regions as measured by the first-order kernels in reverse

correlation experiments, but is compatible with the distribution

of afferents along the a RF sub-region [30,45]. The simulated

orientation maps exhibit many of the qualitative features observed

in the data, including orientation singularities (pinwheels),

fractures, saddle points, and linear zones [29,30].

Retinotopy is linked to the density of retinal

ganglion cells
To study the retinotopic map in the model imagine superimposing

a perfectly square grid on the surface of the cortex. For each

Figure 2. Orientation maps and simple cell receptive fields generated by the model. The orientation map and representative receptive fields at three
locations on the map are shown. Receptive fields are represented in a pseudo-color map such that ON-subregions appear in red and OFF-subregions
appear in blue. The horizontal scale bar represents 1mm of cortex.
doi:10.1371/journal.pone.0000251.g002

Origin of V1 Architecture

PLoS ONE | www.plosone.org 3 February 2007 | Issue 2 | e251



neuron on the grid we can find out the location of its receptive

field center in visual space (as defined by its center-of-mass). The

result of plotting the centers of receptive fields in visual space in

one instance is shown in Fig 3a. Superimposed on the grid are the

locations of the RGC centers (ON-center (red) and OFF-center

(blue) dots). Note that regions in the visual field bounded by

adjacent horizontal and vertical contours map to the same surface

area in the cortex. Therefore, large regions correspond to areas of

low local magnification factors (measured in mm2/deg2) while

smaller regions represent areas of high magnification factors. It is

apparent from the diagram that areas of low magnification are

those where the density of RGC input is low, while areas of high

magnification correspond to areas where the density of RGC is

high. In some way, this is reminiscent of the relationship between

RGC density and cortical magnification that is known to exist at

a coarse scale [87]. The model suggests that a similar relationship

might be expected at small spatial scales, so that fluctuations in the

local RGC density should affect the local cortical magnification

factor.

One way to quantify this effect is to define (u, v) as the

coordinates on the cortex and (x, y) the coordinates of the visual

field. The map T: (u, v)R(x, y) describes the location of the

receptive field’s center-of-mass in the visual field at any given

cortical location. The area of visual space represented by small

area of tissue around a cortical point is then given by the

determinant of the Jacobian matrix:

J~
Lx=Lu Lx=Lv

Ly=Lu Ly=Lv

����
���� deg =mmð Þ2

This number corresponds to the inverse of the local (area)

magnification factor and is directly related to the rate of change of

RF position across a unit of cortical distance [88,89]. Interestingly,

the distribution of the Jacobian is punctated by local maxima

(Fig 3b). When the RGC input (represented by the white dots in

the Figure) is laid on top of the Jacobian distribution it appears

evident that local maxima of the Jacobian coincide with areas of

low RGC density.

A better understanding of the Jacobian dependence on the local

density of ON/OFF cells is gained by highlighting the locations in

the (rON, rOFF) plane achieving the highest and lowest values of the

Jacobian (Fig 3c). In this scatter-plot, red dots indicate the

locations above the 90th percentile for the Jacobian distribution,

blue dots represent those below the 10th percentile, and gray dots

correspond to intermediate values. It can be seen that the highest

values of the Jacobian (lowest cortical magnification) tend to occur

when both rON and rOFF are low. The lowest values of the

Jacobian (highest magnification) are attained in regions where one

of the densities is high and the other low.

These results can be understood intuitively. The quasi-regularity

of the arrays implies that areas where both rON and rOFF are low

will be surrounded by a rim with above average densities of cells.

The receptive fields in the region of cortex receiving afferents from

a retinal patch with low RGC densities will see their receptive

fields dominated by inputs coming from the surrounding rim.

Thus, as one moves on the cortex across a region with low RGCs

densities the cortical RFs will rapidly shift their position form one

side of the rim to the one diametrically opposed. This, of course,

implies a large value of the Jacobian. In contrast, if at one retinal

location rON is high and rOFF is low then, by the quasi-regularity of

the arrays, one expects the opposite relationship to hold in the

near neighborhood. This local ‘anti-phase’ relationship between

the densities allows for a relatively uniform total density across

Figure 3. Retinotopy is linked to the local density of retinal ganglion
cells. (a) Local distortions in the retinotopy are linked to the local RGC
density. The diagram illustrates the location of the RGCs in one patch
retina along with the locations in visual space of the centers of cortical
RFs whose cell bodies lie on a perfectly square grid on the cortex. All
regions bounded by adjacent vertical and horizontal contours map to
the same square on the cortical grid. Thus, large regions correspond to
locations of low magnification factors and small regions correspond to
locations of high magnification factors. (b) The distribution of the
Jacobian is such that it sprinkled with discrete regions of local maxima.
These regions of rapid change in the cortical RF locations correspond to
areas of low densities in the RGC mosaics (both ON and OFF cells are
shown by the white dots). (c) The figure shows a scatter-plot of (rON,
rOFF) while indicating in red those locations with the highest 10% (in
red) and the lowest 10% (in blue) values of the Jacobian.
doi:10.1371/journal.pone.0000251.g003

Origin of V1 Architecture

PLoS ONE | www.plosone.org 4 February 2007 | Issue 2 | e251



a retinal patch, so the cortical receptive field centers receiving

input from this area shift at a low constant rate.

Regions of rapid retinotopic change tend to align

with pinwheels
Some experimental results have suggested that the rate of change

of RF centers is correlated with the rate of change of their

orientation preference [88]. To investigate if such effect is present

in the model I analyzed where regions of rapid change (detected as

the local peaks of the Jacobian) fall within the orientation map.

The simulations indicate that the peaks of the Jacobian tend to

align with regions of rapid change in the orientation map (either

singularities or fractures). The white contours in Fig 4a bound

regions above the 90th percentile for the orientation selectivity

index. Visually, it appears as if these regions tend to align with

pinwheels. To evaluate this relationship quantitatively we defined

a local index of map structure that approaches one in smooth

linear zones and is close to zero near pinwheels and fractures (see

Experimental Methods). The distribution of the orientation map

indices for regions with high Jacobian values (above the 90th

percentile) versus low values (below 10th percentile) is shown in

Fig 4b. The results show that regions of rapid orientation change,

near pinwheels or fractures, tend to have high Jacobian values.

However, it is also evident that regions with high Jacobian values

can also be found near linear zones (Fig 4b). Thus, while a trend is

present in the simulations, it is not as strong as one might have

expected from some experimental results [88]. It is possible that

the discrepancy between the experimental findings among

different laboratories on the relationship between the retinotopic

and orientation maps [88–91] is the result of a limited sample of

map locations. It is expected that two-photon imaging of

retinotopy and orientation preference will likely settle the exact

relationship between retinotopy and orientation maps soon.

It is worth noting that the link between retinotopy and the

structure of the orientation map in the statistical connectivity

model is a direct consequence of the feed-forward thalamocortical

convergence and fluctuations in RGC density – an explanation

that differs substantially form models that postulate intra-cortical

connectivity as being the critical element for the establishment of

this relationship [92].

Orientation selectivity correlates with local map

structure
A natural question to ask is if there is any relationship between the

selectivity of neurons for orientation and their location in the

orientation map [93–96]. Given a simulated receptive field, an

orientation selectivity index (OSI) was defined such that well-tuned

cells have an OSI near one, while untuned cells will have an OSI

near zero (Materials and Methods). Fig 5a shows an orientation map

from one simulation along with the isocontour levels correspond-

ing to the 10th (black contours) and 90th percentile (white

contours) of the orientation selectivity index. The regions enclosed

by the white contours correspond to regions of high orientation

selectivity, while the dark contours enclose areas of low selectivity.

There is a clear trend for regions of high selectivity to reside within

linear zones of the map, while cells with low selectivity are present

near pinwheels or fractures. To better quantify this relationship, I

plotted the selectivity of individual cells as a function of the map

structure index [93–95]. There is a correlation between these two

variables indicating that well-tuned cells tend to be located within

the linear zones, while broadly tuned cells tend to be located near

the pinwheels.

Once again, it is worth emphasizing that the dependence of

orientation selectivity with the local map structure is solely the

consequence of the feed-forward architecture of the model. This

finding is important because it indicates that variations of tuning

selectivity across the orientation map do not necessarily have to

arise as a consequence of differences in the local feedback signal

within the cortex, which has been a key assumption in interpreting

some experimental data [93,95,96].

Orientation selectivity correlates with local RGC

density
Intuitively, orientation selectivity is expected to be higher in

receptive fields that pools ON and OFF receptive fields in close

proximity. This arrangement is more likely to occur when the local

densities of both ON and OFF cells are high. Accordingly, the

mean orientation selectivity as a function of the local RGC

Figure 4. Regions of rapid retinotopic change tend to align with regions
of rapid orientation change. (a) A example of an orientation map along
with contours bounding the locations with the top 10% values of the
Jacobian. There appears to be a tendency for these regions to fall near
pinwheels or fractures. (b) Distribution of the orientation structure
index (where linear zones attain a value of one, and pinwheels/fractures
a value near zero), for regions with high and low Jacobian values.
doi:10.1371/journal.pone.0000251.g004
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densities shows an increase along the diagonal, as both rON and

rOFF increase (Fig 5c). High density of any one class of ganglion

cells by itself is not sufficient to generate high orientation

selectivity, as these inputs will tend to generate RFs with only

one dominant sub-region.

Spatial frequency maps and their relation to

orientation selectivity
The model further predicts the existence of spatial frequency maps

of periodicity comparable to that of the orientation map (Fig 6a)

[10,34]. An examination of the RFs generated by the model

reveals that the frequency maps are determined mostly by changes

of the tuning curves at low spatial frequencies, as the high

frequency cut-off is effectively determined by the center size of the

geniculate afferents. Receptive fields that have side-by-side

subregions of opposite sign are band-pass in spatial-frequency,

while receptive fields that have mostly one dominant subregion are

low-pass. The center-of-mass of the spatial-frequency tuning curve

(which is used to define the preferred spatial frequency of the RF)

shifts to higher spatial frequencies as the response to low spatial

frequencies is suppressed. This mechanism generates a correlation

between the spatial frequency map and selectivity for orientation,

as observed experimentally [83,84,97].

There is a positive correlation between spatial frequency

preference and orientation selectivity (Fig 6a). The figure shows

an example of a spatial frequency map in one instance of the

model on which areas of high (white contours) and low (dark

contours) orientation selectivity are superimposed. It is apparent

that cells that are well-tuned for orientation tend also to have

a higher spatial frequency preference. This is most clearly shown

in the pixel-by-pixel scatter plot of orientation selectivity versus

peak spatial frequency (Fig 6b). Finally, as both orientation and

spatial frequency depend on the effective number of subregions of

the receptive field, the spatial frequency preference increases along

the diagonal in the (rON, rOFF) plane (Fig 6c). Regions where one

of the densities is high and the other low generate RFs with only

one dominant subregion and tend to be low-pass in spatial

frequency (blue areas in Fig 6c).

Pinwheels align with extreme spatial frequency

preferences, but the reverse is not true
Experimental results have suggested a tendency for regions of high

and low spatial frequencies to overlap with the pinwheels in the

orientation map [10]. This predisposition is also present in the

maps generated by the model (Fig 7a), where dark (low frequency)

and white (high frequency) regions tend to be align with regions of

rapid orientation change. This may be better appreciated by

plotting the index of local map structure versus the absolute

deviation of preferred spatial frequency from the mean preferred

frequency across the entire population (Fig 7b). Here, one observes

that regions with low map structure indices (corresponding to

pinwheels and fractures) tend to have large deviations in spatial

frequency, implying the presence of RFs with either low or high

spatial frequency preference in these regions. Note that the reverse

is not necessarily true: extreme low/high spatial frequency

domains do not necessarily have to overlap with regions of rapid

orientation change.

Cytochrome oxidase blobs
Another prominent feature of the anatomical organization of

primary visual cortex are the cytochrome oxidase (CO) blobs [98].

In cats, cytochrome-oxidase blobs develop around 2 weeks of age

Figure 5. Dependence of orientation selectivity as a function of location
in orientation map and retinal ganglion cell density. (a) Example of an
orientation map generated by the model along with regions of high
(white contours) and low (dark contours) selectivity. It is apparent that
there is a tendency for the white contours to lie in linear regions, while
dark contours tend ot lie close to pinwheels or fractures. (b) Scatter-plot
between the map structure index and the orientation selectivity index
across a simulated piece of cortex. Regions in the map with rapid
orientation change tend to have low orientation selectivity. (c)
Dependence of orientation selectivity as a function of the local density
of ON-center and OFF-center cells. Well tuned cells lie in regions where
the densities are both high, as these are regions that will tend to
generate RF with two or more subregions. Locations where only one
class of cell dominates will tend to generate RFs with one dominant
subregion and be broadly tuned for orientation.
doi:10.1371/journal.pone.0000251.g005
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without the need for visual experience [99,100]. There is

a tendency for CO blob centers to be associated with areas of

reduced orientation selectivity, low spatial frequencies and

monocular regions [33,34,99,100]. The hypothesis that cyto-

chrome-oxidase (CO) expression in the cortex could be caused by

the clustering of cells with broad selectivity has been considered in

the past [98–101]. However, because CO patterns are present in

visually inexperienced animals, this proposal was regarded unlikely

[98]. Yet, it remains possible that these structures could arise

supported by spontaneous activity present in the retina and the

LGN during development. I asked if regions of high metabolic

activity may result from a clustering of cells with low selectivity. To

investigate this question I first devised a measure of ‘metabolic

activity’ defined by the average activity of the neurons when

exposed to ensembles of natural stimuli (see Materials and Methods).

Figure 6. Spatial frequency maps and their relation to selectivity for
orientation. (a) Spatial frequency map with regions of high (white
contours) and low (dark contours) orientation selectivity superimposed.
Regions that are well tuned for orientation tend to have higher spatial
frequency preference. (b) Scatter-plot showing a positive correlation of
orientation selectivity and spatial frequency preference. (c) Dependence
of spatial frequency preference as a function of the local density of ON-
center and OFF-center cells.
doi:10.1371/journal.pone.0000251.g006

Figure 7. Relationship between orientation and spatial frequency map.
(a) Example of an orientation map along with areas of high (white
contours) and low (dark contours) spatial frequency selectivity. There
appears to be a tendency for both high and low spatial frequency
domains to align with pinwheels. (b). Plotting the absolute deviation of
the local spatial frequency from the mean across the population as
a function the local map structure confirms that regions with low map
structure indices, corresponding to pinwheels/fractures, tend to be
associated with an extreme (either low/high) spatial frequency location
(the opposite is not always true).
doi:10.1371/journal.pone.0000251.g007
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The model yields a distribution of metabolic activity across the

cortical surface having a characteristic blob-like pattern (Fig 8a)

reminiscent of CO blobs [12]. Not surprisingly, given the

definition of the metabolic activity index, one finds higher

metabolic activity in areas of low-spatial frequency tuning

(Fig 8b). A natural question is where these regions lie within the

orientation map. Surprisingly, the peaks of metabolic activity (the

putative location of the CO blobs) do not appear to align with

pinwheels in the orientation map (Fig 8c). Instead, one observes

a tendency for pinwheels to align with regions of low metabolic

activity (but the reverse is not always true – low metabolic activity

does not always imply the presence of a pinwheel). This is

confirmed by a pixel-by-pixel scatter-plot of these two variables

(Fig 8d). Remarkably, this is the same trend found experimentally:

it has been reported that most pinwheel centers (83%) are found in

inter-blob regions [12].

DISCUSSION
The possibility that statistical connectivity seeds the initial

architecture of primary visual cortex has been introduced and

discussed. During the critical period, activity dependent mechan-

isms are expected to maintain and modify these initial structures.

An important question is to what extent the initial condition

determines the final structure of the cortex during normal (and

abnormal) development. In principle, it is possible that self-

organization could completely wipe out any trace of the initial

condition (which, of course, would render the present proposal

meaningless). This seems unlikely, as no dramatic changes are

observed in the in the evolution of the maps during normal

development. Instead, our findings suggest that the initial

condition (instantiated via statistical connectivity) has a substantial

influence on the final structure of receptive fields and cortical

maps.

Extension of the model to binocular input
The model in its present form suggests a way in which the early

input from the contralateral eye could set up a blueprint for the

cortical architecture. More work remains to be done, as a full

description of the developmental process demands an explanation

for how the input from the ipsilateral eye ‘goes along’ with this

blueprint. Three key questions in search for an answer are: (a)

What generates the pattern of ocular dominance before the onset

Figure 8. Cytochrome oxidase blobs. (a) The distribution of a metabolic activity index from the RFs generated by the model shows a clustering of cells
with broad selectivity generating a blob-like pattern. (b) Regions of high metabolic activity (putative location of the CO blobs), as expected, tend to
align with regions of low spatial frequency preference. (c) An example of an orientation map along with regions of high (white contours) and low
(dark contours) metabolic activity. There appears to be no obvious relationship between the two. (d) A closer examination by plotting the metabolic
activity index versus the orientation map structure index shows that regions of rapid orientation change (pinwheels/fractures) tend to align with
regions of low metabolic activity, consistent with the experimental finding of Shoham et al (1997).
doi:10.1371/journal.pone.0000251.g008
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of the critical period [55]? (b) How can the ipsilateral eye gain any

cortical territory if initially the contralateral eye dominates? (c)

How are the orientation preferences for both eyes matched [36]?

Now that we have gained some insight into the structures

generated by the contralateral input I have begun to explore a new

hypothesis that may provide answers to some of these questions. I

suggest that ocular-dominance columns may reflect the fluctua-

tions of the RGC densities in corresponding retinal locations of the

two eyes. In locations where the RGC density is high for the

contralateral eye but low for the ipsilateral eye one may expect

contralateral dominance. However, in regions where the density of

the ipsilateral eye is higher than that of the contralateral eye, it

may be possible for the ipsilateral eye to take over cortical

territory. Binocular areas would be expected in regions where the

RGC densities are approximately equal. Note that one extreme

case where this clearly occurs is in the optic disk representation. It

is also known that such mechanism can work at very fine spatial

scales, as demonstrated by the cortical representation of

‘angioscotomas’ caused by cast shadows of retinal blood vessels

[102,103].

To start evaluating the merits of this idea I computed the

relative density of the ipsilateral versus contralateral eyes, defined

as OD = (ripsi2rcontra)/(ripsi+rcontra); where r=rON+rOFF. The

relative density has blob-like pattern with similar periodicity to

the orientation and spatial frequency maps (Fig 9a). The relative

change in the density favors one or the other eye by as much as

60%. Therefore, there are significantly large fluctuations in the

local density of the two eye inputs that could potentially create

a blueprint for the establishment of ocular dominance columns. If

the local magnification factor is anisotropic (Fig 9b, shows a case of

2:1 anisotropy) the model predicts a stripe pattern of ocular

dominance such that the orientation of the stripes is orthogonal to

the direction of higher magnification, as generally seen in the

primate [21,104].

This hypothesis fits the available data in another interesting

way. Recall that the model predicts that regions of low RGC

densities imply a large Jacobian, and that pinwheels tend to align

with regions of high Jacobian values (Fig 4). Thus, if regions of low

RGC contralateral eye densities are preferentially taken over by

the ipsilateral eye, as proposed, some of the peaks of ipsilateral eye

dominance will likely fall within pinwheel centers. Remarkably,

this is exactly what the experimental data show [105].

If the hypothesis about the origin of ocular dominance columns

is correct, then ocular dominance peaks are locations where RGC

densities for the contra and ipsilateral differ the most, and given

that we know that RGC densities determine the local magnifica-

tion factor (Fig 3), then it must be also the case that at the peak of

ocular dominance columns the magnification factors for the two

eyes differ the most. Obtaining precise retinotopic maps with

cellular resolution at various locations within the ocular domi-

nance map could be used to test this prediction.

Another important question is how the orientation preference

for the two eyes and the RFs of binocular simple cells are matched

[36,106]. Following previous work on the topic, one may postulate

that spontaneous activity, along with correlation-based mechan-

isms, are responsible for this process [107]. Thus, activity

dependent mechanisms could work to wire those inputs that

match the (already laid out) contralateral RF driven by between-

eye correlations in spontaneous activity of geniculate neurons

[108].

Functional maps in other species
While developing the model in the cat makes sense, one cannot

avoid to ask some questions that relate to the model’s ability to

explain the structure of maps in other species [26]. How could

a salt-and-pepper pattern co-exist with orientation selective cells in

the statistical connectivity model [25,109]? One could speculate

that in species lacking orientation maps coverage ratios of ON/

OFF lattices is higher (there is more overlap) but that the

probability of connectivity is lower. If the average number of

inputs were about two, then about half the time a cell would pool

from one ON and one OFF-center input, generating RFs similar

to those displayed in Fig 2. However, as each cell is likely to pool

a different pair of inputs, the result would be a set orientation

neurons within a salt-and-pepper map.

Why are maps so variable across individuals of a single species?

Why, on some individuals, are maps present in some areas of the

visual field and not others [26]? Here, one could conjecture that it

is the variability in the RGC densities, coverage factors, and spatial

pooling across individuals and even across the visual field of the

single individual, could account for such variability. Assessing

these ideas would require a careful extension of the statistical

connectivity model to other species based on available data.

Relationship to previous work
There has been extensive theoretical work aimed at studying the

properties of cortical maps and their development. A detailed

discussion of these models is outside the scope of this paper (see

Figure 9. Relative RGC density as the seed for ocular dominance
columns. (a) The relative density of left/right eyes at a scale relevant for
the formation of receptive fields shows large fluctuations, in the order
of 60%, which could seed the formation of ocular dominance columns
despite an early contralateral dominance. (b) When anisotropy in the
retinotopy map is simulated, the result is a relative density having
a banding pattern similar to that observed in some primates.
doi:10.1371/journal.pone.0000251.g009
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Swindale (1996) for an extensive review of the topic). Here I limit

myself to a brief description of the classes of models that have been

considered in the past, and how they differ from the statistical

connectivity approach.

First, there is a class of correlation-based models [58,59]. These

models can account for a large number of experimental findings

about how manipulations of early sensory experience influence the

final structure of the maps [42,56,59,60,66,67,107,110–120].

The role of correlation-based mechanisms in establishing the

initial blueprint of the columnar architecture and receptive fields

in the young cortex is, however, not well established. The presence

of within and between-eye correlations at small spatial scales is

critical for this mechanism to work [59,107]. In the ferret, it has

been shown that while between-eye correlations are present, they

are sign-independent. In other words, there is no difference

between ON/ON and OFF/OFF correlations to those of ON/

OFF pairs [108]. Recent measurements further demonstrate

a simple fall-off of correlations with distance in the developing

LGN [121]. This is contrary to the Mexican-hat profiles predicted

by some activity-dependent models. These findings call for

nontrivial constraints to be incorporated into learning rules, such

as split constraints for ON- and OFF-center afferents, to allow

learning models to develop simple-cell receptive fields [121].

The experimental finding that both ON and OFF inputs into

the cortex are required for the development of orientation columns

[86] has been considered strong evidence for a correlation-based

origin of the orientation map [59]. However, as we explained

above, statistical connectivity provides a simple alternative

explanation. Two additional challenges for the involvement of

correlation-based mechanisms in setting up the blueprint for the

orientation and ocular-dominance maps are: (a) simple cells with

segregated ON/OFF receptive fields emerge from the very beginning

without going through a stage of significant ON/OFF overlap

[53]; (b) ocular dominance columns develop from an initial state

where the cortex is strongly dominated by contralateral input [36],

and it is difficult to envision how Hebbian-based models could

easily overcome this strong bias. Statistical connectivity provides

an answer to the first question, and I have offered a novel

hypothesis regarding the emergence of ocular dominance columns

that may address the second one.

Second, there is class of dimension-reduction models that tend

to be more abstract that the mechanistic explanation offered by

statistical connectivity. These models begin by defining an input

space, with some coordinates being linear (representing position or

spatial frequency) and others circular (representing orientation),

need to be mapped to the two-dimensional plane in some optimal

fashion [61,62,64,116,122–126]. Mappings that ensure measures

of continuity and completeness can be searched by a number of

different algorithms, such as self-organizing map or the elastic-net

algorithm. Continuity refers to the condition where nearby cells

have similar properties. Completeness ensures that all combina-

tions of the features represented on the map are distributed

uniformly over visual space. It is interesting that these two simple

principles can account for a number of features in the cortical

maps. Furthermore, experimental measurements support the idea

that the maps are organized in such a way that they optimize

a quantitative measure of completeness, called the coverage uniformity

[125,127–129]. A main difference with these methods is that

statistical connectivity postulates a wiring mechanism that yields

the feature maps and their relationships automatically; no

assumption about the existence of a set of feature maps is needed.

Third, there is work that relies on the minimization of overall

wiring length between cells as the main drive behind map

formation [122,130–132]. These studies show that a desired

distribution of connectivity among cells with different orientations

determines the features of the orientation map. For example, the

requirement of a uniform connectivity results in a ‘salt and pepper’

map as seen in rats, while a mixture of a Gaussian and a uniform

distribution yields maps with the characteristic pinwheel structure

seen in other species. The concept is appealing due to its simplicity

and because it predicts that functional connectivity, as estimated

by electrophysiological methods, should correlate with map

structure. In contrast, the origin and relationships between maps

in the statistical connectivity model is independent of the cortical

interconnections. Note, however that one assumes that intracor-

tical wiring length is dominated by local connections, then

statistical connectivity would predict a mixture of a Mexican hat

and a uniform distribution between orientations as well.

Finally, it is worth highlighting a recent theoretical model of

a feed-forward architecture where, under some mild symmetry

assumptions, the authors show that there must be a necessary link

between orientation and retinotopy [133]. The model is limited in

that it only considered cells of one type (either ON or OFF).

Nevertheless, this interesting work could potentially be extended to

deal with both ON/OFF cells and be applicable to the analysis of

the statistical connectivity model.

Testing the model
Statistical connectivity accounts for a number of published trends

in the relationships between the cortical maps. Yet, these findings

could be regarded as ‘circumstantial evidence’ it is important to

ask what experiments could provide the strongest possible support

for the theory. As discussed above, a central role in the model is

played by the local densities of the X retinal ganglion cells, which

strongly influence the local retinotopy (via the Jacobian), the

selectivity of the receptive fields, and the structure and relationship

between the various maps. An ideal experiment would be one

where the retinotopic and orientation maps are measured with

single cell resolution along with a reconstruction of the X retinal

ganglion cell mosaic from the contra-lateral eye in a region

representing the same location of visual space. Given that the

structure of receptive fields and maps may be subsequently

modified via the ipsilateral input, these experiments are best

interpreted if the ipsilateral eye is enucleated early and the cortex

responds exclusively to contralateral input (Farley et al, Soc for

Neuroscience Meeting, Abstract #545.2, 2006). Findings demonstrat-

ing a dependence of cortical structures with RGC density as

predicted by the model would constitute a convincing piece of

evidence in support of statistical connectivity. Of course, with a full

reconstruction of the mosaics, it should be also possible to predict

the exact structure of the orientation and retinotopic map. These

experiments are not trivial, but are not outside the realm of present

techniques. Similarly, the reconstruction of the X RGC mosaics of

both eyes in corresponding retinal regions could be used to test the

hypothesis that fluctuations in RGC densities of the two eyes

correlates with the pattern of ocular dominance columns.

Limitations and assumptions of the model
The model makes some important assumptions that are worth

discussing. The most important, and pre-requisite for the model to

work, is that there should be a well-established retinotopic map as

the geniculate axons leave the sub-plate to invade the cortex. This

is required for the model to explain how simple-cell RFs arise

without a prior stage of significant ON/OFF overlap. Indeed,

there is some experimental data supporting the notion of

a sharpening of the topographic organization of geniculocortical

projections before axonal incursion into the cortex [134]. It is also
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known that when subplate neurons are ablated, neither orientation

tuning nor orientation/ocular dominance columns form in the

visual cortex [135]. Thus, it is likely that a key role of the subplate

is in aiding the formation of a fine retinotopic map in advance of

geniculate afferents invading the cortical plate.

All the maps obtained in the model are derived exclusively from

inputs from the X-RGC mosaic, even though it is known that

some simple-cells in layer 4 also receive input from Y cells [136–

139]. The assumption that the initial cortical structures will be

dominated by X-cell inputs is justified as it has been reported that

X-cells mature before Y-cells in the geniculate [140–142]. One

would conjecture that Y-cells would then ‘go along for the ride’ to

fit within the established architecture, in a similar way that the

ipsilateral input is hypothesized to do.

The model assumes a uniform set of adult-like LGN RFs and

ignores the fact that during development one observes a set of

heterogeneous, and sometimes orientation-tuned, receptive fields

[143]. This heterogeneity results from the pooling of a number of

RGC afferents by single geniculate cells, while in the mature LGN

only one input dominates. Tavazoie and Reid (2000) proposed

that such transient developmental state of the LGN may assist in

establishing the scaffolding for orientation selectivity in the cortex

[143]. Their ideas, in conjunction with the ones incorporated in

the present study, could potentially be merged to develop a model

that accounted for both the development of LGN and cortical

RFs.

Ignored was also the fact that RF centers are not perfectly

isotropic and that they tend to be slightly elongated in a radial axis

[144–147]. This effect appears to underlie a link between

retinotopy and orientation bias in monkeys and humans [148].

Statistical connectivity could provide a way to gauge the degree to

which the anisotropies in the RF centers of ganglion cells could

bias the resulting orientation map.

The model further ignores global boundary effects that may

have an influence on the map [58,59,104,131,149–151], but it

seems doubtful that the entire map structure, away from the

boundaries between cortical areas, is determined purely by such

boundary conditions.

The model is ‘static’ and does not incorporate the full spatio-

temporal structure of receptive fields. This limitation of the model

will prevent us from looking at the development of direction

selectivity maps [152]. However, it was felt there is already

a wealth of data on maps other than direction of motion that could

be used to disprove the model. If it turns out after these studies that

the model is successful at explaining most of the data, it would

certainly be worth extending the model by considering spatio-

temporal receptive fields.

Finally, the model does not incorporate intra-cortical connec-

tions, which can influence the tuning selectivity of neurons within

the orientation map and even on the structure of the maps

themselves [93,96,153–155]. While these features could be

incorporated at a later stage, our immediate goal is to understand

how much of the data can be explained by a simple feed-forward

convergence model before invoking additional processes.

In ignoring many of these details the objective was the keep the

model as simple as possible while retaining its predictive and

explanatory power. To do so, we have also restricted ourselves to

a purely linear model that does not take into account LGN

saturation or spiking in cortical neurons. It is unlikely that adding

spiking to the model would substantially alter any of the basic

properties discussed above, such as the preferred orientations or

spatial frequencies and their basic relationships. However, thresh-

olding could certainly influence the selectivity of neurons [93,156].

Thus strictest interpretation of the model’s predictions should then

be in terms of the pattern of sub-threshold activity in layer 4 cells.

Summary and implications
Statistical connectivity postulates that the spatial statistics of the

retinal ganglion cells together with a simple feed-forward

connectivity scheme between the thalamus and the cortex seeds

the structure of the early receptive fields and maps in primary

visual cortex. This initial state is likely to be maintained and

refined during the critical period. Nevertheless, it is suggested that

the adult structure should normally reflect a great deal of the initial

organization.

It is appealing that such a simple model accounts for a rather

complex set of data. Specifically, summarizing the result form this

and previous studies [29,30], one finds that the theory is capable of

explaining/predicting: (a) how simple cells in layer 4 can emerge

from the very beginning without going through a phase of

extensive ON/OFF overlap [53]; (b) how blocking ON-center

RGC cells precludes the development of orientation tuning [86];

(c) how geniculate cells of different signs avoid connecting to the

same subregion (the ‘sign rule’) as a result of a clustering of ON/

OFF afferents (Jin et al, Society for Neuroscience Meeting, Abstract

#436.12, 2006); (d) how synaptic strength depends on receptive

field sign and overlap; (e) the relative size of simple-cell subregions

versus the input geniculate centers [45]; (f) that the majority of

simple cells tend to have two effective subregions [83,84] and

a tendency for odd-symmetry [83,85]; (g) the emergence of

orientation columns; (h) the qualitative shape of the orientation

maps, including the presence of pinwheel singularities and

fractures; (i) how retinotopy could be linked to the fluctuations

in the RGC density; (j) how the tuning for orientation depends on

the location of cells within the orientation [93]; (k) the existence of

spatial frequency maps and the fact that regions of high/low

spatial frequencies align with pinwheel centers [10,33]; (l) the

correlation between orientation and spatial frequency selectivity in

individual neurons [83,97]; and (m) the existence of clustered

regions of broad selectivity that could be related to the pattern of

CO-blobs, and how pinwheels would tend to lie preferentially

within inter-blob regions [12].

The model’s simplicity, the fact that it provides a straightforward

mechanistic interpretation in terms of the underlying circuitry, and

the scope of the findings both explained and predicted, suggests we

should consider this idea seriously as a working hypothesis for the

origin of the cortical architecture. In the best case scenario, if the

theory stands the test of time, we might have actually arrived at

a potential explanation for the blueprint of the cortical

architecture; a feat that has evaded our scrutiny for more than

half a century.

MATERIALS AND METHODS

The model
The full statistical connectivity model consists of three layers,

representing the retina, the LGN and the cortex. To simulate the

layout of X-RGC mosaics in the retina we have adopted the pair-

wise interaction point process model (PIPP) [51]. Briefly, the

method starts by randomly positioning nON and nOFF cells on

a simulated patch of retina of size L6L. Denote by xi
ON the

position of the i-th ON-center cell, and a similar notation for the

OFF-center cells. The main body of the algorithm consists of the

following loop.

Loop For each ON-center cell a new candidate position is

generated at random. Suppose we are considering the i-th ON-

center cell. The new position is accepted with probability
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p~ P
j~1,j=i

nON

hON,ON xi
ON{x

j
ON

��� ���� �
P
j~1

nOFF

xi
ON{x

j
OFF

��� ���� �

After looping over all the ON-center cells the process is repeated

for the OFF-center cells, where this time the new position is

accepted with probability

p~ P
j~1,j=i

nON

hOFF ,OFF xi
OFF {x

j
OFF

��� ���� �
P
j~1

nON

hON,OFF xi
OFF {x

j
ON

��� ���� �

Each loop of the algorithm consists of moving all cells once.

After repeating this loop about 100 times the cell positions

converge to a stable pattern and the algorithm is stopped. The so-

called interaction functions hON,ON, and hOFF,OFF are defined by the

parameterized function

h uð Þ~
0 if uvd

1{ exp
u{d

w

� �a� �
if u§d

8<
:

hON,OFF was defined by the simply inhibition function,

h uð Þ~
0 if uvd

1 if u§d

�

In our simulations we used d = 20 mm, w = 90 mm, and a = 6 for

both hON,OFF, and hOFF,OFF. Details of the algorithm are presented

in Engle et al (2005). These parameters were selected to match the

density of cells at 6 mm (30 deg) eccentricity in the cat which is

about 75 cells/mm2 [157]. It is worth emphasizing, however, that

the findings are not dependent on an extremely accurate

simulation of the RGC mosaic. Simpler methods, such as the

perturbation of the vertices of two independent hexagonal lattices

[30] yield similar results.

The size of the RF centers were selected to achieve a coverage

factor of 3 (surrounds were ignored). The average dendritic field

diameter of X ganglion cells at 6 mm eccentricity is d = 225 mm,

corresponding to an area, A = 0.04 mm2. The standard deviation

of the RF center size was determined by assuming that

46sctr = d = 225 mm.

In the second layer of the model there are 2.5 times more

geniculate cells than ganglion cells, but each receives only one

input from a RGC. The receptive field of the LGN cell is assumed

to be identical to that of its afferent geniculate neuron.

The third layer represents layer the cortex. Consider an

arbitrary cortical location on the cortex that, for convenience,

we define as the origin, (x, y) = (0, 0). We are given a set of

geniculate receptive fields represented by LGNi. Then, a single

realization of a receptive field at the cortical location is generated

by RF~
X

i

ai exp {d2
i =2s2

syn

� �
LGNi. Here, di represents the

distance between the i-th LGN afferent and the origin, and ai are

independent Bernoulli random variables such that the probability

of success Pr ai~1f g~pi~ exp {d2
i =2s2

conn

� 	
. This is the full

connectivity model as studied previously in Ringach (2004).

Model simplification The simulations can be simplified

considerably if one computes the mean receptive field at each

location. The mean receptive field is the average receptive field

expected over many realizations and it is given by:

E RFf g~
X

i

E aif g exp {d2
i =2s2

syn

� �
LGNi

~
X

i

pi exp {d2
i =2s2

syn

� �
LGNi

~
X

i

exp {d2
i =2s2

conn

� 	
exp {d2

i =2s2
syn

� �
LGNi

~
X

i

exp {d2
i =2�ss2

� 	
LGNi

Here, s ~ sconnssyn

� 	
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

connzs2
syn

q
. This simple relationship

provides a very effective way to calculate the mean receptive

fields at any cortical location that arise from statistical con-

nectivity without the need of generating large number of RFs

at each cortical site. All that is required is the calculation of a

weighted sum of the geniculate receptive fields. This sim-

plified model is identical to the one considered by Soodak

(1987). Thus, the Soodak (1987) model is formally the calculation

of the mean RFs in the full statistical connectivity model of

Ringach (2004).

Of course, one must be cautious as the properties of the

mean receptive field do not necessarily have to reflect the mean

of the properties of the individual cells within a column. In

our simulations we have carefully verified that the resulting

maps and their relationships for the full and simplified models are

nearly identical for the parameters selected in a number of

instances.

Parameter selection The selection of the parameters was

done based on the fact that he lateral spread of geniculate X-cell

afferents into the cortex is about 0.5 mm [136,137,158]. This,

together with the data of Alonso et al (2001) on the decay of both

the probability of connection and synaptic strength with distance

(their Fig 4 and 5), guided our selection of sconn and ssyn to be

<0.2 mm, implying that the Gaussian function falls to 4% of its

peak at 0.5 mm. To obtain periodicities of 0.8 mm in the

orientation map [32] a magnification factor of 0.6 deg/mm is

required in the model. This is within a factor of two of the data

presented in Tusa et al (1978) which suggest a value of 0.31 mm/

deg. Given the variability in the periodicity of maps and retinotopy

across individuals it seems premature to conclude that this

mismatch in spatial scale is sufficient to rule out the model. As

discussed above, measurements of the magnification factors,

orientation maps, and RGC densities in the same individuals are

needed to test the model carefully. It is worth noting that the basic

results of the model, however, are not extremely sensitive to the

parameter settings: changes of the order of 625% generated very

similar results.

Summary of receptive field properties
Given the mean RF at one cortical location, we summarize

a number of its characteristics: (a) its center-of-mass in visual space

coordinates; (b) its preferred orientation; (c) its orientation

selectivity; (d) its spatial frequency preference; and (e) a measure

of its average activity expected when the receptive field is

stimulated with natural images, which we term the ‘metabolic

activity’ index. We describe how we compute each one in turn

next.

Center-of-mass To compute the center of the receptive field

we simply compute the center-of-mass xx,yyð Þ of the absolute value

of the RF in the visual field coordinates. Thus,
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x~

ÐÐ
x RF x,yð Þj j dxdyÐÐ

RF x,yð Þj j dxdy
and y~

ÐÐ
y RF x,yð Þj j dxdyÐÐ

RF x,yð Þj j dxdy

Preferred orientation and spatial frequency This, and the

other features below, are computed based on the Fourier spectrum

of the receptive field, RF(vx,vy). Computing the center-of-mass of

the amplitude spectrum yields the resultant:

m~

ÐÐ
RF vx,vy

� 	�� �� exp i 2 atan vy=vx

� 	� 	
dvxdvy

�� ��ÐÐ
RF vx,vy

� 	�� �� dvxdvy

The preferred orientation is defined by half the angle of the

resultant, hpref ~ arg mð Þ=2, while the preferred spatial frequency is

defined as the amplitude of the resultant. vpref ~ mj j. Note that the

preferred spatial frequency is not the peak of the spatial frequency

tuning curve but rather its center-of-mass.
Orientation selectivity Orientation selectivity is defined as

the orientation selectivity index applied to the amplitude spectrum

evaluated at the preferred spatial frequency. In other words, it is

the OSI of H vpref cos h,vpref sin h
� 	

, which is given by

OSI~

Ð
RF vpref cos h,vpref sin h
� 	�� �� exp i2hð Þ dh

�� ��Ð
RF vpref cos h,vpref sin h
� 	�� �� dh

Metabolic activity index The power spectrum of natural

scenes falls like 1/v2 [159]. The expected power of a linear

receptive field in response to such image ensemble could be used to

define a measure of the overall activity, or metabolic requirement.

We define, M~

ðð
RF vx,vy

� 	�� ��2= v2
xzv2

y

� �
dvxdvy, as our

metabolic activity index.
Map structure index We characterize the local structure of

the orientation map by computing an index based on the

distribution of orientation preferences in a small neighbor-

hood of each cortical point. The index is the same as the

orientation selectivity index that is used to calculate the selectivity

of neurons to orientation. Given the map of preferred orientations,

h (x, y), and a cortical location (x0, y0), define

J x,yð Þ~ exp i 2h x,yð Þð Þ exp {
x{x0ð Þ
2smap

2

{
y{y0ð Þ2

2smap

 !
:

Then the index of local map structure at (x0, y0) is given by

Map Structure Index~

Ð
J x,yð Þ dx dy

�� ��Ð
J x,yð Þj j dx dy

Indices close to one imply a linear zone; indices close to zero

imply a region of fast orientation change – either a pinwheel or

fracture. In our simulations we used smap = 75 mm.

We have tried various alternatives to these measures. For

example, one strategy we have implemented is fitting a two-

dimensional Gabor function to the mean receptive field. The

properties of the RF are then summarized by the fitted

parameters. This procedure takes long processing times, as

a nonlinear optimization problem has to be solved at each cortical

location. Furthermore, in many cases (such as when the RFs have

a single subregion), the model parameters are not well defined and

require special handling. At the end, the maps produced by this

alternative procedure were essentially the same as those obtained

by the non-parameteric methods described above, which are about

1000 times faster to compute. We have verified that the various

relationships described in preliminary results, will hold under other

reasonable measures of these same quantities.
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