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Abstract: Depression is the most prevalent of the mental illnesses and serotonin (5-hydroxytryptamine,
5-HT) is considered to be the major neurotransmitter involved in its etiology and treatment. In this
context, 5-HT1A receptors have attracted interest as targets for therapeutic intervention. Notably the
activation of presynaptic 5-HT1A autoreceptors delays antidepressant effects whereas the stimulation
of postsynaptic 5-HT1A heteroreceptors is needed for an antidepressant action. NLX-101 (also known
as F15599) is a selective biased agonist which exhibits preferred activation of cortical over brain stem
5-HT1A receptors. Here, we used behavioral, neurochemical and molecular methods to examine the
antidepressant-like effects in rats of a single dose of NLX-101 (0.16 mg/kg, i.p.). NLX-101 reduced
immobility in the forced swim test when measured 30 min but not 24 h after drug administration.
NLX-101 increased extracellular concentrations of glutamate and dopamine in the medial prefrontal
cortex, but no changes were detected in the efflux of noradrenaline or 5-HT. NLX-101 also produced
an increase in the activation of pmTOR, pERK1/2 and pAkt, and the expression of PSD95 and GluA1,
which may contribute to its rapid antidepressant action.

Keywords: mTOR; ERK1/2; GluA1; p11; BDNF; Akt; dopamine; glutamate; medial prefrontal cortex

1. Introduction

Depression is a common mental disorder that affects approximately 300 million people
worldwide. Further, its incidence has been growing since the COVID-19 pandemic outbreak,
which poses an enormous challenge for mental health care. Although many current
antidepressant drugs based on monoamine reuptake or monoamine oxidase inhibition
were formulated as early as the 1950s–1960s, the efficacy of such therapies has not improved
much since that time, and only showing amelioration in their diminished adverse effects
profile. Moreover, even though the antidepressants elicit some therapeutic efficacy, they
need to be taken for weeks or months before any meaningful clinical improvement emerges.
More serious is the fact that approximately 30% of the patients have inadequate responses or
no response at all to treatment [1–3]. In this context, the observation that ketamine, a widely
used anesthetic drug, exerts a rapid antidepressant action within an hour of administration
has been a breakthrough for the treatment of mood disorders [4,5]. Although some progress
has been made in understanding the mechanism of action of ketamine, there are still aspects
that need further investigation. For instance, recent preclinical work has shown that the
serotonin (5-hydroxytryptamine, 5-HT) system in the brain is involved in the sustained
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antidepressant action of ketamine [6–8]. In this regard, it has been reported that the selective
stimulation of 5-HT1A receptors in the medial prefrontal cortex (mPFC) may be required for
the antidepressant effects of ketamine [9], which agrees with previous work showing that
the activation of postsynaptic 5-HT1A receptors exerted rapid antidepressant effects [10,11].

Recent preclinical studies have demonstrated that the administration of the highly
selective 5-HT1A receptor biased agonist, NLX-101 (also known as F15599), results in a
rapid antidepressant-like response, both in naïve animals [12,13] and rodent models of
depression [14,15], presumably through the activation of cortical 5-HT1A receptors. In-
deed, direct cortical microinjection of NLX-101 reduced immobility in the forced swim test,
an effect that was blocked by the selective 5-HT1A receptor antagonist, WAY-100635 [16].
Furthermore, the administration of NLX-101 increases the dopamine efflux in the mPFC
and decreases 5-HT in the hippocampus [17] although the contribution of these changes
to the antidepressant response remains to be clarified. Remarkably, the anti-anhedonic
effect of repeated administration of NLX-101 in the sucrose intake test was still present four
weeks after cessation of treatment [14], suggesting that a sustained modification occurred,
possibly through the activation of intracellular mechanisms promoting neuroplasticity [18].
In this regard, it has been observed that NLX-101 elicited a rapid stimulation of phosphory-
lated extracellular-regulated kinase 1/2 (pERK1/2) in the frontal cortex, an effect that was
reversed by the coadministration of WAY-100635 [19]. In contrast, other 5-HT1A receptor ag-
onists induced increases and decreases in pERK1/2 in the frontal cortex and hippocampus,
respectively, thus suggesting that behavioral effects of NLX-101 are possibly due through
an action on cortical structures. However, a thorough study on the effects of NLX-101 on
intracellular signaling pathways relevant to depression has not yet been performed.

To gain further insight into the procedures involved in the antidepressant-like effects
of NLX-101, we have examined the time course changes in several synaptic proteins
and intracellular signaling pathways. We have also studied the effects of the systemic
administration of NLX-101 on the outflow of glutamate, noradrenaline, dopamine and
5-HT in the mPFC.

2. Results

The dose–response for the antidepressant-like effects of NLX-101 in several behavioral
tests relevant to depression has been widely studied in previous work [12–14]. For this
reason, we have chosen an optimal dose of the compound (i.e., 0.16 mg/kg, i.p.), near to
the ED50 of the drug in the forced swim test (0.12 mg/kg) [12], to carry out our studies in
Sprague-Dawley rats.

2.1. Behavioral Effects of NLX-101

As shown in Figure 1a, 30 min after a single injection of 0.16 mg/kg of NLX-101,
immobility in the FST was significantly reduced (t = 3.186, df = 8; p < 0.02, two-tailed
Student’s t-test). This was accompanied by an increase in swimming (t = 2.527, df = 8;
p < 0.05, two-tailed Student’s t-test). However, these antidepressant-like effects were not
observed 24 h and 7 days after NLX-101 administration (Figure 1b,c). The NLX-101-induced
decrease in immobility did not result from an altered locomotor activity as observed in the
open field test (OFT) (Figure 2).

2.2. Biochemical Effects of NLX-101

Microdialysis experiments showed that the same dose of NLX-101 that induced
antidepressant-like effects (0.16 mg/kg, i.p.) did not alter the extracellular concentra-
tions of noradrenaline (Figure 3a; F1,12 = 2.777; p = 0.121) or 5-HT (Figure 3b; F1,12 = 1.263;
p = 0.283) in the mPFC, but significantly increased those in dopamine (Figure 3c) and gluta-
mate (Figure 3d). Repeated measures two-way ANOVA showed that the administration of
0.16 mg/kg of NLX-101 enhanced dialysate dopamine as measured by significant effects of
treatment (F1,11 = 7.152, p < 0.03) and treatment x time interaction (F9,99 = 4.305; p < 0.0001).
Similarly, NLX-101 increased dialysate glutamate as measured by significant effects of
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treatment (F1,12 = 7.351; p < 0.02), time (F9,108 = 4.311; p < 0.0001) and treatment x time
interaction (F9,108 = 5.817; p < 0.00001).
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Figure 2. Behavioral response in the open field test (OFT). Locomotor activity after the administration
of 0.16 mg/kg of NLX-101 is expressed as distance traveled in meters during 10 min. Results are
expressed as mean ± SEM of n = 5–6 rats per group.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 4 of 16 
 

 

2.2. Biochemical Effects of NLX-101 
Microdialysis experiments showed that the same dose of NLX-101 that induced anti-

depressant-like effects (0.16 mg/kg, i.p.) did not alter the extracellular concentrations of 
noradrenaline (Figure 3a; F1,12 = 2.777; p = 0.121) or 5-HT (Figure 3b; F1,12 = 1.263; p = 0.283) 
in the mPFC, but significantly increased those in dopamine (Figure 3c) and glutamate 
(Figure 3d). Repeated measures two-way ANOVA showed that the administration of 0.16 
mg/kg of NLX-101 enhanced dialysate dopamine as measured by significant effects of 
treatment (F1,11 = 7.152, p < 0.03) and treatment x time interaction (F9,99 = 4.305; p < 0.0001). 
Similarly, NLX-101 increased dialysate glutamate as measured by significant effects of 
treatment (F1,12 = 7.351; p < 0.02), time (F9,108 = 4.311; p < 0.0001) and treatment x time inter-
action (F9,108 = 5.817; p < 0.00001). 

 
Figure 3. Effects of the administration of 0.16 mg/kg of NLX-101 or vehicle (arrow) on the extracel-
lular concentration of noradrenaline (a), serotonin (b), dopamine (c) and glutamate (d) in the mPFC. 
Data (mean ± SEM) are expressed as percentage changes in the four basal pretreatment values. 
Number of animals is indicated in parentheses. * p < 0.05 and ** p < 0.0005 different from the corre-
sponding vehicle group, Tukey’s multiple comparison test following significant two-way repeated 
measures ANOVA. 

2.3. Effects of NLX-101 on Prefrontal Protein Expression 
The synthesis of synaptic proteins in the PFC exhibited different time courses. Hence, 

as depicted in Figure 4a, the phospho–mammalian target of rapamycin (pmTOR) was the 
signaling protein that showed the fastest response (a 44% increase) 30 min after NLX-101 

Figure 3. Effects of the administration of 0.16 mg/kg of NLX-101 or vehicle (arrow) on the extra-
cellular concentration of noradrenaline (a), serotonin (b), dopamine (c) and glutamate (d) in the
mPFC. Data (mean ± SEM) are expressed as percentage changes in the four basal pretreatment
values. Number of animals is indicated in parentheses. * p < 0.05 and ** p < 0.0005 different from
the corresponding vehicle group, Tukey’s multiple comparison test following significant two-way
repeated measures ANOVA.
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2.3. Effects of NLX-101 on Prefrontal Protein Expression

The synthesis of synaptic proteins in the PFC exhibited different time courses. Hence,
as depicted in Figure 4a, the phospho–mammalian target of rapamycin (pmTOR) was the
signaling protein that showed the fastest response (a 44% increase) 30 min after NLX-101
(t = 2.534, df = 10; p < 0.03, two-tailed Student’s t-test). No change in pmTOR was observed
beyond this time point. As shown in Figure 4b, the level of pERK1/2 displayed significant
increases at 1 h (t = 2.868, df = 8, p < 0.05, two-tailed Student’s t-test) and at 2 h (t = 2.773,
df = 8, p < 0.05, two-tailed Student’s t-test). NLX-101 tended to increase the expression
of pERK(1/2) at 30 min after its administration although this difference did not reach
statistical significance (+94%, t = 1.634, df = 8, p > 0.05, two-tailed Student’s t-test). NLX-101
also produced a sizeable but not significant increase of the protein p11 (also known as
S100A10) 30 later (+92%, t = 1.516, df = 8, p > 0.05, two-tailed Student’s t-test) as depicted
in Figure 5a. Similarly, the postsynaptic density protein 95 (PSD95) increased 30 min after
NLX-101 administration (t = 2.425, df = 8, p < 0.05, two-tailed Student’s t-test) as shown in
Figure 5b.
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pERK1/2 (b) in the prefrontal cortex at 30 min, 1 h, 2 h and 6 h after its intraperitoneal administration.
Results are expressed as mean ± SEM. Number of animals is indicated within the bars. * p < 0.05
compared with the corresponding vehicle group (two-tailed Student’s t-test).
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Figure 5. Effects of NLX-101 (0.16 mg/kg) and vehicle (Veh) on the concentration of postsynaptic
proteins p11 (a) and PSD95 (b) in the prefrontal cortex at 30 min, 1 h, 2 h and 6 h after its intraperitoneal
administration. Results are expressed as mean ± SEM. Number of animals is indicated within the
bars. * p < 0.05 compared with the corresponding vehicle group (two-tailed Student’s t-test).

In contrast, brain-derived neurotrophic factor (BDNF) (Figure 6a) and pAkt (Figure 6b)
and GluA1 (Figure 6c) displayed a more delayed response to the administration of NLX-101.
The expression of BDNF was significantly elevated at 1 h (t = 2.478, df = 8, p < 0.05) and 2 h
after drug administration (t = 2.571, df = 8, p < 0.05), whereas the increase in the level of
pAkt was significant at 2 h (t = 2.742, df = 8, p < 0.03) and 6 h (t = 3.273, df = 8, p < 0.02) after
NLX-101. The expression of GluA1 subunit also increased significantly 2 h (+74%, t = 2.229,
df = 10; p < 0.05, two-tailed Student’s t-test) after NLX-101 administration. NLX-101 did
not alter the synthesis of β-arrestin 1 and β-arrestin 2 (Figure 7) at any of the tested time
points. A schematic representation of the molecular signaling mechanisms involved in the
antidepressant-like effects of NLX-101 is depicted in Figure 8.



Pharmaceuticals 2022, 15, 337 7 of 16Pharmaceuticals 2022, 15, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 6. Effects of NLX-101 (0.16 mg/kg) and vehicle (Veh) on the concentration of BDNF (a), pAkt 
(b) and GluA1 (c) in the prefrontal cortex at 30 min, 1 h, 2 h and 6 h after its intraperitoneal admin-
istration. Results are expressed as mean ± SEM. Number of animals is indicated within the bars. * p 
< 0.05 compared with the corresponding vehicle group (two-tailed Student’s t-test). 

Figure 6. Effects of NLX-101 (0.16 mg/kg) and vehicle (Veh) on the concentration of BDNF (a), pAkt
(b) and GluA1 (c) in the prefrontal cortex at 30 min, 1 h, 2 h and 6 h after its intraperitoneal admin-
istration. Results are expressed as mean ± SEM. Number of animals is indicated within the bars.
* p < 0.05 compared with the corresponding vehicle group (two-tailed Student’s t-test).
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Figure 7. Effects of NLX-101 (0.16 mg/kg) and vehicle (Veh) on the concentration of β-arrestin 1 (a)
and β-arrestin 2 (b) in the prefrontal cortex at 30 min, 1 h, 2 h and 6 h after its intraperitoneal
administration. Results are expressed as mean ± SEM. Number of animals is indicated within
the bars.
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kinase A. A delayed antidepressant mechanism (2) would involve the mTOR-induced synthesis of 
BDNF that would bind to its receptor, TrkB, followed by downstream activation of Akt and synthe-
sis of GluA1. Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; 
BDNF, brain-derived neurotrophic factor; CaMKII, Ca2+/calmodulin-dependent protein kinase II; 
D1, dopamine D1 receptor; ERK1/2, extracellular-regulated kinase 1/2; mTOR, mammalian target of 
rapamycin; PI3K, phosphatidylinositol-3 kinase; TrkB, tropomyosin receptor kinase B; VDCC, volt-
age-dependent calcium channel. Illustration created with BioRender.com, accessed on 26 January 
2022. 
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Figure 8. Scheme of the intracellular signaling pathways involved in the antidepressant-like effects of
NLX-101. NLX-101 preferentially activates 5-HT1A receptors expressed in GABA interneurons, thus
reducing their activity and inducing a disinhibition of glutamatergic neurons with the subsequent
release of glutamate and dopamine. Glutamate would evoke a rapid (1) stimulation of AMPA
receptors (AMPAR) localized to the plasma membrane of pyramidal cells, which would result in a
rapid intracellular activation of CaMKII that would eventually activate (phosphorylate) ERK1/2 and
mTOR pathways, thus inducing a rapid synthesis of PSD95 and p11. The binding of dopamine to D1
receptors (D1R) can also contribute to the expression of ERK1/2 through activation of protein kinase
A. A delayed antidepressant mechanism (2) would involve the mTOR-induced synthesis of BDNF
that would bind to its receptor, TrkB, followed by downstream activation of Akt and synthesis of
GluA1. Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BDNF, brain-
derived neurotrophic factor; CaMKII, Ca2+/calmodulin-dependent protein kinase II; D1, dopamine
D1 receptor; ERK1/2, extracellular-regulated kinase 1/2; mTOR, mammalian target of rapamycin;
PI3K, phosphatidylinositol-3 kinase; TrkB, tropomyosin receptor kinase B; VDCC, voltage-dependent
calcium channel. Illustration created with BioRender.com, accessed on 26 January 2022.

3. Discussion

The principal findings of this study are that the cortical 5-HT1A receptor biased agonist,
NLX-101, reduced the immobility in the FST when measured 30 min after its administra-
tion. Systemic administration of NLX-101 increased the dialysate levels of glutamate and
dopamine in the mPFC. In contrast, no changes were observed in the mPFC outflow of no-
radrenaline and 5-HT. NLX-101 also produced a rapid increase in the synthesis of pmTOR
and PSD95, which may also contribute to its rapid antidepressant action.

3.1. Effects of NLX-101 on FST and Cortical Neurotransmitter Levels

The present work confirmed the antidepressant-like effects in rats administered a
single dose (0.16 mg/kg i.p.) of NLX-101 on the FST [12,13]. The NLX-101-induced
decrease in immobility behavior can be accounted for by an action on 5-HT1A receptors
since it was counteracted by the selective 5-HT1A receptor antagonist WAY-100635 [12].

BioRender.com
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Although the change in immobility was notable when FST was performed 30 min after drug
administration, this effect was not present 24 h and 7 days later, which was in line with
previous work showing that the reduction in immobility for the FST only lasted for around
8 h [12]. Interestingly, the reduction in immobility was caused by an increase in swimming,
which has been attributed to an activation of serotonin transmission [20,21]. However, our
microdialysis results show that NLX-101 did not alter dialysate 5-HT and noradrenaline in
the mPFC, suggesting a differential regulation for monoamine neurons by mPFC 5-HT1A
receptors. It is possible, though, that the increased swimming elicited by NLX-101 is caused
by an increase in 5-HT in another brain region such as the nucleus accumbens [22] and
further research is needed to determine the validity of this hypothesis. Similar to previous
work [17], the dialysate level of dopamine in the mPFC is strongly influenced by NLX-101, a
common response shared by antidepressants acting with different primary mechanisms [23].
It is postulated that the stimulation of dialysate dopamine is caused by a preferential
activation of 5-HT1A receptor in γ-aminobutyric acid (GABA) interneurons, which would
disinhibit layer 5 pyramidal neurons projecting to the ventral tegmental area (VTA), thus
subsequently activating mesocortical dopamine neurons [24]. The increase in firing rate of
mPFC pyramidal neurons produced by NLX-101 [17] and the finding that the inhibition
of GABA input to pyramidal neurons suppresses the pyramidal discharge rate increase
evoked by the prototypical 5-HT1A receptor agonist 8-OH-DPAT [25] would support this
view. Moreover, in line with these results, it has been described that the stimulation of
mPFC 5-HT1A receptors increases phasic inputs onto dopaminergic neurons of the VTA [26]
that project back to the mPFC [27]. Hence, increases in mPFC dopamine release may be
involved in the improvement of mood, rewarding stimuli and cognitive dysfunction seen
in depression [28–31]. As a matter of fact, optogenetic activation of VTA dopamine neurons
reversed the anhedonic effects of a chronic stress model for depression [32].

Here we also described for the first time that the antidepressant dose of NLX-101 en-
hances the dialysate level of glutamate in the mPFC, an observation which is in line with the
increased firing rate of mPFC pyramidal neurons seen previously [17]. Increased glutamate
release in the mPFC has also been observed after a single administration of the rapid-acting
antidepressant ketamine [33–35]. This rapid ketamine-induced glutamate burst stimulates
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors [7,36–38] and
results in activity-dependent synapse formation in the mPFC [39–42]. It is thus conceivable
that the glutamatergic effects of NLX-101 would induce similar neuroplasticity mecha-
nisms. Overall, it is possible that the lack of effects on noradrenaline and 5-HT may be
responsible for the shorter duration of the antidepressant-like effects of NLX-101 compared
with ketamine, whereas the increases in cortical dopamine and glutamate mediate the
rapid-acting antidepressant-like effects of the compounds.

3.2. Effects of NLX-101 on Intracellular Signaling Biomarkers

At a molecular level, NLX-101 rapidly influenced the cortical expression of pERK1/2,
pmTOR and PSD95. The rapid increase in pmTOR expression is not maintained, thus
suggesting that downstream mechanisms contribute to the behavioral effects of NLX-101.
The preferential increase in the cortical phosphorylation of ERK1/2 agrees with a previous
report [43] and, together with the rapid phosphorylation of mTOR, NLX-101 shares similar
activity on these intracellular components as shown by ketamine [39,44]. The NLX-101-
induced rapid increase in PSD95 would also contribute to these effects. p11 is a protein
that can interact with multiple ion channels and G protein-coupled receptors [45]. The
constitutive deletion of p11 in mice evokes behavioral changes relevant to a depressive-like
phenotype in several well-established animal models [46,47]. In contrast, upregulation of
p11 is associated with antidepressant effects [48]. Because p11 has an important function in
the conveyance of transmembrane proteins [45], our results would support the view that a
rapid increase in prefrontal p11—although the effect did not achieve statistical significance—
could potentiate glutamatergic transmission, which in turn would contribute to synaptic
plasticity [46]. In addition, our results showed, for the first time, that BDNF, pAkt and the
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AMPA receptor subunit GluA1 are increased by a single systemic injection of NLX-101,
although with a time course which was slower compared with that of pmTOR or pERK1/2.
Importantly, these effects are postulated to be a convergent mechanism underlying antide-
pressant action [49], and deficits in the expression of these proteins are associated with
depression [50–52] and observed in stress-induced behaviors in animal models [53,54]. The
expression of BDNF increased between 1 h and 2 h after drug administration, whereas the
cortical level of pAkt only increased significantly beyond 2 h and GluA1 only 2 h after NLX-
101 administration. These findings are at variance than those reported for ketamine, which
increased BDNF [55] and pAkt [39] over a shorter period of time (within 30 min and 1 h).
These differences may underlie the diverse onset and/or duration of antidepressant-like
effects between ketamine and NLX-101, although direct head-to-head comparison studies
would be necessary to confirm this interpretation. NLX-101 did not alter the expression of
β-arrestins, which agrees with previous in vitro experiments showing that this compound
more potently stimulated ERK1/2 phosphorylation than β-arrestin activation [43]. In sum-
mary, our present results suggest that neurochemical and molecular changes in the mPFC
should participate in the antidepressant-like effects of NLX-101. Indeed, a predominant
action in the mPFC is hypothesized to subserve the clinical efficacy of well-established
rapid acting antidepressant entities such as ketamine [56,57], and our results suggest that
this may also be the case for biased agonists such as NLX-101 that directly target cortical
5-HT1A receptors in the mPFC.

4. Materials and Methods
4.1. Animals

Male Sprague–Dawley rats (Envigo RMS Spain S.L., Sant Feliu de Codines, Spain)
weighing 240–280 were used in this study. The rats were group-housed and maintained in
a controlled environment (12 h light/dark cycle, 22 ± 1 ◦C ambient temperature) with food
and water ad libitum. All the experimental procedures were conducted in accordance with
national (RD 53/2013) and European legislation (Directive 2010/63/EU, on the Protection
of Animals Used for Scientific Purposes, 22 September 2010), and were approved by the
Animal Care and Use Committee of the University of Cantabria and the Consejería de
Medio Rural, Pesca y Alimentación (protocol code PI-08-17, approved on 7 March 2017).
Rats were allowed one week of acclimatization before the start of experiments.

4.2. Drugs and Reagents

NLX-101 (also known as F15599), 3-chloro-4-fluorophenyl-[4-fluoro-4-[[(5-methylpyrimidin-
2-ylmethyl)amino]methyl]piperidin-1-yl]methanone fumarate, was provided by Neurolixis and
dissolved in distilled water for intraperitoneal (i.p.) administration. Noradrenaline, dopamine
hydrochloride, serotonin hydrochloride (5-HT), glutamate and HPLC and other reagents were
purchased from Sigma–Aldrich (Tres Cantos, Spain).

4.3. Forced Swim Test (FST)

Rats were handled daily for one week before the behavioral test. A modified version of
the FST was carried out as previously described [20,58]. On day 1 (pretest), rats were placed
in a clear plexiglass cylinder (46 cm height, 20 cm diameter) filled with water (24 ± 1 ◦C)
to a height of 30 cm, for 15 min. Following this pretest, animals were returned to their
home cages and dried under a lamp for 30 min. Twenty-four hours after the pretest, rats
received NLX-101 (0.16 mg/kg, i.p.). Three tests of 30 min duration were conducted 30 min,
24 h and 7 days after drug administration. The test sessions were recorded (ANY-maze,
Stoelting Europe, Dublin, Ireland) and immobility, climbing and swimming were scored by
an experimenter blind to the treatment, as previously described [20].
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4.4. Open Field Test (OFT)

To rule out any unspecific effects of NLX-101 that could interfere with FST behaviors,
locomotor activity was evaluated using an open field arena (100 cm × 100 cm × 40 cm) and
recorded for 10 min (ANY maze).

4.5. Microdialysis Procedure

Concentric dialysis probes with a 4 mm Cuprophan (pore size 10,000 Da) membrane
length were homemade and implanted under pentobarbital anesthesia (60 mg/kg i.p.) in
the mPFC (AP + 3.2 mm, L −0.6 mm, DV −6.0 mm; from bregma), according to Paxinos and
Watson atlas [59]. Microdialysis experiments were carried out 48 h after surgery in freely
moving rats by perfusing probes with artificial cerebrospinal fluid (aCSF: 147 mM NaCl,
3 mM KCl, 1.2 mM CaCl2, 1.2 mM MgCl2) at a continuous rate of 1.5 µL/min. Dialysate
samples (30 µL every 20 min) were collected in microvials containing 5 µL of 10 mM
perchloric acid. At the completion of experiments, rats were euthanized using an overdose
of sodium pentobarbital and the brains were rapidly removed, frozen and stored at −80 ◦C
until used. Brains were sectioned using a cryostat and probe placements were confirmed in
histological sections stained with cresyl violet. Experimental data from animals that pre-
sented misplaced probes were discarded. Noradrenaline, dopamine, 5-HT and glutamate
were determined using an Alexys Analyzer (Antec Scientific, Leiden, The Netherlands)
with amperometric detection, following manufacturer’s methods. Briefly, monoamines
were detected at +0.46 V using a 1.0 × 100 mm Acquity UPLC® BEH C18, 1.7 µm column
(Waters Cromatografía, S.A., Cerdanyola del Vallès, Spain) and glutamate was pre-column
derivatized with o-phtalaldehyde and detected at +0.7 V using a 1.0 × 50 mm Acquity
UPLC® HSS T3, 1.8 µm column (Waters Cromatografía, S.A.).

4.6. Protein Extraction and Western Blotting

In a separate set of experiments, rats were administered NLX-101 (0.16 mg/kg, i.p.),
and sacrificed 30 min, 1 h, 2 h and 6 h later. Their brains were removed, and the pre-
frontal cortices were dissected on ice and stored at −80 ◦C. Samples were homogenized
(1:15) in homogenization buffer [10 mM HEPES (pH 7.9), 1.5 mM MgCl2, 100 mM KCl,
1 mM phenylmethylsulfonyl fluoride (PMSF), 0.2 mg/mL aprotinin, 10 µg/mL leupeptin,
10 µg/mL pepstatin A, 10 µg/mL antipain, 10 µg/mL chymostatin, 1 mM Na3VO4 and
1 mM NaF]. Homogenates were sonicated on ice-cold protein lysis buffer (homogenization
buffer containing 1% Igepal®, 0.5% sodium deoxycholate, 0.1% SDS and 2.5 mM CHAPS)
for 30 min. Homogenates were centrifuged for 10 min at 14,000 rpm and 4 ◦C, and the
supernatants were collected.

For each sample, 55 µg of protein (in duplicate) was separated using SDS-PAGE
gels (10% or 15% acrylamide), and then transferred to nitrocellulose membranes (Bio-
Rad, Hercules, CA, USA). The blocking step was performed with 5% skimmed-milk for
non-phosphorylated proteins or 3% skimmed-milk containing phosphatase inhibitors for
an hour at room temperature (except for pAKT antibody, which was incubated with 5%
skimmed milk), in Tris buffered saline (TBS-T: 50 mM Tris-HCl, pH 7.6, 150 mM NaCl
and 0.05% Tween-20). Membranes were incubated overnight at 4 ◦C with the primary
antibodies diluted in the corresponding blocking solutions.

The sources and dilution of primary antibodies used were: rabbit anti-pmTOR (1:250,
Cell Signaling, Danvers, MA, USA), rabbit anti-GluA1 (1:1000, Abcam, Cambridge, UK),
mouse anti-pERK1/2 (1:200, Sigma–Aldrich, Saint Louis, MI, USA), rabbit anti-pAkt (1:500,
Cell Signaling, Danvers, MA, USA), rabbit anti-BDNF (1:250, Abcam, Cambridge, UK),
rabbit anti-p11 (1:250, Abcam, Cambridge, UK), goat anti-PSD95 (1:200, Santa Cruz Biotech-
nology, Paso Robles, CA, USA), mouse anti-β-arrestin 1 (1:100, Santa Cruz Biotechnology,
Paso Robles, CA, USA) and rabbit anti-β-arrestin 2 (1:500, Cell Signaling, Danvers, MA,
USA). The next day the membranes were washed with Tween 20 at 0.05% in TBS-T and incu-
bated for one hour with conjugated secondary antibodies for fluorescent detection against
IgG of mouse or rabbit, at a concentration of 1:15,000, provided by LI-COR Biosciences
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(Lincoln, NE, USA). The fluorescence signal was detected with an Odyssey CLx Imaging
System (LI-COR Biosciences, Lincoln, NE, USA). Blot quantitation was performed by using
Image Studio Lite software (LI-COR Biosciences, Lincoln, NE, USA), and densitometry
values were normalized with respect to the values obtained with anti-β-tubulin antibody.
Results are represented compared to the vehicle group.

4.7. Statistics

Data are expressed as mean ± SEM. Differences between two groups were analyzed
using a two-tailed Student’s t-test. For microdialysis experiments, changes in monoamines
and glutamate concentrations were analyzed using repeated measures ANOVA with drug
and time as factors, followed by post-hoc Tukey’s multiple comparisons test. The level of
significance was set at p < 0.05.

5. Conclusions

Altogether, our results suggest that elevated transmission of glutamate and do-pamine
in the mPFC can underlie the rapid antidepressant-like effects of the 5-HT1A re-ceptor
biased agonist, NLX-101. It remains to be determined whether such changes might be
shared by other rapid-acting antidepressant drugs. In view of the preferential selectivity of
NLX-101 for postsynaptic 5-HT1A receptors localized in the mPFC, it can be argued that
its antidepressant-like effects are mediated by 5-HT1A receptors localized to GABAergic
interneurons in this brain region. The rapid antidepressant-like effects of NLX-101 are
likely mediated by the expression of pERK1/2, pmTOR and p11 and suggest that direct
targeting of mPFC 5-HT1A receptors with cortically-biased agonists could be a promising
strategy to develop novel and potentially superior antidepressant drugs.
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