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Regulatory T cells (Tregs) are capable of inhibiting the proliferation, activation and function
of T cells and play an important role in impeding the immune response to cancer. In
chronic lymphocytic leukemia (CLL) a dysfunctional immune response and elevated
percentage of effector-like phenotype Tregs have been described. In this study, using
the Eµ-TCL1 mouse model of CLL, we evaluated the changes in the Tregs phenotype and
their expansion at different stages of leukemia progression. Importantly, we show that
Tregs depletion in DEREG mice triggered the expansion of new anti-leukemic cytotoxic T
cell clones leading to leukemia eradication. In TCL1 leukemia-bearing mice we identified
and characterized a specific Tregs subpopulation, the phenotype of which suggests its
role in the formation of an immunosuppressive microenvironment, supportive for leukemia
survival and proliferation. This observation was also confirmed by the gene expression
profile analysis of these TCL1-specific Tregs. The obtained data on Tregs are consistent
with those described so far, however, above all show that the changes in the Tregs
phenotype described in CLL result from the formation of a specific, described in this study
Tregs subpopulation. In addition, functional tests revealed the ability of Tregs to inhibit T
cells that recognize model antigens expressed by leukemic cells. Moreover, inhibition of
Tregs with a MALT1 inhibitor provided a therapeutic benefit, both as monotherapy and
also when combined with an immune checkpoint inhibitor. Altogether, activation of Tregs
appears to be crucial for CLL progression.
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INTRODUCTION

Despite the extensive research and the development of new
treatment modalities, the number of chronic lymphocytic
leukemia (CLL) cases with clinical resistance to therapy is
constant ly r i s ing (1) . The newest achievement in
immunotherapy – chimeric antigen receptor T cells (CAR-T
cells) – are less effective in CLL as compared to other B cell
malignancies, including B cell acute lymphoblastic leukemia or
diffuse large B cell lymphoma (2–4). Similarly, immune
checkpoint inhibitors have a limited efficacy in relapsed/
refractory CLL (3). In preclinical studies, antibodies against
lymphocyte activation gene 3 (LAG-3), programmed cell death
protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) are
only effective when administrated in the initial stage of leukemia
development (5–7). Importantly, the immune system
dysfunctions observed in CLL patients, suggest that CLL cells
modulate the microenvironment to their own benefit (8–10). The
exhausted phenotype of T cells that display high expression
of PD-1, LAG-3, or T cell immunoglobulin domain and
mucin domain (TIM-3) is a hallmark of CLL (11, 12).
In order to improve the therapeutic strategies for CLL, it is
crucial to understand the mechanisms that shape the
leukemia microenvironment.

Naturally occurring, thymic, Forkhead box protein P3
(FoxP3)+, CD4+ regulatory T cells (Tregs), are sensitive to
activation by self-antigens and tumor neoantigens, and are
main players of the neoplastic microenvironment (13). Tregs
can affect T cells in all stages of immune response development:
priming, proliferation, and T cell effector functions (14).
Increased frequency of Tregs correlates with poor prognosis of
CLL patients (15). The expression patterns of Tregs-associated
markers (CD25, LAG-3, killer cell lectin like receptor G1, CD69,
Eomesodermin - EOMES) that determines their suppressive
functions was recently presented in both CLL patients and
leukemia-bearing mice (5, 16, 17). Nevertheless, the function of
Tregs in CLL has not been elucidated and the approaches for
Tregs elimination have shown to be insufficient. For instance, the
administration of anti-CD25 antibodies or phosphoinositide 3-
kinase d (PI3Kd) inhibitors affected not only Tregs but also
abrogated the activation and function of CD8+ lymphocytes (18).

In order to evaluate the role of Tregs in the development and
shaping of immunosuppressive microenvironment of CLL, in
this work we used Eµ-TCL1 transgenic mice model (19, 20). We
characterized a novel, TCL1-derived Tregs subpopulation and
assessed Tregs suppressive activity in functional tests.
Furthermore, TCR sequencing allowed us to better understand
the influence of leukemia on Tregs and CD8+ T lymphocytes
activation and clonality. Finally, we used the inhibitor of
mucosa-associated lymphoid tissue lymphoma translocation
protein 1 (MALT1) to block the activation of Tregs. MALT1
protease is a component of CARMA1-BCL10-MALT1 (CBM)
complex which was shown to be crucial for Tregs activity (21).
The results obtained in this study provide the evidence
that Tregs are essential for leukemia progression in
immunocompetent mice and can be efficiently targeted to
block CLL progression.
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MATERIALS AND METHODS

Reagents
MI-2 (Malt1 inhibitor, Selleckchem.com) was dissolved in DMSO
(Sigma-Aldrich, St Louis, MA, USA), aliquoted and stored at
-20°C. Albumin from chicken egg white (OVA, Sigma-Aldrich,
St Louis, MA, USA) and Poly (I:C) (HMW) (In vivoGen,
San Diego, CA, USA) were aliquoted and stored at -20°C.
Diphtheria Toxin (DT) from Corynebacterium diphtheriae
(Sigma-Aldrich, St Louis, MA, USA) was aliquoted and stored
at -80°C. Anti-mouse PD-L1 antibody InVivoPlus (B7-H1)
(BioXcell, Lebanon, NH, USA) and InVivoPlus rat IgG2b
isotype control, (BioXcell, Lebanon, NH, USA) were stored at 4°C.

Animals Studies
All in vivo studies were performed in accordance with the EU
Directive 2010/63/EU and the Polish legislation for animal
experiments of the Polish Ministry of Science and Higher
Education (February 26, 2015) and approved by the Local
Ethics Committee for the Animal Experimentation in Warsaw.
The in vivo experiments were carried out in Animal Facility of
the Medical University of Warsaw.

For the study, 6-12 weeks old female or male (never mixed in
one experiment) mice were used. Mouse strains include:
C57BL6/J (wild-type, immunocompetent mice) (Medical
University of Bialystok or Mossakowski Medical Research
Centre), B6.Cg-Foxp3tm2(EGFP)Tch/J (B6 Foxp3EGFP, Tregs
express GFP) (University of Warsaw), C57BL/6-Tg(Foxp3-
DTR/EGFP)23.2Spar/Mmjax (DEREG, Tregs express GFP and
receptor for diphtheria toxin) (The International Centre for
Genetic Engineering and Biotechnology, Trieste, Italy) B6(Cg)-
Rag2tm1.1Cgn/J (RAG2-KO, immunodeficient mice) and
C57BL/6-Tg(TcraTcrb)1100Mjb/J (OT-1) (Medical University
of Warsaw). Splenocytes or leukemic CD5+CD19+ TCL1 cells
(5×106 – 1×107) isolated from spleens of female Em-TCL1
transgenic mice (The International Centre for Genetic
Engineering and Biotechnology, Trieste, Italy) were adoptively
transferred via tail vein injection. In described experiments we
used cells isolated from two different Eµ-TCL1 transgenic mice,
either TCL1-1159 or TCL1-1013. These cells were propagated in
mice maximally twice, with the exception of genetically modified
TCL1 cells expressing OVA (due to the procedure of generating
modified cells, they required additional propagation in RAG2-
KO mice).

In Vivo Treatments
Eµ-TCL1 mice model of CLL was used in this study. To monitor
leukemia development and progression, the percentage of
leukemic TCL1 cells (CD5+CD19+) among white blood cells
(WBC) in the peripheral blood (PB) collected from cheek vein
was assessed by flow cytometry. The consistency in the
assessment of leukemia was ensured and blinding practice was
not applicable. Mice with detected leukemia were randomly
selected and further used in the experiments. The sample size
was calculated with power analysis test (22).

DEREG mice were treated with DT (50 µg/kg) administered
intraperitoneally (i.p.) every four days. MI-2 was administered
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i.p. daily, at dose 20 mg/kg and the control mice were injected
with the DMSO as a solvent. Anti-PD-L1 antibody or the
appropriate isotype control were administered i.p. every second
day at a dose 200 mg/mouse. The schemes of the treatments are
presented in details in the appropriate figures.

Cell Isolation
In order to prepare a single cell suspension, spleens (SPL) or
lymph nodes (LNs) were cut in small pieces and passed through a
150 mm cell strainer. To remove red blood cells the isolated
splenocytes were lysed with ACK Lysing Buffer (Thermofisher
Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions. CD19+, CD4+ and CD8+ cell subpopulations were
isolated by immunomagnetic negative selection using EasySep™

Mouse B Cell Isolation Kit, EasySep™ Mouse CD4+ T cell
Isolation Kit and EasySep™ Mouse CD8+ Cell Isolation Kit
(STEMCELL Technologies, Vancouver, Canada), respectively,
according to the manufacturer’s protocols. The efficacy of the
isolation was over 90%.

CD8+ Cells Proliferation Assay
CD8+ cells isolated from spleens were incubated with CellTrace
™ Violet Cell Proliferation kit (CT) (Invitrogen/Thermo Fisher
Scientific, Waltham, MA, USA) for 20 min at 37°C, washed with
cell culture medium and seeded onto 96-well U-bottom plates
coated with anti-CD3 antibody (eBioscience, San Diego, CA,
USA) together with sorted Tregs-GFP (either all GFP+ or GFP+

CD69high CD44-/low) in various ratios (1:0.125, 1:0.25, 1:0.5, 1:1
and 1:2). For stimulation, anti-CD28 (eBioscience, San Diego,
CA, USA) antibody was added to the culture medium. The
proliferation of CD8+ cells was evaluated upon 72h using BD
FACSCanto™ II Flow Cytometer and BD FACSDiva Software
(v8.0.1) (BD Biosciences, La Jolla, CA, USA).

TCL1 OVA-Expressing Cells
The sequence encoding ovalbumin (Addgene, cat. number
25097) was inserted into mammalian expression vector pCDH-
EF1-MCS-T2A-copGFP (System Biosciences). The pCDH-EF1-
OVA-GFP and a packaging (psPAX2) and an envelope
(pMD2.G) plasmids (gifts from prof. Didier Trono, École
Polytechnique Fédérale de Lausanne, Switzerland) were
introduced into HEK-293T cells using Polyethylenimine
(Polysciences). Then freshly isolated TCL1 cells (CD5+CD19+)
from mouse spleens were seeded into 24-well plates with M2-
10B4 murine stroma cells. Next, medium containing lentiviral
particles was added into TCL1 and M2-10B4 cells co-culture.
Then TCL1 cells were washed and inoculated into RAG2-KO
mice for leukemic cells propagation. Finally, OVA+ GFP+ cells
were sorted and used for further experiments. In all performed
experiments at least 60% of injected leukemic cells exerted OVA+

GFP+ phenotype as evaluated by flow cytometry.

In Vivo Functional Assays
Two weeks following TCL1 cells adoptive transfer, leukemia-
bearing DEREG transgenic mice were treated with DT and on
the following day, injected with CT-positive CD8+ T cells
isolated from spleens and lymph nodes of OT-1 mice. 4-5
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hours later, the mice were i.v. inoculated with OVA protein
(50 µg). The proliferation of CD8+ OT-1 cells isolated from
spleens was assessed upon 3 days using flow cytometry. In the
second approach, DEREG mice were injected with genetically
modified TCL1 leukemic cells expressing OVA-GFP (TCL1-
OVA). Three days later, the mice were treated with DT and on
the following day, injected with CT-positive CD8+ OT-1 T cells.
The proliferation of CD8+ OT-1 cells was evaluated following 3
or 4 days using flow cytometry. The schemes of described
experiments are presented in detail on appropriate figures.

Flow Cytometry
The isolated cells were stained with Zombie NIR™ Fixable
Viability kit or Zombie Violet™ Fixable Viability Kit
(BioLegend, San Diego, CA, USA) for 20 min at room
temperature (RT) and washed with PBS. Next, the cells were
incubated with Purified Rat Anti-Mouse CD16/CD32 (Mouse
BD Fc Block™; clone 2.4G2, BD Biosciences, La Jolla, CA, USA)
for 15 min at RT and stained for surface markers with proper
fluorochrome-conjugated antibodies (all antibodies used in this
study are listed in Supplementary Table 1) for 20-30 min at RT.
After final washing with PBS, the cells were analysed using BD
FACS Canto™ II Flow Cytometer and BD FACS Diva Software
(v8.0.1)(BD Biosciences, La Jolla, CA, USA). For further
analyses, including t-SNE (with markers: CD44, CD25, LAG-3,
CD69), FlowJo Software (v. 10.6.1) (FlowJo LLC, Ashland, OR,
USA) was used.

Cell Sorting
In order to sort Tregs (CD4+, GFP+) from spleens of B6
Foxp3EGFP or DEREG mice, CD4+ cell subpopulation was
enriched prior to sorting. To this end, isolated splenocytes
were subjected to immunomagnetic positive selection for
CD19+ using EasySep™ Mouse CD19 Positive Selection Kit II
(STEMCELL Technologies) and then the negative fraction was
subsequently subjected to negative selection using EasySep™

Mouse CD4+ T cell Isolation Kit (STEMCELL Technologies).
When needed, CD4+ cells were additionally stained with anti-
CD69-PE and anti-CD44-PE-Cy7 monoclonal antibodies as
described above. To sort CD8+ cells, the fraction of splenocytes
devoid of CD19+ cells was stained with anti-CD8a-PerCP-Cy5.5
monoclonal antibody. Then the cells were sorted using BD FACS
Aria™ III Cell Sorter (BD Biosciences).

DNA Isolation and Analysis of
TCRb Repertoire
Tregs A (GFP+, CD69high, CD44-/low, gated as presented in
Figure 5 CD69/CD44 right panel) and CD8+ cells were sorted
as described above. Then the genomic DNA was isolated from
the sorted cells using DNA Micro Kit (QIAGEN, Hilden,
Germany) according to the manufacturer’s instructions. The
concentration and purity of extracted DNA was assessed using
NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific).
Immunosequencing of the CDR3 regions of TCRb chains was
performed with immunoSEQ® Assay and analysed by
immunoSEQ® Analyzer (Adaptive Biotechnologies, Seatlle,
WA, USA).
February 2022 | Volume 13 | Article 781364
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RNA Sequencing
When percentage of leukemic cells in mouse blood reached at
least 20% of all PBMC, the GFP+ Tregs: A (GFP+, CD69high,
CD44-/low) and B (GFP+ excluding fraction A) were sorted from
TCL1 leukemia-injected DEREG mice. Additionally, GFP+ Tregs
were also sorted from control DEREG mice. The mRNA was
isolated from 4.5 × 105 cells with the RNeasy Micro Kit (Qiagen,
Hilden, Germany). Libraries were prepared with the QuantSeq 3’
mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen),
according to manufacturer’s instructions, with the addition of
UMI. Barcoded samples were pooled, diluted, loaded onto a
NextSeq 500/550 Mid Output flowcell (130M reads, Illumina)
and single-end 150bp sequencing was performed on a NextSeq
550 (Illumina).

After initial QCs using FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and FastQ Screen (https://
www.bioinformatics.babraham.ac.uk/projects/fastq_screen/),
fastq files were processed using a local Snakemake workflow
including the following main steps. First, raw reads were
trimmed from their UMI index, poly A and adapter sequences
using a combination of dedicated scripts and cutadapt (v2.10).
Next, filtered reads were submitted for mapping (STAR v2.5.3a)
on the Mouse Reference genome (GRCm38). Collapsing of reads
originating from the same fragment was achieved with umi_tools
(v 1.0.0) and counting was performed with featureCounts
(subread v2.0.0).

Counts were filtered and transformed with edgeR (cpm > 5 and
presence in at least 3 samples). For data visualization, heatmaps,
sample distance matrix, and volcano plots were drawn with EdgeR,
heatmap, and EnhancedVolcano R packages. For differential
expression of genes across samples (DEGs), FDR < 0.05 and
log2 fold change cut-off of 1 were imposed. For clustering, DEGs
were selected as important for immune functions in Tregs. Gene
expression values were z-scored and subjected to correlation-based
clustering with complete linkage. Raw and processed data were
deposited at the NCBI GEO database (GSE179121). The following
secure token has been created to allow review of record GSE179121
while it remains in private status: qlchuysazpinjed. To better
understand the nature of Tregs A and Tregs B, we re-analyzed
the public dataset GSE72494 describing the transcriptome of naive,
activated, and effector Treg (23) and performed a Gene
Set Enrichment Analysis (GSEA, Hallmark and curated gene
sets) with the stand-alone software (GSEA v4.2.1, Broad
Institute, Boston, MA). Normalized enrichment scores (NES)
and p-values < 0.05 were taken into consideration.

Statistical Analysis
GraphPad Prism 6 Software (GraphPad Software Inc., San Diego,
CA, USA) was used for data analysis. The statistical significance
was calculated by Mann-Whitney U test. The mice survival rate
was analyzed by log-rank survival test. For gene expression data
(RNA sequencing), one-way ANOVA with multiple
comparisons was calculated for single genes and histograms
were drawn with GraphPad Prism 9 Software.

Additional experimental procedures are described in details
in the Supplementary Material.
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RESULTS

Depletion of Tregs in Mice With Adoptively
Transferred TCL1 Leukemia Results in the
Expansion of Functional CD8+ Cells and
Leukemia Clearance
To evaluate the significance of Tregs for CLL progression we used
DEREG transgenic mice with depletion of FoxP3+ CD4+ Tregs
by treatment with diphtheria toxin (DT) (Figure 1 and
Supplementary Figure 1A, B). DEREG mice were treated with
DT one day prior to adoptive transfer of malignant (CD5+CD19+)
B cells, isolated from an Eµ-TCL1 transgenic mouse. Effective
depletion of Tregs was observed in spleens and peripheral blood of
DEREG mice and was maintained by additional DT injections
every four days (Figure 1A and Supplementary Figure 1A). As
monitored in peripheral blood twice a week, injection of DT did
not affect the progression of leukemia during the first fifteen days
of experiments. However, starting from day 18th after TCL1
leukemia inoculation, we detected a significant decrease in the
percentage of leukemic cells (CD5+CD19+), in the peripheral
blood, of DT-treated mice as compared to untreated TCL1
leukemia-bearing animals (Figure 1B, left panel). In line with
these results, we observed a significant reduction of previously
established leukemia in the spleens of Tregs-depleted mice
(Figure 1B, right panel). The same observations were made
when DEREG mice were injected with TCL1 leukemia isolated
from another transgenic mouse (Supplementary Figure 1B). The
decrease in the percentage of leukemic cells in spleens of DT-
treated mice was accompanied by the extensive increase of the
percentage in both CD4+ and CD8+ T lymphocytes (Figure 1C).
These observations prompted us to investigate the putative
changes in the phenotype of splenic CD4+ and CD8+ T cells
mediated by Tregs-depletion. We observed the enrichment of
effector (EFF; CD44+CD62L-) and central memory (CM;
CD44+CD62L+) cells in both CD4+ and CD8+ T cell
subpopulations in mice deprived of Tregs (Figures 1D, E). A
significant increase in the percentage of effector (CD4+ and CD8+)
and central memory (CD8+) T cells was also observed in lymph
nodes (axillary, brachial, inguinal) of DT-treated mice
(Figure 1F). Depletion of Tregs resulted in the elevation of
CD69 on both, CD4+ and CD8+ T cells in the lymph nodes,
and reduced the percentage of naïve cells, suggesting
the activation of a systemic immune response. Nevertheless,
the depletion of Tregs, performed at an advanced stage of the
disease (first dose of DT was administered when 30% of malignant
B cells were detected among all white blood cells in peripheral
blood) did not affect the progression of leukemia (Supplementary
Figure 1C). Tregs depletion at an advanced stage of leukemia
progression increased the percentage of effector and IFN-g-
positive CD4+ and CD8+ T lymphocytes, significantly elevated
IFN-g concentration and reduced the concentration of IL-10 in
the sera (Supplementary Figure 1D, E). Importantly, three weeks
of DT injections of control (without leukemia) DEREG mice lead
to a minor activation of T cells, mostly CD4+ T cell subpopulation
(Supplementary Figure 1F, upper panel). However, no changes
were observed in the level of CD69 in lymphatic T cells upon
February 2022 | Volume 13 | Article 781364
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FIGURE 1 | Depletion of Tregs diminishes the progression of leukemia in DEREG mice and affects the relative frequency of conventional T cell subpopulations.
(A) The graph presenting a scheme of the experiment. Tregs were depleted with DT and on the next day mice were injected with TCL1 CD19+ leukemic cells. The
depletion of Tregs (DT administration) was repeated every 4 days. (B) The percentage of leukemic cells (CD5+CD19+) among all white blood cells (WBC) assessed
by flow cytometry in blood (at indicated time points of the experiment, left) and spleens (day 22nd of experiment, right) of untreated (TCL1) and DT-treated (TCL1+DT)
TCL1 leukemia-bearing mice. The graphs represent mean results from two independent experiments. Each dot represents an individual sample (mouse), n = 10-12,
Mann-Whitney U test *p ≤ 0.05. (C) The Percentage of CD8+ (left) and CD4+ (right) T cells in spleens of untreated and DT-treated TCL1 leukemia-bearing mice. The
graphs present mean results from two independent experiments. Each dot represents an individual sample (mouse), n = 12-14, Mann-Whitney U test ***p ≤ 0.001,
****p < 0.0001. (D–F) The percentage of CD4+ and CD8+ T cells with phenotype of naïve, effector (EFF) and central memory (CM) subpopulations according to the
expression of CD44 and CD62L surface markers. Representative dot plots with a gating strategy (D) and the graphs present the results from spleens (SPL) (E) and
lymph nodes (LN) (F) of untreated and DT-treated TCL1 leukemia-bearing mice. In (F) the graphs presenting the expression of CD69 surface marker on CD4+ and
CD8+ T cells in LN are also shown. The data from two independent experiments are showing mean values. Each dot represents an individual sample (mouse), n =
12-14, Mann-Whitney U test *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p < 0.0001.
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DT-treatment (Supplementary Figure 1F, lower panel). The
activation of CD4+ T cells may be the result of anti-DT
immune response as it was described before (24).

To understand more deeply the anti-leukemia immune
response induced by Tregs depletion, we investigated the
impact of CD8+ T lymphocytes derived from the mice after DT
injections on leukemia progression. We limited these experiments
to the subset of CD8+ T cells as it was shown that these cells play a
superior role in anti-leukemia immune response over CD4+ T
lymphocytes (25). Importantly, an effective Tregs depletion in
DEREG mice is transient. At day 22 after TCL1 injection we
observed that the Tregs population was restored in murine blood
despite continuous injections of DT (Supplementary Figure 1A,
right panel), as was also reported by others (26). Thus, to examine
the impact of the CD8+ lymphocytes on leukemia progression and
mice survival, the cells were isolated from spleens of untreated or
DT-treated TCL1 leukemia-bearing mice (the same scheme of
experiment as shown in Figure 1A), and adoptively transferred
into TCL1-injected RAG2-KO mice (Figure 2A). Next, the
expansion of TCL1 leukemic cells was monitored in murine
blood twice a week. Interestingly, CD8+ T lymphocytes, isolated
from Tregs-depleted mice effectively prevented leukemia
progression, and in some mice even lead to complete
elimination of TCL1 cells (Figures 2B, C). In contrast, the
CD8+ T lymphocytes adoptively transferred from mice with
intact Tregs population did not significantly affect the
progression of the disease in RAG2-KO mice. Consequently, in
TCL1-injected RAG2-KO mice, the adoptive transfer of CD8+ T
cells isolated from DEREG mice after Tregs depletion, translated
into prolonged survival and complete leukemia eradication in
three out of nine mice. (Figure 2D).

The results obtained from the experiments described
above revealed that the lack of Tregs in the leukemia
microenvironment triggers the expansion of anti-leukemic CD8+

T cells. To address the differences in the investigated T cells, the
CD8+ T cells from spleens of TCL1-injected DEREG mice treated
with DT or untreated were sorted for DNA isolation and the T cell
receptor beta chain (TCRb) third complementarity-determining
regions (CDR3) sequences analysis. An increase of CD8+ T cell
clonality was observed in three out of five TCL1 leukemia-bearing
mice with Tregs depletion, but overall, the observed differences
were not statistically significant between the two examined groups
(Figure 2E). Strikingly though, we observed distinct amino acid
sequences of TCRb CDR3 regions in the tested CD8+ T cells,
suggesting different specificity of the T cells among untreated and
DT-treated mice (Figure 2F). Indeed, only one sequence is shared
in the top fifteen rearrangements between both analyzed CD8+ T
cell populations (Figure 2F). Altogether, these data indicate that
the el imination of Tregs from the TCL1 leukemia
microenvironment resulted in the expansion of a distinct set of
cytotoxic CD8+ T effector cells, capable of clearing leukemia in
DEREG and RAG2-KO mice.

CLL Leads to the Formation of a Specific
Population of Tregs
We analyzed the phenotype and function of Tregs in TCL1-
injected B6 FoxP3EGFP transgenic mice that express EGFP and
Frontiers in Immunology | www.frontiersin.org 6
FOXP3 under the control of endogenous promoter. Based on the
results of phenotyping with a set of markers (FoxP3, LAG-3,
CD69, CD44, CD25), we performed t-distributed stochastic
neighbor embedding (tSNE) analysis, which allowed us to
distinguish a specific Tregs subpopulation that exerts the
phenotype characteristic only for Tregs isolated from TCL1
leukemia-bearing mice (Tregs A) (Figure 3A). This particular
Tregs A subpopulation can be defined by high level of CD69,
LAG-3 and low of CD44 and CD25 on their surface.

In order to investigate whether the observed changes in Tregs
phenotype are mediated by the interactions with malignant B cells,
we co-cultured the control Tregs-GFP+ (sorted from spleens of
control B6 Foxp3EGFP mice) with leukemic (TCL1) or normal
(CD19) B cells. After three days, significantly higher level of LAG-
3 was observed on Tregs-GFP+ co-cultured with TCL1 cells, but not
with the control CD19+ cells (Supplementary Figure 2A). The
elevated expression of LAG-3 was achieved only when Tregs-GFP+
and TCL1 leukemia cells were cultured in direct contact. On
contrary, the level of CD44 in Tregs-GFP+ co-cultured with TCL1
leukemia cells (but not normal CD19+ cells) was reduced regardless
the separation of the cells by transwells (Supplementary Figure 2B).

Next, the clonality of Tregs A subpopulation was examined,
based on the TCRb CDR3 region sequences. Importantly, the
TCL1-associated Tregs A subpopulation sorted from spleens of
TCL1-leukemia bearing DEREG mice exhibits increased
clonality and elevated frequency of particular clones, compared
to whole Treg-GFP+ subpopulation sorted from the control
animals (CTR Tregs) (Figures 3B, C).

Finally, in order to characterize the TCL1-associated Tregs at
the transcriptomic level, we performed RNA sequencing on two
subpopulations of Tregs sorted from the spleens of TCL1-injected
DEREG mice: Tregs A (specific to Eµ-TCL1 model, sorted as
GFP+ CD44-/lo and CD69hi) and Tregs B (the remaining GFP+

Tregs, which did not meet the criteria of subpopulation A). The
transcriptome of both TCL1-associated subpopulations was
compared with Tregs-GFP+ population sorted from spleens of
control mice. Interestingly, the analysis of differentially expressed
genes (DEGs), showed that Tregs A subpopulation was markedly
different from both Tregs B as well as control Tregs populations
(Supplementary Figure 3, 4). This data suggests that the specific
Tregs A cells signature might be selectively induced within the
conditions of leukemia progression. In Tregs A, we observed
increased expression of genes responsible for immunosuppressive
activity (Gzmb, Prf1, Gzmk, Il10), checkpoints (Havcr 2, Lag-3,
Tigit), chemokines that may support leukemia progression and its
microenvironment (Ccl3, Csf1, Ccl5), as well as genes that have
been recently reported as unique for CLL-Tregs (EOMES)
(Figure 3D). Importantly, the gene expression profile was in
line with the phenotype observed in flow cytometry, apart from
CD69, which seemed to be regulated post-transcriptionally
(Figure 3E). Additionally, the elevated level of Ikzf2 encoding
Helios transcription factor suggests enhanced suppressive
capacity of Tregs A subpopulation (27).

Next, we compared the gene expression profiles of Tregs A and
Bwith a public dataset [GSE72494 (23)] describing the transcription
profiles of naive, activated, and effector Tregs. We used a gene
signature reported in that study (23), and built heat maps to
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FIGURE 2 | Depletion of Tregs in TCL1 leukemia-bearing DEREG mice results in the expansion of CD8+ lymphocytes capable of eradicating leukemic cells. (A) The
graph presenting a scheme of the experiment. DEREG mice were treated according to scheme from Fig1A. Then 5 x 106 of splenic CD8+ T cells isolated with
magnetic beads from untreated (DEREG w/o DT) or DT-treated (DEREG DT) leukemic DEREG mice were injected to RAG2-KO mice following the injection of TCL1
(CD5+CD19+) cells. (B, C) The percentage of leukemic cells (CD5+CD19+) assessed at indicated time points in the peripheral blood of RAG2-KO mice: TCL1
leukemia-injected mice (black lines), TCL1- and CD8+-injected mice (CD8+ isolated from TCL1 leukemia bearing-DEREG w/o DT, pink lines), and TCL1- and CD8+-
injected mice (CD8+ isolated from leukemia-bearing DEREG treated with DT, blue lines). Each line represents an individual sample (mouse), (B) and on day 39th (C),
each dot represents an individual sample (mouse). The graphs represent mean results from two independent experiments, n = 7-9, Mann-Whitney U test ***p ≤

0.001, ****p < 0.0001. (D) The survival plot summarizing the results from two independent experiments, n = 7-9, log-rank survival test ***p ≤ 0.001. (E) The
productive Simpson clonality of CD8+ lymphocytes sorted from untreated or DT-treated mice analyzed in immunoSEQ Analyzer (from Adaptive Biotechnologies), n =
5. (F) The top 15 amino acid sequences of CDR3 TCRb with the highest sum frequency (total amount of clones with a given sequence in all tested mice), of CD8+

lymphocytes sorted from untreated (pink) or DT-treated TCL1 leukemia-bearing DEREG mice (blue). The Graphs present log2 transformation of % sum frequency of
a given sequence in untreated (pink, upper graph) and DT- treated TCL1- injected DEREG mice (blue, lower graph), n = 5.
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FIGURE 3 | A specific Tregs population is formed during the progression of TCL1 leukemia. (A) tSNE analysis of Tregs phenotype isolated from control (grey) and
TCL1 leukemia-bearing (blue) B6 Foxp3EGFP mice 14 days after injections with leukemic cells. The overlay of counterplots presents the Tregs subpopulation, specific
for TCL1 leukemia-bearing mice (Tregs A, orange). The Tregs GFP+-were plot on the graphs according to the expression of CD44, CD69, CD25, and LAG-3 that are
presented on the histograms. The counter plots show representative analysis of Tregs from 2 control and 4 TCL1 leukemia-injected mice. (B) The productive
Simpson clonality of Tregs sorted from control (all Tregs, CTR Tregs) and TCL1 leukemia-bearing (the specific TCL1-associated Tregs subpopulation, Tregs A)
DEREG mice, n = 5. (C) The productive sum frequency of top 10 amino acid sequences of CDR3 TCRb of Tregs A which were present in all of tested TCL1
leukemia-bearing DEREG mice, n = 5. (D) Clustering of selected DEGs between Tregs A and Tregs B (RNA sequencing with FDR < 0.05 and log2FC > 1) by
correlation with complete linkage, n = 3. (E) Gene expression (log2, RNA sequencing) of genes from panel A in Tregs from CTR and TCL1 leukemia-bearing mice,
n = 3. One-way ANOVA * p≤ 0.05, ** p< 0.01, *** p< 0.001.
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compare Tregs subsets. The gene expression profiles indicated that
our Ctrl Tregs population resembles naive Tregs and that Treg A
and Tregs B exert similar expression patterns to effector Tregs and
activated Tregs, respectively (Supplementary Figure 4C). Similar
gene sets were identified as enriched in Tregs A (vs Treg B) and
Effector Tregs (vs Activated Treg) (Supplementary Tables 2 and 3).
Although Tregs A exhibited comparable transcription changes as
compared to Effector Tregs (up-regulation of Il10 andHavcr2/Tim3
and down-regulation of Sell and Ccr7), we identified important
differences suggesting a particular gene modulation in this specific
Tregs population found in CLL (e.g. Eomes, Prf1, Itgae, Cxcl10)
(Supplementary Figure 4D).

The TCL1-Induced Tregs Are
Functionally Active
Next, we determined the ability of splenic Tregs population,
sorted from control and TCL1 leukemia-bearing B6 FoxP3EGFP

mice to inhibit CD8+ T cell proliferation in an antigen unspecific
test, where T cells were activated via anti-CD3 and anti-CD28
antibodies. The obtained results indicated that whole Tregs
population isolated from spleens of TCL1 leukemia-bearing
mice is prone to inhibit CD8+ T cells proliferation similarly to
control Tregs (Figure 4A). Similarly, in a test with OVA peptide
presented by the bone marrow-derived dendritic cells, Tregs
isolated from leukemic mice inhibited CD8+ OT1 cells
proliferation as effectively as Tregs from control mice
(Supplementary Figure 5). This data suggest that the
effectiveness of antigen-independent suppression of Tregs from
TCL leukemia-baring mice is similar to control Tregs.

In order to explore whether TCL1-associated Tregs suppress
CD8+ T cells in an antigen specific manner, we generated OVA-
expressing TCL1 bymeans of lentiviral transduction. DEREGmice
were inoculated with TCL1-OVA cells, and 3 days later, Tregs were
depleted with DT in one group. On the following day, mice were
injected with Cell Trace (CT)-positive OT1 CD8+ T cells and the
proliferation of these cells in the spleen was subsequently analyzed
(Figures 4B–D). Interestingly, although the T cells were effectively
activated in all tested TCL1 leukemia-bearing mice, in the group
treated with DT, the proliferation was more efficient, suggesting
that the Tregs population impeded OT1 CD8+ T cells proliferation
to some extent. Moreover, a significant drop in the percentage of
leukemic cells in blood and spleens of DT-treated mice was
observed after injection of OT1 CD8+ T lymphocytes
(Figure 4B). Conversely, when mice were inoculated with TCL1
cells (without OVA expression) and subsequently injected with
OVA protein, no impact of Tregs depletion was observed on OT1
CD8+ T cells proliferation (Figure 4C). Altogether, these results
suggest that Tregs inhibit proliferation of leukemia-specific CD8+

T cells in an antigen-dependent manner.

Treatment With MALT1 Inhibitor Disturbs
the Formation of Tregs A Subpopulation in
TCL1 Leukemia-Bearing Mice and
Enhances the Effect of Immunotherapy
The analysis of Tregs phenotype at the various stages of leukemia
revealed significant changes in the expression levels of Tregs
Frontiers in Immunology | www.frontiersin.org 9
surface proteins. The shift of Tregs into Tregs A phenotype
escalated during leukemia progression and was accompanied by
an increase in the percentage of splenic Tregs in leukemic mice
(Figure 5A). Importantly, the Tregs A subpopulation was clearly
formed at an advanced stage of the disease (when more than 40%
of leukemic cells among all white blood cells were present in
the spleens).

MI-2 has been described as a para-caspase MALT1 inhibitor
that can selectively prevent the conversion of naïve Tregs into
effector cells by decreasing the NFкB activity (21). MI-2 revealed its
cytotoxic effect on primary CLL cells in vitro (28). Moreover, RNA
sequencing analysis indicated elevated expression of NFкB-related
genes in Tregs of TCL1-injected mice (Supplementary Figure 4B).
In order to verify the influence of MI-2 on development of Tregs
subpopulations, the inhibitor was administered intraperitoneally to
the control and TCL1 leukemia-bearing B6 FoxP3EGFP mice for two
weeks starting from day 5 following TCL1 leukemic cells
inoculation (Figure 5B). Administration of MI-2 impeded the
change of Tregs into Tregs A phenotype and elevated the
percentage of naïve Tregs (CD62L+ CD44-) (Figure 5C). MI-2
inhibited the progression of leukemia and increased significantly
the percentage of central memory and effector CD4+ and CD8+ T
lymphocytes (Figures 5C–E). Importantly, the effectiveness of MI-
2 treatment was impaired in TCL1 leukemia-bearing RAG2-KO
mice as compared to immunocompetent, wild type mice,
suggesting a key role of T cells in the mechanism of action of
this drug (Supplementary Figures 6A, B).

Since the PD1/PD-L1 axis was already shown to contribute to
T cells dysregulations in both human and mouse models of CLL,
we used MI-2 therapy as a pretreatment for checkpoint blockade
with anti-PD-L1 antibody in immunocompetent TCL1-leukemia
bearing mice (6, 29). Considering that long-term inhibition of
Tregs functions can lead to autoimmune pathology (30), MI-2
inhibitor was used only before anti-PD-L1 therapy (Figure 6A).
The anti-PD-L1 therapy did not affect the percentage of T cells
already elevated by MI-2 (Figure 6B). However, the combined
treatment decreased the percentage of naive cells and increased
the percentage of effector cells of both CD4+ and CD8+ T
lymphocytes (Figure 6B) Anti-PD-L1 antibodies administered
16 days post TCL1 inoculation decreased the percentage of
leukemic cells in blood and spleen when applied after
treatment with MI-2 (Figure 6C). These results indicate that
the combination of Tregs inhibition with anti-PD-L1 antibody
can bring beneficial treatment outcome in leukemia.
DISCUSSION

The anti-tumor strategy reducing the number of Tregs has been
reported since 1999 (31). Nevertheless, targeting Tregs can yield
differential responses in cancer models (32). In this study, we
revealed that in the CLL mouse model, the depletion of Tregs
population can lead to the expansion of CD8+ T cells with the
ability to completely eradicate leukemia.

Published studies have consistently demonstrated elevated
levels of Tregs in the peripheral blood collected from CLL
February 2022 | Volume 13 | Article 781364
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patients compared to healthy subjects (33). The phenotype of
analyzed Tregs was described as effector-like in both CLL
patients and the Em-TCL1 mouse model of CLL (5, 16, 18).
Our results indicate that the phenotype of Tregs changes during
the course of leukemia to establish a subpopulation of CD4+,
FoxP3+, LAG-3+, CD69hi, and surprisingly, CD44lo and CD25lo

cells. A low expression of CD25 in Tregs has been already
reported by another group (34), yet the CD44lo phenotype is
rather a characteristic feature of naïve lymphocytes. Our ex vivo
experiments revealed that the level of cell-surface glycoprotein
CD44 decreased in Tregs as a result of leukemia progression. At
Frontiers in Immunology | www.frontiersin.org 10
the transcriptomic level, however, the reduced amount of mRNA
for CD44 was seen only in Tregs A, a specific TCL1-associated
Tregs subpopulation distinguished for the first time in this study.
Interestingly, the Tregs A subpopulation is positive for already
reported markers of CLL-related Tregs, including IL-10, LAG-3,
granzyme B, EOMES, as well as share a unique gene expression
signature of chemokines that may support leukemia progression
and formation of leukemic microenvironment (35, 36).
Moreover, the overexpression of mRNA encoding HELIOS,
TIGIT, TIM-3 and CD27 suggests that TCL1-related Tregs
may possess immunosuppressive activity (27, 37–39).
B C
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FIGURE 4 | Tregs from TCL1 leukemia-bearing mice are capable of inhibiting T cells proliferation. (A) All Tregs-GFP+ sorted from spleens of control (CTR Tregs) and
TCL1-injected (TCL1 Tregs) B6-Foxp3EGFP mice, were added to the Cell Trace Violet (CT) stained CD8+ lymphocytes isolated from control mice and activated with
aCD3 and aCD28 antibodies. The proliferation of – CT-stained CD8+ T cells was assessed by flow cytometry. Graphs show the results from two independent
experiments, mean ± SD, n = 2-4 (B) OT1 CD8+ cell proliferation in mice injected with TCL1-OVA cells. After TCL1-OVA cells inoculation the mice were treated with
DT and injected with CT-positive OT1 CD8+ lymphocytes (scheme of the experiment, upper panel). The proliferation of OT1 CD8+ cells from untreated or DT-treated
mice was evaluated on the same day (7th or 8th). The representative histograms of proliferation measured on days 7th and 8th are shown (left panel) and the
proliferation index, from two independent experiments, is shown on the graph (middle right panel), n = 7 **p ≤ 0.01. Proliferation index was calculated by FlowJo
software as the total number of divisions divided by the number of cells that went into division. The percentage of leukemic cells was assessed in blood and spleens
of DEREG mice on day 8th of the experiment (lower panel), data is presented as mean ± SD, n = 3-4, Mann-Whitney U test * p ≤ 0.05. (C) OT1 CD8+ cell
proliferation in mice injected with TCL1 cells and vaccinated with OVA protein. The representative histograms (left panel) and graph summarizing the results from two
independent experiments (right panel), n = 5-6. (D) Gating strategy incorporated for analysis of CT-positive OT1 CD8+ T cells proliferation in functional in vivo tests.
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FIGURE 5 | Development of a specific TCL1-related Tregs (Tregs A) population is correlated with the stage of the disease and can be blocked by MALT-1 inhibitor.
(A) The box plot min-max graph (left panel) and density plots with gating strategy (right panel) present phenotype of Tregs in relation to the percentage of leukemic
cells (CD5+CD19+) in the spleens. Mean ± SD, n=11, Mann-Whitney U test *p ≤ 0.05. (B) The graph presenting a scheme of the experiment. MI-2 was administered
daily at dose 20 mg/kg via intraperitoneal injections for two weeks. (C) The phenotype of Tregs collected from spleens of TCL1 leukemia-bearing B6 Foxp3EGFP

mice, untreated (TCL1) or treated with MI-2(TCL1 + MI-2). Mean ± SD, Mann-Whitney U test n = 5, *p ≤ 0.05. (D) Percentage of leukemic cells (CD5+CD19+)
assessed by flow cytometry in blood (left graph) and spleens (right graph) on day 21st of the experiment. The graph presents data from three (blood, n = 10-14) or
two (spleens, n = 7-8) independent experiments. Each dot represents an individual sample (mouse), means, Mann-Whitney U test **p ≤ 0.01, ***p ≤ 0.001, **** p <
0.0001. (E) The percent of naïve, effector (EFF), central memory (CM), subpopulations of CD4+ and CD8+ T cells. Cells were collected from spleens of untreated and
MI-2-treated TCL1 leukemia-bearing B6 Foxp3EGFP mice in two independent experiments, n = 7-12. Each dot represents an individual sample (mouse), means,
Mann-Whitney U test *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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Importantly, our results prove that the observed change in the
Tregs phenotype occurring during the progression of CLL results
from the formation of a specific Tregs subpopulation (Tregs A).

Mpakou and colleagues show that Tregs isolated from CLL
patients have an ability to inhibit CD8+ T cell proliferation (34).
Likewise, according to our results, TCL1-derived Tregs are able
to inhibit proliferation of T cells ex vivo. In ex vivo assays, T cells
were activated in unspecific and specific manner, accordingly
with the cognate antigen or by OVA peptide presented by
dendritic cells thus the observed effect was not related to
leukemia-specific antigens. The CLL-related Tregs functionality
was finally confirmed in the in vivo experiment with TCL1-OVA
Frontiers in Immunology | www.frontiersin.org 12
cells, indicating that Tregs inhibit the proliferation of CD8+ cells
upon recognition of tumor-expressed antigen.

The variable CDR3 regions of TCR interact with the peptide
presented by MHC. The analysis of CDR3 sequence provides
information about the diversity and clonality of investigated T
cell populations and has become a valuable research tool in
immunology (40). Thus, the higher oligoclonal composition of
TCL1-derived Tregs compared to Tregs sorted from control
mice, suggests that only selected clones of Tregs have
undergone the expansion in TCL1 leukemia-bearing mice.

The expansion of exhausted T cells is a hallmark of human
CLL and is also recapitulated in the Eµ-TCL1 mouse model (11).
B
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A

FIGURE 6 | The pretreatment with MALT-1 inhibitor sensitizes leukemia to the therapy with anti-PD-L1 at the advanced stage of the disease. (A) The graphs presenting
a scheme of the experiment. (B) The percentage of CD3+, CD4+, CD8+ and naïve, effector (EFF), and central memory (CM) subpopulations of CD4+ and CD8+. Cells
were collected from spleens of untreated (CTR), MI-2 and/or aPD-L1-treated TCL1 leukemia-bearing mice, n = 4-5, each dot represents an individual sample (mouse),
means, Mann-Whitney U test *p ≤ 0.05, **p ≤ 0.01. (C) The Percentage of leukemic cells (CD5+CD19+) assessed by flow cytometry in blood (left panel) and spleens
(right panel) at day 26th of the experiment, n = 5, each dot represents an individual sample (mouse), means, Mann-Whitney U test *p ≤ 0.05, **p ≤ 0.01.
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The CD8+ lymphocytes, which are present in spleens of TCL1
leukemia-bearing mice, have been described as antigen-
experienced, oligoclonal cells that expand during the
progression of the disease (12). In our experiments, upon
depletion of Tregs, the CD8+ T cells became more oligoclonal
and were effective in the elimination of leukemic cells.
Surprisingly, anti-leukemic CD8+ T cells expressed different
CDR3 sequences compared to the CDR3 sequences of
lymphocytes from non-DT-treated, leukemia-bearing mice. It
has been reported that in some tumors, based on the TCR
sequences functional T cells formed a distinct group from
dysfunctional, transitional tumor - infiltrating lymphocytes
(41). Our results suggest that the depletion of Tregs in
leukemia-bearing mice triggers the expansion of functional
CD8+ T cell clones through the presentation of different
epitopes than those used for splenic, exhausted CD8+ T cells.
Elimination of Tregs primed the activation of T cells not only in
spleens but also in the lymph nodes. The expansion of CD8+ T
lymphocytes capable of killing leukemic cells occurred due to
Tregs depletion, thus revealing their role in the maintenance of
tumor antigen tolerance in CLL. The limitation of these studies is
the fact that the antigens that led to the activation of anti-
leukemic T lymphocytes were not identified yet. However, we
suspect that these antigens could be associated with mutations
typical for CLL. Importantly, we cannot rule out the possibility
that these antigens are of other origins, for example derived due
to genetic differences between mouse strains. Nevertheless, the
depletion of Tregs seems to be a trigger for the expansion of
effector T lymphocytes.

As it was also shown for other malignances, the inhibition of
Tregs activation must occur early in the course of the disease to
bring the beneficial outcome (42, 43). It has also been shown that
the efficacy of adoptive T cell therapy is dependent on the tumor
burden and is high in the early stages of tumor development or
after chemotherapy (44, 45). To address this observation we
conducted treatment with the MALT1 inhibitor, MI-2, when the
leukemic cells were already detectable in blood but at a low level.
MI-2 disrupted Tregs activation, prevented the formation of the
specific TCL1-derived Tregs A subpopulation and inhibited
the progression of leukemia in immunocompetent mice. Since
the MI-2 was shown to exert a cytotoxic effect on leukemic cells
(28), it is difficult to conclude from our experiments, whether it
affects Tregs directly or only delays their activation due to the
inhibition of leukemia progression. Though, the relatively small
anti-leukemia efficacy of MI-2 obtained in RAG2-KO mice
model may bring to the conclusion that T cells are important
component in anti-leukemic MI-2 mechanism of action.
Moreover, the decrease in the frequency of activated Tregs
provided the therapeutic window to reduce the percentage of
leukemic cells in mouse blood even two weeks after inoculation
of leukemic cells.

Our results underline the role of Tregs in the progression of
CLL and more importantly suggest that reactivation of the
existing, exhausted T cell populations with anti-PD-L1 therapy,
might be insufficient to block the disease progression. Notably,
the presented results indicate that one approach to obtain an
effective anti-leukemia immune response is to reorganize the
Frontiers in Immunology | www.frontiersin.org 13
CLL microenvironment, in order to create an opportunity for the
expansion of a population of cytotoxic CD8+ T cells.
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