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Abstract: The anterior cruciate ligament (ACL) of the knee joint is one of the strongest ligaments
of the body and is often the target of traumatic injuries. Unfortunately, its healing potential is
limited, and the surgical options for its replacement are frequently associated with clinical issues. A
bioengineered ACL (bACL) was developed using a collagen matrix, seeded with autologous cells
and successfully grafted and integrated into goat knee joints. We hypothesize that, in order to reduce
the cost and simplify the model, an acellular bACL can be used as a substitute for a torn ACL, and
bone plugs can be replaced by endobuttons to fix the bACL in situ. First, acellular bACLs were
successfully grafted in the goat model with 18% recovery of ultimate tensile strength 6 months after
implantation (94 N/mm2 vs. 520). Second, a bACL with endobuttons was produced and tested in an
exvivo bovine knee model. The natural collagen scaffold of the bACL contributes to supporting host
cell migration, growth and differentiation in situ post-implantation. Bone plugs were replaced by
endobuttons to design a second generation of bACLs that offer more versatility as biocompatible
grafts for torn ACL replacement in humans. A robust collagen bACL will allow solving therapeutic
issues currently encountered by orthopedic surgeons such as donor-site morbidity, graft failure and
post-traumatic osteoarthritis.

Keywords: anterior cruciate ligament; collagen; goat model; endobutton; bone plug

1. Introduction

High-pivoting sporting activities can result in a ruptured anterior cruciate ligament
(ACL), with an annual incidence of 68.6 per 100,000 person years [1]. In the world, over
400,000 ACL reconstructions are required each year [2]. Affected people are mainly ado-
lescents and young adults between 15 and 34 [3,4].Depending on the severity of the ACL
injury, treatments range from nonoperative care to several surgical procedures, including
autografts or allografts derived from the hamstring tendons (semitendinosus ± gracilis),
the quadriceps tendon or the gold-standard bone-patellar tendon-bone (BPTB) [5–9]. In
the USA, the cost of such surgeries is estimated at USD 18 billion [10]. Regardless of the
cost of ACL reconstruction for healthcare systems, drawbacks of the current reconstruction
method include the length of the recovery period [11], donor-site morbidity, frequent fail-
ure in the adolescent population [12–14] and a high rate of post-traumatic osteoarthritis a
decade after ACL injury [15]. Better strategies to restore the stability of the knee are needed.
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Tissue engineering has opened up innovative approaches to the development of tissue
substitutes, ultimately reducing the need for organ donors. A reconstructed tissue is
expected to become fully integrated into the host post-grafting to become permanently and
efficiently integrated in situ. Thus, the scaffold of any reconstructed tissue must be strong
enough to withstand physiological stresses early post-grafting and undergo remodeling
to become functional. Several strategies of ACL reconstruction using tissueengineering
have been described [16,17]. Among them, a successful example of a biocompatible
tissue-engineered graft is the bioengineered ACL (bACL) made with a collagen scaffold.
Since collagen is the natural component that supports most connective tissues, lyophilized
collagen is an excellent choice to create biodegradable scaffolds [18]. After implantation into
goat knee joints, the graft is colonized in situ by surrounding cells, which will reorganize
its structural properties in response to the tensions and movements that it will support.

The success of bACL implantation into goats led to further studies to simplify the
production process and reduce its cost, including avoiding cell isolation and cell culture,
which is a costly process requiring specialized facilities, and replacing bone plugs with a
more versatile attachment system. Here, we report the results of experiments that were
designed to investigate the feasibility of these modifications, producing a second generation
of graftable bACLs.

2. Materials and Methods
2.1. Ethics Statement

All procedures involving animals were approved by the Research Ethical Committee
of Centre Hospitalier affilié (CHA) de Québec (now CHU de Québec)-Université Laval. Ex-
perimental procedures were performed in compliance with the CHA de Québec guidelines.

2.2. Preparation of Acellular Graftable bACLs Anchored with Bones

A group of 12 bACLs was prepared for this experimental design. At least 3 bACLs
were used for histological analyses to ensure quality control, before the surgical implan-
tation of 3 other bACLs in the goat model. A number of 3 more bACLs were kept as a
backup in case something went wrong during the surgical procedure. The last 3 bACLs
were subjected to mechanical rupture tests to measure their ultimate strength values before
grafting. The methods that were developed to produce and graft bACLs in goat knee joints
were previously reported [18,19]. Briefly, to achieve the permanent fixation of the bACL
to the bones, cylindrically shaped caprine bone plugs were prepared and pierced with a
transverse hole. They were rinsed and stored in 100% ethanol for 2–3 days. A surgical
thread (Maxon, size 3-0; Sherwood-Davis & Geck, St-Louis, MO, USA), absorbable within
4–6 weeks post-surgery, was passed through the holes in the two bone plugs and tied. The
bones and thread were counter-rotated to provide a single twisted-thread link between
the plugs. This bone/thread scaffolding was transferred to a sterile plastic tube and kept
extended in a central, suspended position by passing two metal pins across the tube and
through the transverse holes in the bone plugs [18,19].

For casting the bACLs, Dulbecco-Vogt modification of Eagle’s medium (DMEM)
(Invitrogen, Burlington, ON, Canada) containing 10% fetal bovine serum, qualified (FBS,
12483-020, ThermoFisher, Mississauga, ON, Canada), and 1.0 mg/mL of bovine Type I
collagen (isolated in our laboratory from healthy Canadian beef skin, tested for its purity
by electrophoresis and solubilized in 0.1% acetic acid), were gently mixed. The mixture
(total of 10 mL) was poured into 12 mL sterile plastic tubes containing the bone plugs
linked by the surgical thread. The collagen polymerized in the mixture within 20 min
at room temperature under a sterile culture flow hood and was maintained without any
agitation. Then, the bACLs were frozen in sterile Petri dishes overnight at −70 ◦C and
subsequentlylyophilized (Alpha 2-4 LDPlus, Martin Christ, Osterode am Harz, Germany).
They were transferred back into new sterile plastic tubes and fixed again with pins before
rehydration. The scaffolds’ rehydration performed in fresh DMEM produced a semirigid
central core. A second coating of collagen was added as described above. Thus, within
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48 h, bilayeredbACL scaffolds were obtained with a lyophilized core and an outer collagen
layer. All bACLs were kept in DMEM supplemented with 10% FCS, 50 µg/mL ascorbic
acid (Sigma, Burlington, ON, Canada) and antibiotics (100 U/mL penicillin (Sigma-Aldrich,
Burlington, ON, Canada) and 25 µg/mL gentamicin (Schering, Pointe-Claire, QC, Canada))
until the day of the surgical implantation. Ascorbic acid promotes collagen synthesis, and
adding it to collagen scaffolds could stimulate host cells to produce a de novo synthesized
connective tissue matrix. Production steps are schematically illustrated in Figure 1.
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2.3. Surgical Procedures for Implantation of Acellular bACLs Anchored with Bones into Goats

All surgical implantation procedures were performed under general anesthesia on
3 goats of 45 kg, whose native ACLs were resected at the time of implantation of the bACLs.
Thus, a group of 3 acellular bACLs of the first generation was grafted in 3 goats’ knee joints.
Only one leg of each goat was grafted since the other was used as a positive control.

2.4. Histological Analysis of bACLs before and after Implantation, Ex Vivo

Histological studies were performed on bACLs before implantation and at 6 months
post-implantation. The bACL samples were fixed in an aldehyde-containing solution,
embedded in paraffin, sectioned and stained by either Masson’s trichrome or hematoxylin–
eosin methods to visualize the collagen matrix, the cells that had colonized the graft,
including endothelial cells in blood vessels and chondrocytes. The coloration of Holmes
allowed the detection of nerve endings in the grafts.

2.5. Mechanical Analyses

After 6 months, the bACLs will be dissected, keeping the femur–tibia system intact.
All grafts and contralateral ACLs were subjected to mechanical tests (ultimate tensile
strength (UTS) and stiffness). A testing machine (Instron, Corporation, Norfolk County,
MA, USA) was used to measure the ultimate strength of the grafts ex vivo and post-mortem
after removing all the surrounding tendons and other anatomical structures. All rupture
tests (control and bACL groups) were performed at a fixed angle of 90◦ between the tibia
and the femur. Rupturing was performed at a constant rate displacement ramp (1 cm/s)
while being simultaneously recorded with a digital video camera.

2.6. Preparation of a Second Generation of Graftable Acellular bACLs

The first generation of bACLs was produced using a scaffold anchored with two bone
plugs [18–24]. However, the second generation of bACLsdid not contain bone anchors. The
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new bACLswere fixed in situ using the Endobutton CL BTB Fixation Device, or cortical
button (Smith & Nephew, Andover, MA, USA). It provides strong, dependable ACL fixation
and eliminates the need for knot tying, providing a strong and stiff repair.

A braided thread scaffold (sterile braided Vicryl Polyglactin 910 No. 3, CCS-1, coated,
Ethicon Inc./Johnson & Johnson, Markham, ON, Canada), absorbable within 4–6 weeks
in situ post-surgery, was passed through an endobutton. The thread itself is braided, but
to further reinforce the bACL scaffold, three threads were braided together and used as
a central core. The thread scaffold was transferred to a long sterile plastic tube and kept
extended in a central, suspended position. The endobutton’s weight pulled the scaffold
towards the bottom of the tube and kept it in place. Once the thread scaffold was ready,
native Type I collagen was poured around it, filling the whole casting tube.

To cast the bACLs, DMEM containing FBS and 1.0 mg/mL of bovine Type I collagen
(solubilized in acetic acid 0.1%) was readily but gently mixed. The mixture (total of 25 mL)
was poured into a 30 mL sterile plastic tube containing the surgical braided threads. The
collagen polymerized within 20 min at room temperature under a sterile culture flow
hood and was maintained without any agitation. Following polymerization, the collagen
becomes a gel. To prevent the gel from drying, it must be covered with about 2 to 3 mL of
DMEM supplemented with 10% FBS, 50 µg/mL ascorbic acid and antibiotics. A cap was
added to cover each tube, and the scaffolds were placed in an incubator in an atmosphere
containing 8% CO2.

All the bACLs were frozen in sterile Petri dishes overnight at −70 ◦C and subsequently
lyophilized. Then, they were transferred into new sterile plastic tubes. The following
rehydration in fresh DMEM to produce a semirigid central core, a second coating of
collagen, could be performed as described above. BilayeredbACLs contained a central
lyophilized and rehydrated core. The acellular bACLs were used for surgical testing of the
endobutton’s fixation technique in vitro.

A group of 3 bACLs wascellularized by seeding a suspension of dermal fibroblasts
(DFs, at a concentration of 2.5 × 105 cells per mL) in the second collagen layer. This group
was produced to test the biocompatibility of the braided threads’ core and confirm that
the cells could progressively adhere to the braided threads and contract the outer collagen
layer in vitro over 24 h and thereafter. The bACLs containing DFs were sent for histological
analyses to see if the collagen fibers and the living cells were aligned in the same direction
with the braided thread core.

2.7. Surgical Testing

The technical modifications of the bACL implantation procedure were assessed
in vitro on fresh bones of bovine knee joints. The approach of implantation using en-
dobutton fixations has become widely used in orthopedic surgery. However, our bACL is a
unique ACL substitute, produced entirely in vitro. It was important to assess the feasibility
of the bACLs implantation using endobutton devices. The use of a protective envelope
during the passage of the graft in the bone tunnels had to be tested as well. Thus, 3 bACLs
were implanted into fresh bovine knee bones in vitro to assess the fixation procedures. This
was qualitative testing realized by two independent, well-qualified orthopedic surgeons.
The objectives were to assess the resistance of bACLs to manipulation in a simulated
surgical condition on a joint similar to a human joint. Handling resistance inside bone
tunnels and tensile strength when fitting and installing the bACL. The macroscopic aspect
of the graft was examined by the surgeons.

2.8. Mechanical Characterization of the Braided Thread Scaffold

Braided Vicryl threads (n = 3) were subjected to uniaxial tensile testing on an Instron
ElectroPuls E1000 mechanical tester (Instron Norwood, Norfolk County, MA, USA). Rup-
ture assays were performed on braided Vicryl scaffolds. Both extremities of the specimen
were stretched at a constant rate of 0.2 mm/s until the tissue ruptured. Data were analyzed
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using Minitab v17 (Minitab, State College, PA, USA) to provide ultimate tensile strength
and stiffness.

2.9. Histological Analyses of the Scaffold

It was interesting to analyze the central braided thread core of the bACL after
lyophilization and rehydration to assess the quality of the collagen matrix surrounding the
braid. This work was performed by a private company, equipped to cut hard tissues such
as surgical thread, into ultrathin slices of 10–15 µm-thick.

3. Results
3.1. Grafting of the First Generation of Acellular bACLs

The first generation of bACLs was designed according to the bone-patellar tendon-
bone (BPTB) graft, as it consists of tendon and bony attachments. Bones were attached
to the bACL scaffolds. The grafting of such tissue-engineered grafts was performed the
same way it is performed in humans. Figure 2A shows one of the first-generation bACLs
of that was grafted successfully in the goat model for 6 months. The bACLs were produced
without cells, using native bovine Type I collagen as a matrix. The bACLs were cultured
under minimal tension, and the collagen fibers became aligned in a direction parallel to the
tension applied (Figure 2B). Endothelial cells colonized the bACLs in situ, as shown by the
blood vessels (Figure 2C; note the red or pink endothelial cells). The graft also contained
nerve endings (Figure 2D; brown structures and fibers). Additionally, chondrocytes were
observed at the interface between the ligament scaffold and each bone anchor (Figure 2E).Bioengineering 2021, 8, x FOR PEER REVIEW 6 of 15 
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Figure 2. Macroscopic view and histological feature of the first-generation bACL. (A) A bACL of the
first generation. (B)The bACLs were produced without cells, using native bovine Type I collagen as
the matrix. (C) After implantation, the bACL became vascularized (red or pink endothelial cells) and
(D) also contained nerve endings (brown structures and fibers). Additionally, (E) chondrocytes were
observed at the interface between the ligament scaffold and each bone anchor. (×40).
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After 6 months, the acellular graft was populated with cells, vascularized, innervated
and reinforced in situ (Figure 3A), showing a macroscopic aspect that is very close to a
native ACL (Figure 3B). The bACL grafted in situ for 6 months reached an average of
18% (94 ± 14 N) of the native contralateral ACLs (520 ± 59 N) (Figure 4, Table 1).
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is very close to a native ACL (B).
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Figure 4. Elongation curves of bACLs and contralateral ACLs tested after 6 months of implantation
into goats. Representative curves for bACLs (left) and ACLs (right).

Table 1. Mechanical features of acellular bACLs grafted for 6 months in the goat model, Vicryl
braided thread used in the bACL scaffold in vitro and native ACLs used as controls.

Specimen Tested Ultimate Tensile Strength (N/mm2) Stiffness (N/mm)

ACL (a) 520 ± 68 64 ± 11

bACL (a) 94 ± 14 102 ± 15

Vycril braided thread (b) 340 ± 28 10.2 ± 0.3
(a) Rupture test; (b) uniaxial tensile test.

3.2. Endobutton Fixations of bACLs

When anchored with bones, the diameter and the length of the bone plugs had to
be relatively precise to respect the anatomic features of the knee joint. The length of the
bACL also had to be measured. However, the length of the second generation of the
bACL can be variable, as it is pulled and then attached conveniently with the endobutton’s
fixation. This makes the use of such bioengineered grafts adaptable to several sizes of knees.
From its femoral attachment, the ACL has a length that ranges from 22 to 41 mm (mean,
32 mm) and its width from 7 to 12 mm [25]. When a bACLis cast (Figure 5A), the braided
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thread is placed in a sterile tube under the flow hood, and the weight of the endobutton
pulls it at the bottom, while the solution of collagen is poured in the tube. After about
20 min, the collagen had polymerized (Figures 5B and 6A). It could be readily frozen and
lyophilized until use (Figure 6B). Once rehydrated (Figure 6C), an acellular bACL could
be placed in the cylindrical plastic tube and stored at 4 ◦C. Some histological analyses of
the scaffold revealed that the collagen adheres to the central absorbable braided thread
(Figure 6D,E). Collagen fibers are aligned in the direction of the tension applied to the
tissue (Figure 6D,E).
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Figure 6. Macroscopic view of lyophilization steps of the bACL and its histological features. (A) A bACL of the second 
generation made of native Type I collagen matrix polymerized around the braided thread scaffold before (B), its lyophi-
lization at −80 °C and (C) its rehydration at 4 °C. Histological sections of the thread surrounded by Type I collagen were 
stained using the Trichrome de Masson’s (D) and the hematoxylin–eosin techniques (E). In (D,E), the structural aspect of 
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Figure 6. Macroscopic view of lyophilization steps of the bACL and its histological features.
(A) A bACL of the second generation made of native Type I collagen matrix polymerized around
the braided thread scaffold before (B), its lyophilization at −80 ◦C and (C) its rehydration at 4 ◦C.
Histological sections of the thread surrounded by Type I collagen were stained using the Trichrome
de Masson’s (D) and the hematoxylin–eosin techniques (E). In (D,E), the structural aspect of the
thread is shown above the white or the green dashed line, while the collagen seeded with ACL
fibroblasts can be observed below the line (×40).
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3.3. Strength of the Braided Thread

A rupture assay was performed on a group of braided threads to characterize their
properties. The stiffness and UTS are important parameters to know (Table 1). The mean
ultimate load in specimens aged 22–35 years was 2160 (±157) N. For the specimens aged
22–35 years, the stiffness was found to be 242 (±28) N/mm [25].

The complex geometrical configuration and different-length fiber bundles of the ACL
have hindered efforts to calculate stress and strain. Butler et al. divided the human ACL
ligament into portions and tested the individual units for average modulus and ultimate
tensile strength. The average ultimate tensile strength measured 278 and 35 N/mm2,
respectively [26]. The ligaments reached their ultimate stress at −15% strain.

The procedure of implantation was tested in vitro by two orthopedic surgeons
(Figure 7A–H). The technique that was used is the same that the orthopedic surgeons
chose, using the doubled semitendinosus/gracilis autograft. The bACLs have to measure
between 18 and 25 cm to allow the possibility to fold them twice and adjust their length
to the specific features of the knee joint. The bACL was protected with a semipermeable
membrane i.e., dialysis tubing.
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Figure 7. Second-generation bACL surgical testing. (A) A bACL of the second generation held by
braided surgical threads integrated into its collagen scaffold, (B) the orthopedic surgeons apply
tensile strength on the bACL to make sure it canbe easily manipulated, (C) the first tunnel is drilled
into the tibia, (D) the second tunnel is drilled in the femoral lateral condyle, (E) the surgeon passes a
metal rod through the tunnels to attach the bACL to it and pull it, (F) the bACL has gone through the
tibial tunnel and then through the femoral tunnel (G), tension is applied on the implant (H) and it is
ready to fix with an endobutton.
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4. Discussion

Several parameters must be considered to produce a graftable ligament substitute. The
biocompatibility of the bACL will determine its level of integration in the bone knee joint
of the host. The ultrastructural features of its scaffold play a critical role in cell colonization,
before and/or post-implantation. The biomechanical properties of the bACL must resist
the physiological stress that will be applied to its structure during knee movements in
situ. Torn ACL replacement is a challenge since the ACL plays an important role as a
major knee joint stabilizer, being subjected to a lot of stress, notably because of its anatomic
location [27,28].

Present tissue-engineered ACLs are mainly produced using biomaterials such as poly-
caprolactone [29], poly (glycolic acid) (PGA) [30], poly(lactic-co-glycolic acid) (PLGA) [31],
poly(L-lactic acid) (PLLA) [31,32], or silk [33,34]. All these biomaterials are biodegrad-
able but at various rates not necessarily compatible with adequate regeneration of the
ligament. Additionally, with the exception of silk, their degradation products include
lactic acid, which can have a negative role, as demonstrated by its effect on cancer pro-
gression [35]. However, these materials have tunable mechanical properties and can be
chemically modified to recreate a more physiological environment than the raw materials
(e.g., [31]).

A collagen scaffold, anchored with two bone plugs and seeded with autologous ACL
fibroblasts, was developed in vitro and successfully grafted in several groups of caprine
knee joints to replace a torn ACL invivo [18,20–24]. An absorbable surgical thread was
added to the collagen matrix to contribute to its initial structural reinforcement and facilitate
its manipulation during implantation [18]. In the first generation of bACL models, bone
plugs were used to fix both ends of the graft, adding screws in the bone tunnels to fix the
plugs in situ. Collagen remodeling must occur in the bACL scaffold to become a functional
ACL [18]. The collagen scaffold promotes cell migration, growth and differentiation,
and the first bACLs have shown excellent results in the goat model [18,19]. One month
post grafting, blood vessels are visible. At 3 months, chondrocytes can be observed and
Sharpey’s fibers connect the graft to the bone anchors. Some nerve endings are observed
on histological sections of the graft stained with the method of Holmes. Slowly, the bACL
is permanently linked to the knee joint. After a year, it is hard to differentiate the graft
from the contralateral native ACL in the goat knee joints [18]. The bACL integrated in situ
reached an average of 36% (+5%) of native ACL strength after only 13 months, without
any specific training program applied on the goats post-surgery. At this step of the bACL
development, two issues remain to simplify the production process and reduce cost and
regulatory obstacles: cells and bones. This is the subject of the present study (Table 2).

Table 2. Summaryof differences between 1st and 2nd generation acellular bACLs.

1st Generation of Acellular
bACLs

2nd Generation of Acellular
bACLs

Matrix

Bovine Type I collagen
hydrogel (can easily be
replaced by commercially
available recombinant human
Type I hydrogels)

idem

Anchorage Sterile bone plugs
Endobutton (cortical button)(limited availability and

potential regulatory issues)

Protection of the graft during
implantation None

Dialysis membrane (efficiency
tested by orthopedic
surgeons)

Advantages Surgical procedure similar to
standard BPTB procedure

All items used are
commercially available and
approved by the FDA
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Most of the first-generation bACLs that were grafted in the goat model contained
living autologous ligament or dermal fibroblasts [18,19]. The advantage of adding living
fibroblasts in the graft before implantation was the early initiation of caprine collagen
synthesis and remodeling, slowly replacing the bovine collagen fibers. Thus, autologous
cell seeding is always suitable to produce autologous ACL substitutes if needed. All living
fibroblasts secrete collagen, and they also contract collagen fibers, gathering fibrils, to
produce a denser matrix. Living cells contribute to gathering matrix fibers around the
central core made of absorbable braided threads, before freezing and lyophilization of the
bACL that kill the cells. Once rehydrated, the matrix regains about 60–75% of its initial
volume. At this step, a choice can be made by adding or not autologous fibroblasts in
the outer layer of the reconstructed tissues. The autologous fibroblasts migrate into the
bACL matrix, proliferate and initiate collagen remodeling thereafter. Thus, this option is
not essential, but it remains advantageous in some specific clinical contexts. However, to
simplify bACL production, the integration potential of acellular grafts was assessed on the
caprine model for 6 months. The results confirmed that such an approach was feasible to
replace a torn ACL. The acellular grafts became cellularized and reinforced within a month
in situ post-implantation. However, acellular grafts can also be integrated into a knee joint.
The fibroblasts of the host slowly populate the graft in vivo, secreting matrix components
and growth factors that may attract other cell types, such as endothelial cells.

The use of bone anchors works very well, but it also creates a need for bone samples
that may eventually limit the feasibility of the tissue-engineering approach in addition to
the risks of disease transmission associated with any allograft tissue. It also considerably
increases the cost of bACL production (in time and native bone materials processing).
The bACL would gain to be adapted to be shipped and grafted in any surgical room,
anywhere in the world. The initial bACL collagen scaffold remains fragile to shocks during
implantation. Passing the graft through the tunnels performed in the tibial plateau and
the femoral condyle causes wear. Thus, the bACL must be protected during its technical
insertion in situ. The second generation of the bACL will be held in the knee joint by
the endobutton fixed on the femoral condyle and a tibial interference screw in the tibial
bone. The endobutton fixation device has shown good results in the dog knee joint [36,37].
This approach will have to be assessed in vivo on the goat model, but the scaffold will be
made with the same collagen matrix around a central core of absorbable braided thread,
so the results are expected to be excellent too. The use of endobutton fixations to replace
the bone–ligament–bone technique of graft implantation simplifies the whole concept of
tissue-engineered ACL substitutes as an option for torn ACL replacement. The surgical
tests performed in vitro had to be performed before planning an experiment conducted
on animal knee joints in vivo. The tests performed in vitro, by two orthopedic surgeons
recognized as experts in ACL reconstruction, confirmed that the bACL of the second
generation could be grafted and fixed without bone anchors and would have the strength
to resist the endobutton’s fixation. This modification of the procedure would avoid the
need for a bone source. Moreover, despite the neoformation of ultrastructured cartilage,
including Sharpey’s fibers anchored to the knee bones of the host post-grafting, the interface
between the bone plugs and the ligament substance of the first generation of the bACL was
its weakest link.

From a technical point of view, the insertion of the bACL in the bone tunnels performed
in the femur and tibia during implantation remains a delicate step, since the implant is
rubbed against the sharp edges of the osseous tunnels during sliding. The use of sterile
dialysis tubing to protect the implant during its insertion in the bone tunnels solved this
technical issue. It could also serve at wrapping bACLs for shipping them to various
laboratories for eventual preclinical trials.

An interesting improvement in our production process can be the replacement of
bovine TypeI collagen by its recombinant human counterpart, which is now commercially
available. Our protocol for collagen extraction and purification involves many steps of
solubilization and precipitation of the collagen protein and a lyophilization step. These
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steps collectively ensure the complete removal of noncollagenic elements. However, the
use of recombinant human TypeI collagen can solve many regulatory issues, but with an
increased cost.

The choice of the braided structure, i.e., braided Vicryl® (polyglactin 910) surgical
thread, relied on its sufficient mechanical properties to sustain the pressure exerted on
its structure during the first week post-grating (Table 1) and on its biocompatibility and
potential positive effect in tissue regeneration [38].

For now, the bACL fills the requirements of integration ability, low cost and simple
production process. Nevertheless, in the future, depending on the clinical context, several
optimization steps could be performed to increase the potential of the bACL. Interestingly,
collagen can be mixed with other matrix components and/or growth factors to stimulate
cell migration, growth and differentiation [39,40]. Penkova [41] reported that in the pres-
ence of glycerol, the collagen molecule was stabilized, not only by heating but also by the
action of urea. This report is in agreement with an interesting observation made in our
laboratory that could also contribute to improving the rigidity and ultimate strength of a
tissue-engineered tissue. When a bACL was dipped into a fresh solution of glycerol (from
a concentration of 0.1% in DME or above), the tissue became more resistant to rupture, and
living fibroblasts could migrate into the collagen scaffold of the bACL, then contract the
matrix, as observed in untreated bACLs in vitro [42]. Work is required to evaluate with
precision the percentage of the gain in strength induced by the glycerol on collagen fibers.
Electron microscopic analyses showed that glycerol formed a coating on the collagen fibers,
without altering their three-dimensional organization (data not shown). Additionally, the
interesting work of Benson et al. [43] demonstrated that a suture tape augmentation acted
as a stabilizer during the early stages of the graft incorporation.

Interestingly, major efforts have recently been made to effectively reduce the use of
laboratory animals and comply with the 3Rs policy [44]. Among these efforts, the computer
modeling of various parameters makes it possible to obtain a great deal of information
related to biomaterials and their behavior in physiological environments [45–48]. In the
future, an in-depth analysis of our bACLs with bioinformatics tools could make it possible
to reduce the number of animals required and therefore both the ethical problems related
to them and the costs of the studies to be carried out. However, regulatory agencies still
request that tests be carried out on animal models because certain parameters remain
difficult to assess in silico.

In this study, three goats were successfully transplanted to demonstrate that acellular
bACLis an acceptable treatment option. Tests were also carried out ex vivo on bovine joints
with second-generation acellular bACLs to evaluate the effect of replacing bone plugs with
endobuttons. The number of animals used is low, and this study should be considered as
proof of principle that paves the way for further characterization. The idea of going step
by step is to reduce the number of animals used in our study by eliminating potentially
failing conditions. As previously stated, we hope that using a computer model will keep
the number of animals that will need to be implanted to a minimum.

5. Conclusions

In conclusion, our technology developed to produce graftable ACL substitutes seems
very promising. These data are good indicators of the potential that can be explored
to produce and graft bioengineered ACL substitutes permanently and shortly. This is a
powerful tool for torn ACL replacement.
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