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Simple Summary: The tumor microenvironment plays an important role in tumor development and
metastasis. Collagens are major components of the extracellular matrix and can influence tumor
development and metastasis by activating discoidin domain receptors (DDRs). This work shows the
different roles of DDRs in various cancers and highlights the complexity of anti-DDR therapies in
cancer treatment.

Abstract: The tumor microenvironment is a complex structure composed of the extracellular ma-
trix (ECM) and nontumoral cells (notably cancer-associated fibroblasts (CAFs) and immune cells).
Collagens are the main components of the ECM and they are extensively remodeled during tumor
progression. Some collagens are ligands for the discoidin domain receptor tyrosine kinases, DDR1
and DDR2. DDRs are involved in different stages of tumor development and metastasis formation.
In this review, we present the different roles of DDRs in these processes and discuss controversial
findings. We conclude by describing emerging DDR inhibitory strategies, which could be used as
new alternatives for the treatment of patients.
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1. Introduction

The development of tumors, particularly those of epithelial origin that lead to carci-
noma (Figure 1a,b), begins with rapid and anarchic proliferation of cells, giving a tumor
mass (Figure 1c). Soon, the tumor stops growing due to nutrient and oxygen deficiency.

To grow further, the tumor cell mass attracts cells of different types such as endothelial,
immune, and fibroblastic cells, together forming the tumor stroma or tumor microenviron-
ment (TME, Figure 2a) [1]. At this stage, the primary tumor is well confined and surgical
resection combined with adjuvant therapies can cure a vast majority of cancers. Neverthe-
less, tumor cells can escape from the primary tumor and colonize other organs in a process
called metastasis.

The multistep metastatic cascade was established in 2003 by Fidler [2] and refined
several times since then [3,4]. The first step in the cascade is the invasion by tumor cells of
the extracellular matrix (ECM) and the multilayer of stromal cells, forming the primary
tumor (Figure 2a). Then, to disseminate, tumor cells intravasate into lymphatics or blood
vessels (Figure 2b) where they survive anoikis, flow pressure, and the presence of immune
cells (Figure 3a).

Subsequently, tumor cells arrest in the vasculature of distant organs and extravasate
(Figure 3b). In the target organ tissues, tumor cells survive in a hostile microenvironment
and form quiescent micrometastasis (tumor dormancy) (Figure 3c), before growing again
in a step called macrometastasis or metastatic colonization (Figure 3c). During this process,
tumor cells are exposed to different microenvironments, including different ECMs.
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Figure 1. Schematic representation of normal tissue (a), carcinoma initiation (b), and initial stages 
of carcinoma development (c). 

The ECM, one of the noncellular components of the TME, is composed of proteins, 
glycoproteins, proteoglycans, and polysaccharides, and it can be divided into the base-
ment membrane and interstitial matrix. Epithelial cells are surrounded by the basement 
membrane, which is mainly composed of laminins, type IV collagen, nidogen, and hepa-
ran sulfate proteoglycans. The basement membrane separates the epithelial cells from the 
interstitial matrix. The latter is composed of collagens, elastin, proteoglycans, fibronectin, 
and other proteins. As a whole, the ECM forms an interconnected network. During tumor 
development, the ECM is continuously remodeled, with new synthesis and proteolytic 
degradation of the matrix components [5]. Collagens are the most abundant proteins in 
the ECM and, to date, 28 different collagens (I to XXVIII) have been found expressed in 
tissues and tumors. All collagens have in common the presence of three α chains forming 
a triple-helicoidal domain. Depending of the collagen, the triple-helix domain represents 
a mass ranging from more than 90% (collagen I) to less than 10% (collagen XII) of the 
protein. The diversity of the collagens is increased by the existence of molecules with more 
than one chain in some of them [6]. Collagens are classified into six different families, such 
as fibril-forming collagens (I–III, V, XI, XXIV, and XXVII) and network-forming collagens 
(IV, VIII, and X) [6]. 

Figure 1. Schematic representation of normal tissue (a), carcinoma initiation (b), and initial stages of
carcinoma development (c).

The ECM, one of the noncellular components of the TME, is composed of proteins,
glycoproteins, proteoglycans, and polysaccharides, and it can be divided into the basement
membrane and interstitial matrix. Epithelial cells are surrounded by the basement mem-
brane, which is mainly composed of laminins, type IV collagen, nidogen, and heparan
sulfate proteoglycans. The basement membrane separates the epithelial cells from the
interstitial matrix. The latter is composed of collagens, elastin, proteoglycans, fibronectin,
and other proteins. As a whole, the ECM forms an interconnected network. During tumor
development, the ECM is continuously remodeled, with new synthesis and proteolytic
degradation of the matrix components [5]. Collagens are the most abundant proteins in
the ECM and, to date, 28 different collagens (I to XXVIII) have been found expressed in
tissues and tumors. All collagens have in common the presence of three α chains forming a
triple-helicoidal domain. Depending of the collagen, the triple-helix domain represents a
mass ranging from more than 90% (collagen I) to less than 10% (collagen XII) of the protein.
The diversity of the collagens is increased by the existence of molecules with more than
one chain in some of them [6]. Collagens are classified into six different families, such
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as fibril-forming collagens (I–III, V, XI, XXIV, and XXVII) and network-forming collagens
(IV, VIII, and X) [6].

In most cancers, e.g., colorectal or breast cancer, high collagen expression is associated
with a poor prognosis. However, in some cancers, collagens may play an important role in
limiting tumor cell activation or in constituting an obstacle to tumor growth [7]. In addition,
proteolytic fragments of some collagens, such as endostatin, may inhibit tumor growth [8].
These antagonistic roles need to be further investigated in the perspective of anti-collagen
therapies [7]. Collagens are primarily responsible for tumor rigidity and can affect tumor
behavior through mechanical processes, e.g., by providing either a barrier for tumor
development or a track for tumor cell migration [9,10]. On the other hand, collagens can
influence tumor cell behavior by binding to extracellular receptors that induce intracellular
signaling. The major collagen receptors present in carcinoma cells are integrins, α1β1, α2β1,
α10β1, and α11β1. Intracellular integrin signaling is primarily mediated by activation of
FAK (Focal Adhesion Kinase) and SFK (Src Family Kinase) proteins. In addition to these
well-known receptors, collagens can bind cluster of differentiation 44 (CD44) and discoidin
domain receptors (DDRs) [11].
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extravasation (b), micrometastasis, and colonization or macrometastasis formation (c).

DDRs are a family of tyrosine kinase receptors (TKRs) with two members, DDR1 and
DDR2. DDRs share an extracellular domain similar to the discoidin I lectin of the amoeba
Dictyostelium discoideum, a discoidin-like domain, and an extracellular juxta-membrane do-
main (EJXM). The transmembrane domain is followed by an intracellular juxta-membrane
domain (IJXM) and by the tyrosine kinase domain (TKD). DDR1 and DDR2 are encoded
by single genes present in chromosome 6 (6p21.33) and 1 (1q23.3), respectively. Alterna-
tive splicing results in DDR1 isoforms, a, b, c, d, and e (Figure 4). DDR1b and c share
a 37 amino-acid sequence inserted within the IJXM domain, compared to DDR1a. This
stretch of 37 amino-acid insertion includes a tyrosine residue (Tyr 513) essential for DDR1
signaling. DDR1c has six extra amino acids in the kinase domain compared to DDR1b.
DDR1a and b are the major isoforms expressed. Isoforms d and e are deleted or mutated in
the TKD, resulting in inactive tyrosine kinase isoforms. In contrast, only one form of DDR2
is found (Figure 4) [12].

Both receptors bind to fibrillar collagens with certain ligand specificities; DDR1 prefer-
entially binds to collagen I–V and VIII while DDR2 binds to collagen I–III, V, and X [13].
In addition, DDR1 is able to bind periostin, another component of the ECM [14]. In the
absence of any ligand and as for other TKRs, a mixed population of DDR monomers
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and homodimers is expressed at the cell surface. However, unlike other TKRs, fibrillar
ligand-induced DDR activation is very slow, taking hours to set up and persisting for more
than 24 h. In this step, the DDRs cluster, the tyrosine kinase activity is induced, and the
dimers phosphorylate each other [15,16].

Several tyrosine residues are phosphorylated, notably Tyr513 and Tyr792, 796, and
797 within a clustering DDR1b, allowing the recruitment of various adaptor proteins
involved in signal transduction [17]. Recently, a noncanonical activation mode was pro-
posed for DDR1b, in which the binding of monomeric collagen to DDR1b induces a rapid
(30 min) clustering, leading to internalization and re-expression at the cell surface as Tyr513-
phosphorylated DDR1b. Then, if fibrillar collagens are present, linear clusters of DDR1b
are formed, and canonical activation of the receptors occurs with the phosphorylation of
Tyr740 and 792. Since Tyr513 is not present in DDR1a and has no equivalent in DDR2, this
noncanonical pathway is only possible with DDR1b and c [18,19]. Activation of DDR2 ap-
pears to be more complex and requires phosphorylation by Src kinase. Binding of collagen
to DDR2 induces phosphorylation of Tyr740 by Src, thereby releasing the autoinhibitory
activity of the kinase, allowing phosphorylation of other tyrosine residues and recruitment
of adaptor proteins [20]. Heterodimers or at least heteroclusters between DDR1 and DDR2
have been found in coimmunoprecipitation assays [21]. DDRs activate various intracellular
signaling pathways such as extracellular signal-related kinase (ERK), signal transducer
and activator of transcription (STAT), Src, protein kinase B (AKT), or Yap [17,21–23].
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Figure 4. Schematic representation of the five discoidin domain receptor 1 (DDR1) isoforms and of the only DDR2 form.
EJXM: extracellular juxta-membrane domain, TD: transmembrane domain, IJXM: intracellular juxta-membrane domain,
TKD: tyrosine kinase domain, C-tail: C-terminal part of the receptors. Adapted from [12,17].

Nevertheless, DDRs can induce intracellular signaling independent of tyrosine kinase
activity or of collagen binding. The formation of linear invadosomes is mediated by
collagen binding to DDR1 and activation of the Cdc42-GEF (guanine nucleotide-exchange
factor) Tuba, and it is independent of tyrosine kinase activity [24]. The involvement of
DDR1 in the process of collective invasion is collagen-independent and only requires DDR1
interaction with E-cadherin to induce activation of Par3 and 6 [25]. DDR1 is also able to
interact with other partners such as the tetraspanin-like protein TM4SF1 (Transmembrane
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4 L Six Family Member 1) to mediate intracellular signaling [26]. Less is known about
DDR2 interactions with its partners.

The regulation of DDR expression is not well understood. Hypoxia is a positive regula-
tor of DDR1 and DDR2 expression in nontumor cells, such as mesenchymal stem cells and
smooth muscle cells [27,28], and in pituitary adenoma and breast tumor cells [29,30]. The
transcription factors Zeb1 and Twist1, involved in the epithelial-to-mesenchymal transition
(EMT) process, increase the expression of DDR1 or DDR2, respectively [31,32]. E2F1 and
P53, two cell-cycle transcription factors, increase DDR1 messenger RNA (mRNA) expres-
sion in different tumor cell lines [33,34]. In hepatocellular carcinoma, DDR1 activates STAT3
which, in turn, increases DDR1 mRNA expression [35]. ATF4 (Activating Transcription
Factor 4) mediates osteoclast differentiation by increasing DDR2 gene transcription [36].
Angiotensin II and TNFα (Tumor Necrosis Factor alpha) increase DDR2 mRNA expres-
sion [37,38], whereas TGFβ1 increases DDR1 at both mRNA and protein level [39]. In lung
fibroblasts, collagen I activates DDR2 and, in turn, JAK2 (Janus Kinase 2) and ERK1/2
signaling pathways leading to up-regulation of DDR1 [40]. MicroRNAs (miRNAs) are
potent regulators of DDR expression, with miR-199-a/b 5p [41] and miR-486-3p [42] for
DDR1 and miR-615-5p [43] for DDR2. Lastly, a growing body of evidence suggests epi-
genetic control of DDR1 mRNA expression. In patients with idiopathic nonobstructive
azoospermia or ovarian or lung cancers, DDR1 expression was found to correlate with the
methylation of the promoter [44–46].

DDR1 activity may be regulated by a shedding mechanism. Collagens are able to
activate DDR1 and some batimastat-sensitive proteinases. In turn, active proteinases, such
as MT1-MMP-1, MT2-MMP, MT3-MMP (Membrane Type Matrix Metalloproteinases), and
a disintegrin and metalloproteinase (ADAM) 10 cleave DDR1 at EJXM, leaving a 62 kDa
intracellular membrane anchored protein. This cleavage is responsible for inhibiting
the tyrosine kinase activity of DDR1, but nothing is known about the function of the
extracellular part of DDR1 [13,47,48].

In this review, we focus primarily on the involvement of DDRs in carcinoma devel-
opment and metastasis. We discuss the potential roles of these receptors in certain stages
of metastasis.

2. Roles of DDRs in Cancer Progression
2.1. Tumor Growth
2.1.1. DDRs and Tumor Cells

The transformation of a normal cell into a cancer cell involves different mechanisms
such as gene activation/inactivation and chromosomal abnormalities. DDR1 is not im-
portant for tumor initiation, but it is critical in early tumor development and progression
in KRAS (Ki-ras2 Kirsten rat sarcoma viral oncogene homolog)-driven lung adenocar-
cinoma [49] (Figure 1a,b). DDR1 is not expressed in normal gastric epithelial cells, but
it is expressed in half of gastric carcinoma, showing that DDR1 is an important media-
tor of gastric cancer aggressiveness [50]. DDR2 has been shown to be a cancer-related
gene associated with prostate cancer aggressiveness and progression, and its expression
is upregulated in advanced benign prostate hyperplasia and prostate cancer compared to
normal tissue [51]. This involvement of DDRs in the development and aggressiveness of
tumors translates into an effect in several biological processes. Thus, numerous studies
have shown that DDRs have an impact in vitro and in vivo on tumor growth by promoting
or inhibiting proliferation and apoptosis in a cancer- and context-dependent manner, alone
or in combination with other molecules (Figure 1c).

DDR1 has been shown to play a critical role in promoting the proliferation of sev-
eral cancer cells, in vitro and in vivo. In different cancer cell lines, DDR1 promotes
survival by regulating the Ras/Raf/MEK/MAPK (Rat sarcoma/Rapidly Accelerated
Fibrosarcoma/Mitogen-activated protein kinase kinase/Mitogen-activated protein kinase)
pathway, resulting in positive feedback on the expression of the tumor suppressor P53 and
the activation of AKT [34]. In Hodgkin’s lymphoma, latent membrane protein 1 (LMP1) in-
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duces DDR1 expression in germinal center B cells and protects tumor cells from death [52].
In prostate cancer, prostate cancer antigen 1 (PCA-1) increases the level of DDR1 and Bcl-xl,
an antiapoptotic molecule, resulting in the inhibition of apoptosis [53]. In non-small-cell
lung carcinoma (NSCLC), DDR1 induces tumor cell proliferation in vivo. Inhibition of
DDR1 or TMPRSS4 (Transmembrane protease serine 4), a membrane-bound serine pro-
tease, reduces proliferation to various extents with little alteration of cell-cycle progression
or apoptosis. These effects are potentiated when DDR1 and TMPRSS4 are co-inhibited,
resulting in complete inhibition of proliferation with disappearance of cyclin A and B1,
increased P21 expression, and gap 0 (G0)/G1 cell-cycle arrest [54]. DDR1 can also promote
proliferation in vivo. For example, inhibition of DDR1 in a subcutaneous gastric cancer
xenograft slows tumor growth [50]. Furthermore, in pancreatic ductal adenocarcinoma,
tumors from DDR1−/− mice have significantly fewer Ki-67+ proliferative cells [55]. This
is consistent with an in vitro study of pancreatic cancer cells which showed that DDR1
inhibits TGFβ1 expression, thereby promoting tumor cell proliferation [56]. The role of
DDR1 in breast cancer proliferation or survival appears to depend, at least in part, on
tumor type or culture method. In vitro, targeting DDR1 expression inhibits proliferation of
T47D and MCF-7 luminal cells or MDA-MB-435 triple-negative cells [57,58]. In contrast, in
other breast cancer studies, DDR1 was found to be a proapoptotic receptor. Luminal breast
cancer MCF-7 cells and basal-like breast cancer MDA-MD-231 cells express high and low
levels of DDR1 and low and high levels of MT1-MMP, respectively. When cells are cultured
in a three-dimensional (3D) collagen matrix, DDR1 in MCF-7 cells is involved in apoptosis
and cell growth inhibition through upregulation of the proapoptotic mediator BIK (Bcl-2-
interacting killer) [59]. Conversely, in MDA-MD-231 cells, MT1-MMP has a protective effect
through degradation of collagen I and cleavage of DDR1, altering the collagen/DDR1/BIK
pathway to induce apoptosis and suppress tumor growth [60]. In colon cancer, DDR1
interacts with LRP1, a lipoprotein receptor inducing DDR1 endocytosis, thereby controlling
its expression at the plasma membrane. The DDR1/LRP1 interaction increases 3D cell
proliferation and cell-cycle progression, as well as decreases apoptosis [61].

DDR2 has been shown to promote proliferation in human melanoma [62], oral squa-
mous cell carcinoma [63], gastric cancer [64], hepatocellular carcinoma [65], lymphoma [43],
and lung cancer [66] among others. Indeed, in vitro inhibition of DDR2 expression results
in decreased proliferation in melanoma cell lines via JNK (c-Jun N-terminal kinase) phos-
phorylation [62] and induction of apoptosis in hepatocellular carcinoma cells [65]. In oral
squamous cell carcinoma, downregulation of colon cancer-associated transcript 1 (CCAT1)
prevents proliferation via inhibition of DDR2, resulting in inactivation of ERK/AKT path-
ways [63]. Lastly, Circ-LAMP1 (Lysosomal-associated membrane protein 1), the circular
RNAs most expressed in T-cell lymphoblastic lymphoma, is capable of promoting prolifer-
ation by inhibiting apoptosis through modulation of miR-615-5P and its target DDR2 [43].
DDR2 has also been shown to enhance tumor growth in vivo. Indeed, in hepatocellular
carcinoma xenograft, small interfering RNA (siRNA)-mediated inhibition of DDR2 expres-
sion in SNU182 cells led to decrease tumor growth [65]. In gastric cancer, overexpression
of DDR2 promotes tumorigenesis in vivo by inducing tumor growth [67]. On the con-
trary, DDR2 may also inhibit cell proliferation in melanoma and fibrosarcoma cells in vitro.
In these cells, fibrillar collagen activates DDR2 resulting in inhibition of proliferation
characterized by growth arrest in the G0/G1 phase of the cell cycle [68].

Tumor cell proliferation can be modulated by DDR mutations. Indeed, some mutations
have been identified in DDR1 and DDR2 throughout their structures, but the impact of
mutations has been studied mainly for DDR2 and more particularly in lung cancer. DDR2 is
mutated in 3–4% of cases. Some mutations such as E655K play a role in tumor progression
by weakening the growth-inhibitory effect induced by collagen via DDR2, while V582E or
L595F mutations also increase colony size in vitro [69,70].

As shown above, the impact of DDRs may be different in in vitro and in vivo situa-
tions, and it may depend on the structural organization of the TME. In the case of breast
carcinoma [71], in vitro inhibition of DDR1 promotes tumor growth only in 3D. The rigidity
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of the microenvironment plays a critical role and can either activate or inhibit proliferation
and invasion. The NSCLC cell line H1299 grown on a soft matrix expresses p300 at low
levels, leading to reduced acetylation of c-myb and weak interaction between the DDR2
promoter and c-myb or LEF1 (Lymphoid enhancer-binding factor-1). Under these condi-
tions, the DDR2 promoter is not very active, resulting in low proliferation and invasion.
On the contrary, when the matrix stiffens, the DDR2 promoter is highly active, resulting in
increased proliferation and invasion [66]. Table 1 summarizes the different roles of DDRs
in cancer-cell survival or proliferation.

The TME is not only composed of cancer cells but also of stromal cells such as CAFs.
An interaction between DDRs and CAFs has been established in several cancers. In gastric
carcinoma, CAFs induced the upregulation of DDR1 in tumor cells in vitro by potently
activating STAT3, increasing its tumorigenic potential. In vivo, on gastric carcinoma,
pharmacological inhibition of DDR1 in the mouse xenograft model impeded CAF-induced
tumorigenesis with a reduction in the number of tumor nodules [72].

Table 1. Roles of DDRs in tumor cell survival or proliferation. NSCLC, non-small-cell lung cancer;
SCC, squamous cell carcinoma.

Receptor Cell Survival or Cell
Proliferation Cancers

DDR1
increase

-Sarcoma [34]
-Colon carcinoma [34]
-Breast carcinoma [57,58]
-Hodgkin’s lymphoma [52]
-Prostate carcinoma [53]
-Lung (NSCLC) [54],
(adenocarcinoma) [49]
-Gastric carcinoma [50]
-Pancreatic carcinoma [55,56]

decrease -Breast carcinoma [59,60,71]
-Colon carcinoma [61]

DDR2
increase

-Melanoma [62]
-Oral SCC [63]
-Gastric carcinoma [64,67]
-Hepatocellular carcinoma [65]
-Lymphoma [43]
-Lung (NSCLC) [66]

decrease -Melanoma [68]
-Fibrosarcoma [68,73]

2.1.2. DDRs and Immune Cells

The immune system plays an essential role in the response against the tumor. In order
to stop tumor progression, this response is mediated by T and B lymphocytes, natural
killer cells, macrophages, and dendritic cells. The immune cells migrate through the matrix
where collagen is very abundant and enter the bloodstream to reach the tumor site. In
2011, two new characteristics of cancer were revealed and, among them, is the escape
from the immune system [74]. DDRs have been shown to control certain characteristics of
immune cells.

DDR1 is able to enhance the migration of the T helper 17 (Th17) population of T lym-
phocytes in 3D collagen matrices through different pathways: RhoA/ROCK/MAPK/ERK
(Ras homolog family member A/ Rho-associated protein kinase/ Mitogen-activated pro-
tein kinase/ Extracellular Signal-Regulated Kinase) in vitro and in vivo [75] or activation
of p38 MAPK [76]. Recently, in breast cancer, an inverse correlation was made between
DDR1 expression by tumor cells and the level of CD4+ and CD8+ T-lymphocyte infiltration.
The molecular mechanism involved in these situations is not known [77].
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DDR2 plays an important role in the collagen-mediated differentiation of dendritic
cells to a mature phenotype producing a high amount of IL-12 (Interleukin-12). DDR2
enhances the functional abilities of these mature dendritic cells to activate T cells, thereby
regulating immune responses [78]. While integrins are important mediators of neutrophil
migration on a 2D collagen matrix, DDR2, but not DDR1, is involved in neutrophil migra-
tion in 3D collagen. DDR2 regulates neutrophil directionality through increased secretion
of MMP8 [79]. Furthermore, in adipose tissue, T-cell activity is controlled by myeloid-
derived CD45+/DDR2+ cells. These CD45+/DDR2+ cells express increased levels of MHC
II (major histocompatibility complex II) and CD80, two markers of activation and antigen
presentation, and lead to increased production of the proinflammatory cytokines, IFN-γ
(Interferon gamma) and TNF-α, by CD4+ T cells [80]. The presence and the role of these
myeloid-derived CD45+/DDR2+ cells in tumor progression are not known.

2.2. Local Invasion
2.2.1. Extracellular Matrix Breakdown

In order to spread into different tissues, tumor cells must first breach the surround-
ing basement membrane, which is mainly composed of collagen IV and laminins. The
capacity of tumor cells to overcome the basement membrane is decisive for tumor pro-
gression (Figure 2a) [81]. DDRs are able to modulate the expression of MMPs, in partic-
ular MMP2 and MMP9, which are involved in the remodeling and degradation of the
basement membrane.

In lung cancer, DDR1 inhibition decreases the activity of MMP2 and MMP9 [82]. Mod-
ulation and regulation of MMP2 and/or MMP9 activity by DDR1 have also been demon-
strated in pituitary adenoma [83], colorectal cancer [84], and renal cancer (MMP2) [85].
In pancreatic cancer, a novel pathway including TM4SF1/DDR1/MMP2 and 9 enhances
invadosome formation and activity, thereby enhancing cell migration and invasion capa-
bilities [86]. In liver cancer, the interaction between C1q, a component of the complement
system, and DDR1 induces the upregulation of MMP2 and MMP9 expression, leading to
migration and invasion [87]. C1q is present in the microenvironment of many tumors such
as colon, pancreatic, breast, lung adenocarcinoma, and melanoma, and it is expressed by
stromal cells such as fibroblasts [88].

Like DDR1, DDR2 is involved in the modulation of MMP expression in ovarian cancer
where it regulates the expression of MMP1–3, 7, and 13 mRNAs and the activity of MMP2
and MT1-MMP [32]. In human melanoma cells, downregulation of DDR2 is associated with
decreased MMP2 and MMP9 activities [62]. Overexpression of DDR2, through ERK2/Snail
signaling, increases MT1-MMP and MMP2 expression in hepatocellular carcinoma [89] and
MT1-MMP expression in breast cancer [90]. Nevertheless, DDR2 was found to be required
for collagen I-mediated activation of MT1-MMP in fibroblast but not in fibrosarcoma or in
breast cancer [91].

Basement membrane degradation is mediated by the formation of specialized struc-
tures called invadosomes which degrade the basement membrane while maintaining
cell-cell contacts and tissue integrity [92]. The involvement of DDRs in the formation
of these structures has been demonstrated in several studies. In breast cancer cells, the
binding of collagen I to DDR1 leads to the activation of the Cdc42-GEF Tuba, thereby
inducing the formation of linear invadosomes, as well as promoting the activation of the
proteolytic machinery and cell invasion. This process is independent of the tyrosine kinase
activity of DDR1 [24]. In hepatocellular carcinoma, DDR1-induced linear invadosome
formation is enhanced in the presence of TGFβ1 [39].

DDR2 is required to elaborate linear invadosomes in endothelial cells and to facilitate
matrix degradation in association with VEGF (Vascular Endothelial Growth Factor), but
it is not known if DDR2 plays the same role in cancer cells [93]. Table 2 summarizes the
different roles of DDRs in MMP activation and invadosome formation.
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Table 2. Roles of DDRs in matrix metalloproteinase (MMP) activation and invadosome formation.

Receptor
MMP

Activation/Invadosome
Formation

Cancers

DDR1
Increase

-Lung carcinoma [82]
-Pituitary adenoma [83]
-Colorectal carcinoma [84]
-Renal carcinoma [85]
-Pancreatic [86]
-Liver [87]
-Breast carcinoma [24]

Decrease

DDR2
Increase

-Ovarian [32]
-Melanoma [62]-Hepatocellular carcinoma [89]
-Breast [90]

Decrease

After basement membrane degradation, cells encounter collagen I in the interstitial
matrix (Figure 2a). Aligned collagen oriented perpendicular to the tumor boundary has
been shown to promote invasion, and it is considered as a poor prognostic marker for
survival or recurrence in patients with breast carcinoma [94]. Three tumor-associated
collagen signatures (TACS) have been defined. TACS-1 is characterized by increased
collagen deposition near the tumor that appears very early in tumor formation. As the
tumor grows, TACS-2 and -3 have been defined. TACS-2 corresponds to collagen fibers
stretched around the tumor, and TACS-3 is the situation in which collagen fibers are aligned
perpendicular to the tumor, promoting local invasion [95]. DDR1 and DDR2 participate in
collagen fiber alignment and have been associated with TACS-3 [90,96–98]. Accordingly,
inhibition of DDR2 expression decreases collagen deposition and fiber alignment and
thereby tumor growth, migration and invasion are reduced [90,99].

The structure of collagen I can be impacted by aging, affecting many biological
processes. DDR1 is very sensitive to these changes and, consequently, the regulation of
proliferation and apoptosis is altered. For instance, the proteolytic degradation of collagen I
by MT1-MMP, which increases with aging, was shown to decrease DDR1 activation, tumor
growth, and inhibition of apoptosis [71]. This effect is also observed with DDR2; collagen I
aging reduces DDR2 activation, resulting in induction of fibrosarcoma cell proliferation. In
the presence of old collagen I, DDR2 and the tyrosine phosphatase SHP-2 (Src homology
region 2-containing protein tyrosine phosphatase 2) are activated to a lesser extent, JAK2
and ERK1/2 remain phosphorylated, and expression of the cell-cycle negative regulator
p21CIP1 decreases [73].

DDR2 expressed by cells of the TME is also involved in collagen remodeling.Inhibition
of DDR2 in CAFs or in mesenchymal stem cells impacts their mechanotransduction func-
tion, disturbs collagen fiber organization, and decreases matrix stiffness and TACS-3
signature, leading to inhibition of breast tumor cell invasion [97,99].

2.2.2. Epithelial–Mesenchymal Transition

EMT is a critical process involved in cancer development and progression. Depending
on the context, this mechanism can lead epithelial cells to undergo multiple intermediate
steps accompanied by physiological and morphological changes, transforming them in ex-
treme cases into mesenchymal cells. EMT can be reversed by an event called mesenchymal-
to-epithelial transition (MET). Both transitions are regulated by the induction or repression
of transcription factors such as Zeb1/2, Snail1/2, and Twist among others, as well as the
modulation of the expression of epithelial (E-cadherin) and mesenchymal (N-cadherin,
vimentin, MMP9) markers [100]. DDRs have been shown to be associated with EMT in
several cancers.



Cancers 2021, 13, 1725 11 of 27

Some studies highlighted that DDR1 can induce EMT in vitro. For instance, in prostate
cancer, DDR1 activates Pyk2 and MKK7 (Mitogen-activated protein kinase kinase 7),
resulting in increased expression of the mesenchymal markers vimentin and N-cadherin
and decreased expression of the epithelial marker E-cadherin [101]. In gastric cancer, a
correlation among DDR1, E-cadherin, and vimentin has been demonstrated in cancer
tissues. Overexpression of DDR1 increases the expression levels of vimentin and Snail1 and
decreases that of E-cadherin [102]. Moreover, a negative correlation between miR-221-5p
and DDR1 has been demonstrated. Overexpression of miR-221-5p in gastric cancer cells
inhibits not only EMT, but also proliferation and invasion through modulation of DDR1
expression [103]. DDR1 induces EMT in hepatocellular carcinoma by regulating STAT3
in vitro and in vivo [35]. In colorectal cancer, downregulation of miR-199a-5p increases
DDR1 expression, resulting in increased expression of mesenchymal markers [84]. In
renal cancer OS-RC-2 and ACHN cell lines, collagen-mediated activation of DDR1 leads
to increased expression of mesenchymal markers (vimentin/N-cadherin) and decreased
expression of epithelial markers (E-cadherin) [85].

Conversely, several studies have shown that DDR1 expression is decreased during
EMT. In breast cancer, a negative correlation between DDR1 and Zeb1 was found in
carcinoma tissues. In the tumor, H-Ras is able to induce EMT by increasing Zeb1 and
decreasing miR-200c expression. Zeb1 leads to suppression of E-cadherin expression and a
reduction in DDR1 expression [31]. This negative correlation between Zeb1 and DDR1 is
significantly associated in a female-specific manner in breast, ovarian, and liver cancers
but not in lung or colon cancers [104]. Similarly, in epithelial ovarian cancer, a decrease in
DDR1 expression is observed during the EMT process due to CpG hypermethylation of its
promoter, and DDR1 inhibition did not affect E-cadherin expression at the protein level [45].
The effect of DDR1 on EMT inhibition has also been demonstrated in vivo in breast cancer.
Crossing DDR1−/− and MMTV-PyMT mice revealed that a loss of DDR1 expression
increases the level of vimentin in the primary tumor while E-cadherin expression decreases.
In the absence of DDR1, tumor cells exhibit a basal phenotype leading to enhanced invasion
and are associated with the development of breast cancers of poor prognosis [105]. In
the Madin-Darby Canine Kidney (MDCK) cell line, Slug (Snail2) induces EMT with no
detectable level of E-cadherin and increases the level of mesenchymal markers (MMP9 or
vimentin). During this transition, a switch from DDR1 to DDR2 expression is observed.
Indeed, MDCK cells expressing Slug show a decrease in DDR1 expression accompanied by
an increase in DDR2 expression [106]. This notion of switching between DDR1 and DDR2
has been recently suggested in ovarian cancer, where DDR2 mRNA expression is low in
epithelial-like cells and increases in mesenchymal-like cells. Nevertheless, DDR2 protein
expression could not be found in these mesenchymal-like cells [45].

The role of DDR2 in EMT activation is less controversial. An association between
DDR2 and Snail1 has been revealed in several studies on breast cancer [30,90,98], ovarian
cancer [32], papillary thyroid carcinoma [107], and hepatocellular carcinoma [89] via
different signaling pathways. Indeed, immunohistochemistry on breast cancer tissues
revealed an association of DDR2 expression with nuclear localization of Snail1, as well
as with a loss of E-cadherin expression. The tyrosine kinase activity of DDR2 induces
stabilization of Snail1 protein and involves stimulation of ERK2 in a Src-dependent manner.
Importantly, in this study, DDR2 was induced during EMT but was not required for EMT
induction [90]. Similarly, in hepatocellular carcinoma, DDR2 stabilizes Snail1 through
ERK2 activity [89]. In gastric cancer, DDR2 promotes EMT by modulating the mTORC2
(mechanistic target of rapamycin complex 2)/AKT pathway [67].

Although a link has been established between DDRs and some factors modulating the
EMT process, especially in vitro where a few signaling pathways have started to emerge,
the mechanisms involved need to be further elucidated in vivo. Table 3 summarizes the
different roles of DDRs in EMT.
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Table 3. Roles of DDRs in the mechanism of EMT.

Receptor EMT Cancers

DDR1
Increase

-Prostate [101]
-Gastric [102,103]
-Hepatocellular carcinoma [35]
-Colorectal [84]
-Renal carcinoma [85]

Decrease
-Breast carcinoma [31,104,105]
-Ovarian [45,104]
-Liver (female, [104])

DDR2
Increase

-Breast [30,90,98]
-Ovarian [32]
-Papillary thyroid carcinoma [107]
-Hepatocellular carcinoma [89]
-Gastric [67]

Decrease

2.2.3. Migration and Invasion

DDRs have been extensively studied for their impact on migration and invasion. There
are two main mechanisms of migration: cells moving individually (amoeboid and mes-
enchymal migration) or collectively in a cohesive multicellular unit (collective migration).
Migration can be influenced by cytoskeletal organization, remodeling of the surrounding
matrix by migrating cells, and cell–matrix interaction and force generation [108]. Adhesion
to the ECM is important for cancer cells to migrate and, subsequently, to disseminate to
different tissues. Some studies have shown that adhesion can occur in a DDR-independent
manner, e.g., in breast cancer, the adhesion of MCF-7 cells to collagen is predominantly
driven by β1 integrin rather than DDR1 [109]. Recently, using different combinations of
HEK293T cell populations expressing either DDR1 and/or DDR2, we showed that the
extracellular part of DDR1 or DDR2 is sufficient to mediate cell adhesion to collagen I
in absence of integrin activities [21]. In human A375 melanoma, HT29 colon carcinoma
and SK-HEP hepatoma cells, inhibition of DDR1 reduces by 75% very early tumor cell
adhesion to collagen I with significant impairment of the cell–cell adhesion molecules
ICAM1 (InterCellular Adhesion Molecule 1) and VCAM1 (vascular cell adhesion molecule
1) [110]. In prostate cancer, overexpression of DDR2 improved adhesion to collagen I [111].

DDRs are involved in migration and invasion processes as shown in numerous in vitro
studies.DDR1 modulates the organization of the cytoskeleton and, consequently, has an im-
pact on cell migration. In squamous cell carcinoma, DDR1 is localized at cell–cell contacts
in association with E-cadherin and is able to regulate cytoskeletal organization, particularly
actomyosin organization, and collective migration. The DDR1/E-cadherin/Par3/Par6
complex controls the localization of RhoE which antagonizes Rho/ROCK, modulating
actomyosin contractility at cell–cell contacts. At these sites, actomyosin forces are weaker,
allowing coordinated movement of the clustered cells [25]. In oral squamous cell car-
cinoma, DDR1 is involved in collective migration and invasion into a collagen matrix,
leading to an angiolymphatic invasion in vivo [112]. In hepatocellular carcinoma cells, a
cross-talk between DDR1 and STAT3 enhances tumor progression by promoting prolifera-
tion, migration and invasion in vitro, and tumorigenesis in vivo [35]. In pancreatic cancer,
TM4SF1-induced migration and invasion require DDR1. Overexpression of DDR1 increases
cell ability to form invadosomes to degrade the matrix and increases MMP2 and MMP9 [86].
In breast cancer cells, in a pathway involving the CD9 tetraspanin, DDR1 induces cell mi-
gration [113]. Collagen causes shedding of the DDR1 ectodomain by the metalloproteinase
ADAM10. This ADAM10 and collagen binding-dependent DDR1 shedding is important
for more efficient migration of epithelial cells on the collagen I matrix in vitro [48]. Con-
sequently, migration is influenced by the control of DDR1 expression. In gastric cancer,
miR-221-5p modulates DDR1 expression. When miR-221-5p is downregulated, DDR1
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expression increases and promotes migration and invasion [103]. On the contrary, in pan-
creatic carcinoma, the interplay of DDR1 with E-cadherin and the Par3 signaling pathway
was shown to prevent 3D invasion by enhancing cell–cell adhesion [114].

DDR2 has also been shown to promote migration and invasion in many cancers.
Inhibition of DDR2 expression in gastric cancer [64] or hepatocellular carcinoma [65]
reduces migration and invasion. Inhibition of DDR2 expression in melanoma suppresses
migration and invasion through decreased activation of the ERK1/2 and NF-κB (Nuclear
Factor Kappa B) pathways and, consequently, reduced expression of MMP2 and 9 [115]. In
oral squamous cell carcinoma, downregulation of CCAT1 prevents proliferation, migration,
and invasion through inhibition of DDR2 leading to inactivation of ERK/AKT pathway [63].
In head and neck squamous cell carcinoma, overexpression of DDR2 enhances migration
and invasion [116]. In breast cancer, DDR2 can induce tumor cell migration and invasion
when expressed by tumor cells and/or by CAF or multipotent stromal cells (MSCs) [90,117].

Although, in most cases, DDR1 and DDR2 have been shown to promote migration and
invasion, few studies have shown their involvement in inhibiting both processes. DARPP-
32 (Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa) binds to the IJXM domain
of DDR1 and decreases collagen-stimulated invasion of breast cancer cells [118].

Very few studies have analyzed the impact of DDRs on migration and invasion in vivo;
instead, they focused on the establishment of metastasis as in gastric cancer [119]. PCA-1
increased prostate cancer cell invasion through DDR1 and MMP9 expression in a chick
chorioallantoic membrane (CAM) assay [53]. In colorectal cancer, NSD2 (Nuclear Receptor
Binding SET Domain Protein 2) circular RNA inhibits miR-199b-5p expression, which leads
to an upregulation of DDR1 expression and promotes migration and invasion in vitro
and in vivo [120]. DDR2 increases metastasis in a peritoneal xenograft model of ovarian
cancer [32]. In a mouse model of spontaneous breast tumor development, inhibition of
DDR2 expression by gene ablation largely reduces metastasis without affecting lung tumor
growth [99,117].

Table 4 summarizes the different roles of DDRs in EMT.

Table 4. Roles of DDRs in tumor cell migration and/or invasion.

Receptor Migration/Invasion Cancers

DDR1
Increase

-Squamous cell carcinoma [25,112]
-Hepatocellular carcinoma [35]
-Pancreatic [86]
-Breast [113]
-Renal carcinoma [85]
-Gastric [103]
-Prostate [53]
-Colorectal [120]
-Epidermoid carcinoma [48]

Decrease -Breast [118]
-Pancreatic [114]

DDR2
Increase

-Gastric [64]
-Hepatocellular carcinoma [65]
-Melanoma [115]
-Squamous cell carcinoma [63,116]
-Breast [99,117]
-Ovarian [32]

Decrease

2.3. Intravasation

There are two different routes for tumor dissemination: blood vessels or lymphatic
vessels (Figure 2b). Angiogenesis is the primary vascularization process and is defined as
the formation of new blood vessels from existing vasculature [1]. Likewise, lymphangio-
genesis is the formation of new lymphatic vessels from pre-existent vessels [121]. During
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these processes, tumor blood and lymphatic vessels have the particularities of being dis-
organized and permeable to cancer cells, which facilitate their passage into the blood or
lymphatic streams and, subsequently, the establishment of metastasis by their dispersion
in different tissues. Tumor and endothelial DDRs are involved in angiogenesis.

DDR1, in renal cell carcinoma and in gastric cancer cells, induces the secretion of
angiogenic factors involved in endothelial cell tube formation in vitro [85,119]. In gastric
cancer cells, depletion of DDR1 suppresses the expression of key angiogenic factors such
as VEGF-A, VEGF-C, and PDGF-B (Platelet-Derived Growth Factor B) [119] and leads to
necrosis in vivo, as a consequence of impaired angiogenesis [102,119]. A direct role of
DDR1 in angiogenesis was demonstrated by inhibiting DDR1 cell surface expression in
microvascular endothelial cells (HMEC-1) [122].

DDR1 is also important for lymphangiogenesis. Gastric tumors develop fewer lym-
phatic vessels if DDR1 expression is inhibited [119] and lymphatic endothelial cells are unable
to form tubes when DDR1 expression is suppressed by siRNA or with miR199a/b-5p [123].

In contrast to endothelial cells, in colon carcinoma, DDR2 is weakly expressed at the
surface of normal endothelial cells; however, overexpression of the receptor enhances an-
giogenesis in vitro and in vivo. After injection of VEGF-containing Matrigel, angiogenesis
is impacted in the slie mouse model carrying a deletion in the DDR2 gene. When melanoma
cells are injected, tumor development is impacted with decreased tumor angiogenesis and
increased tumor necrosis; nevertheless, the remaining vasculature is mature and functional.
In these tumors, proangiogenic factors or receptors such as VEGFR2, Ang-2 (Angiopoietin-
2) or MMP9 are decreased, and antiangiogenic factors such as Ang-1 are increased [124].
In hepatocellular carcinoma, an association between DDR2 and VEGF has been found.
Indeed, during hypoxia, DDR2 can regulate the VEGF pathway [125].

Nothing is known about the role of DDRs in the mechanism of intravasation.

2.4. Survival in the Circulation, Extravasation, and Micrometastasis Formation

No evidence for a role of DDRs in tumor cell survival in the bloodstream or extravasa-
tion has been established (Figure 3a–c). Nevertheless, in a model of liver metastasis, Yuge
and collaborators injected gastric cancer cells into the spleen of mice and found no differ-
ence in the number of liver micrometastases whether or not cells expressed DDR1. These
data suggest that there is no difference for tumor cell survival in the bloodstream or tumor
cell extravasation to the liver parenchyma [119]. On the contrary, DDR1 in tumor cells is
important for the migration of lung cancer cells to the bone niche after intracardial injection.
However, it is not clear which stage of metastasis (survival in blood, extravasation, and/or
micrometastasis) is under the dependence of DDR1 [82].

Recently, DDR1 expressed by the liver metastatic niche was found to be important for
micrometastasis implantation. DDR1 siRNA-injected mice have fewer hepatic stellate cells
(HSCs), differentiated myofibroblasts, and angiogenesis (CD31-positive liver sinusoidal
endothelial cell (LSECs)). Consequently, less collagen is secreted into the niche and the
number of micrometastases is reduced [126].

The importance of DDR2 in the metastatic niche depends of the metastatic tissue. In a
model of liver metastasis, intrasplenic injection of colon cancer cells into DDR2−/− mice
showed an increase in micrometastasis foci compared to a DDR2+/+ mice. This result can
be explained by increased HSC differentiation into myofibroblasts and increased LSEC
activation and angiogenesis in DDR2−/− mice. Furthermore, tumor cell adhesion to LSECs
from DDR2−/− mice is increased if these cells are exposed to tumor cell supernatants,
suggesting that this may cause an increase in tumor cell extravasation in vivo. Lastly, the
liver tumor niche in DDR2−/− mice promotes tumor cell colonization (see below) [127]. In
contrast, in a model of lung metastasis, intravenous tail injection of melanoma cells in slie
mice showed a reduction in the number of lung metastases [124].

However, different types of collagen are found at higher levels in the serum from
patients with cancer, and serum collagen IV is a biomarker for peritoneal dissemina-
tion of gastric cancer [128]. In breast cancer, HSP47 induces collagen secretion in the
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bloodstream where it can bind to circulating tumor cells and platelets, thereby promoting
metastases [129]. C1q, which is part of the complement activation complex, contains a
collagen-like domain. It was recently shown that DDR1 is activated in the presence of C1q,
with phosphorylation at Tyr513 of DDR1 in hepatocellular carcinoma [87]. Furthermore,
DDRs are involved in the activation of the pro-survival AKT pathway [130,131]. It is
tempting to speculate that serum collagens and C1q can activate DDRs in circulating tumor
cells to induce their survival in the blood stream.

The involvement of DDRs in tumor cell extravasation is still poorly documented.

2.5. Macrometastasis (Colonization)

The first demonstration of DDR1 involvement in tumor colonization (Figure 3c) was
elegantly established by the Giancotti group [26]. In lung micrometastases, breast tumor
cells produce and deposit collagen I in the ECM. Collagen can bind to DDR1 inducing
the recruitment of the tetraspanin TM4SF1. In turn, TM4SF1 induces a large clustering of
DDR1 and brings PKCα bound to the adaptor protein syntenin-2 in close proximity to the
intracellular part of DDR1. PKCα phosphorylates and activates JAK2 and, consequently,
STAT3 is phosphorylated and can, in turn, activate the transcription of genes such as Sox2.
This mechanism of DDR1-induced metastatic colonization is independent of its tyrosine
kinase activity. The formation of large DDR1 clusters is crucial for this mechanism, because
collagen IV, which induces only small-size clusters, is not involved in the colonization
process. Inhibition of TM4SF1 alters not only the metastases of breast tumors to the lungs,
but also to the brain and bone. However, the involvement of DDR1 in brain and bone
metastasis has not been assessed [26]. Recently, it was shown that TM4SF1 can regulate
AKT and ERK activation via DDR1 in lung carcinoma [130], but it is unclear whether or
not these regulations require DDR1 tyrosine kinase activity and whether these pathways
are involved in DDR1-induced colonization. DDR1 is involved in gastric liver metastasis
colonization, and intrasplenic injection of DDR1-inactivated gastric tumor cells shows no
difference in micrometastasis formation but an inhibition of metastasis colonization [119].
In contrast, DDR1b expression in fibrosarcoma cells completely inhibits the formation of
lung macrometastases after intravenous tail injection of these cells, but the step in which
the metastasis process is altered remains unknown [23].

DDR2 has also been found to play a role in metastasis formation; however, again, it is
not clear which step(s) of the metastatic process is (are) involved. In addition, DDR2 expres-
sion in tumor cells and in the metastatic niche may influence tumor metastatic colonization.
In lung metastases of breast tumor cells, DDR2 expression by tumor cells is important for
metastasis development, but its expression in the metastatic niche is dispensable [117].
In contrast, melanoma cells require DDR2 expression in the lung metastatic niche and
in tumor cells to develop metastatic colonization [62]. Intrasplenic colon carcinoma cells
injected into DDR2−/− mice develop a liver niche favorable for micrometastasis devel-
opment, as well as for tumor colonization. DDR2−/− HSCs exposed to colon cancer cell
supernatants overexpress genes (IL-10, TGFβ, and VEGF-A) involved in immune suppres-
sion, angiogenesis, and cancer cell growth. Therefore, the number of proliferating tumor
cells is increased in liver metastases if DDR2 is not expressed in the liver [127].

2.6. DDR Association and Crosstalk with Other Membrane Receptors

The association or crosstalk of DDR1 with other transmembrane proteins results in
distinct outcomes. Through a collagen- and tyrosine kinase-independent mechanism,
DDR1 binding to E-cadherin increases the strength of cell–cell interactions. In breast cancer,
some studies showed crosstalk between DDR1 and the insulin and IGF receptors, IR-A and
IGF-1R (Insulin like Growth Factor 1 Receptor) (Figure 5). IGF-1 and IGF-2 stimulation
lead to the upregulation of DDR1 by activating the PI3K (Phosphoinositide 3-kinase)/AKT
pathway, thereby inhibiting miR-199a-5p expression. In the absence of collagen and in the
presence of IGFs, DDR1 enhances the IR-A and IGF-1R pathways, thereby increasing tumor
cell migration and survival through the PI3K/AKT pathway and tumor growth through
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the Ras/Raf/MEK/ERK pathway [132]. In addition, insulin or IGF-1 and IGF-2 induce an
association between IGF-1R or IR and DDR1. DDR1 can also modulate IR expression by
stabilization of both the mRNA and the protein [133]. In thyroid cancer, crosstalk between
DDR1 and IGF-2/IR-A is responsible for tumor cell proliferation and invasion in 2D and
3D assays, and it is involved in the maintenance of tumor cell stemness [134]. In bladder
cancer, migration and anchorage-independent growth are dependent on DDR1/IGF-1R or
DDR1/IR-A crosstalk [135]. In A549 lung cancer cells, as collagen I does, the binding of
IGF-1 to its receptor IGF-1R mediates DDR1-induced cell migration [136].

Lastly, DDR1 can associate with TM4SF1 to induce metastatic tumor colonization as
described above [26]. No crosstalk between DDR2 and other membrane receptors was
found; however, in MCF-7 and NIH-3T3 cells, DDR2 is phosphorylated on tyrosine residues
after IGF-2 or insulin stimulation, suggesting possible crosstalk between IGF-1R or/and IR
and DDR2 [137].
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3. Cancer Treatment

DDRs are upregulated in many cancers and appear to be promising biomarkers; thus,
their inhibition an attractive strategy. DDR1 and DDR2 can be targeted by tyrosine kinase
inhibitors such as dasatinib, nilotinib, and imatinib [139]. These inhibitors have been shown
to be effective on multiple occasions. Dasatinib inhibited DDR1 in lung [54] and gastric
cancers [140] and DDR2 in studies of head and neck cancers [141]. Similarly, nilotinib
inhibited DDR1 in breast and colon cancer studies [60,61]. Although these compounds
are effective in inhibiting DDRs, they have broad specificities and, thus, also inhibit other
TKRs. Sitravatinib (MGCD-156) is a multitarget TKR inhibitor that can inhibit DDR2 [142].

Table 5 summarizes the imatinib, dasatinib, nilotinib, and sitravatinib specificities
against different TKRs and their use in clinical trials targeting DDR1 or/and DDR2.
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Table 5. Nonspecific DDR inhibitors: specificities and clinical trials (adapted from ClinicalTrials.gov).

Inhibitor Targeted Kinases In Vitro Assay (Cancer) Preclinical
(Cancer) Clinical (DDR Targeted)

Imatinib BCR-ABL, DDR1, DDR2

Nilotinib
ABL1, Kit, PDGFRA,

PDGFRB, CSF1R, DDR1,
DDR2

DDR1:
-Breast (decreased apoptosis
and DDR1 phosphorylation)
-Colon (increased
proliferation, decreased
DDR1 phosphorylation).

-NCT02029001:
Malignant solid neoplasms.
Mutated DDR1,
mutated DDR2.
Phase 2 (recruiting).

Dasatinib BCR-ABL, SRC kinase
family, DDR1, DDR2

DDR1:
-Lung (decreased
proliferation).
-Gastric (decreased
proliferation, migration,
invasion).
DDR2:
-Head and neck (decreased
proliferation, migration,
invasion)

DDR2:
-Head and neck
(zebrafish): decreased
migration

-NCT01491633: Squamous
cell lung cancer.
Mutated DDR2.
Phase 2 (not evaluable,
toxicity).
-NCT04439305: lymphoma,
myeloma, solid neoplasm.
Mutated DDR2.
Phase 2: withdrawn.
-NCT01514864:
NSCLC.
Mutated DDR2.
Phase 2: not completed,
disease progression.

Sitravatinib
(MGCD156)

MET, AXL, VEGFR1,
VEGFR2, VEGFR3,
PDGFRA, PDGFRB,
TRKA, TRKB, DDR2

-NCT02219711:
NSCLC, renal cell
carcinoma.
Mutated DDR2.
Phase 1 (recruiting).

In recent years, several DDR1-specific inhibitors have been developed. In 2013, the
pyrazolo pyrimidin benzamide 7rh and 7rj selective DDR1 inhibitors were discovered. They
can inhibit the enzyme activity with IC50 (Half-maximal inhibitory concentration) values
of 6.8 and 7.0 nM, respectively [57]. In vitro and in vivo studies have shown 7rh effective-
ness for pancreatic [143], gastric [72], and lung [144] cancers. KST9046, with a quinazo-
line urea scaffold, and 8v, a 3′-(imidazo[1,2-a]pyrazin-3-yl)-[1,1′-biphenyl]-3-carboxamide
compound, were designed and optimized to inhibit DDR1 [145,146]. DDR1-IN-1 and
DDR1-IN-2, two derivatives of the DDR1-interacting structure of imatinib, are capable of
inhibiting DDR1 phosphorylation with EC50 (Half maximal effective concentration) values
of 86 nM and 9 nM, respectively [147]. DDR1-IN-1 inhibits proliferation, migration, and
invasion, and it increases apoptosis of prostate cancer cells [101]. Recently, a selective
DDR1/DDR2 inhibitor called 2.45 was identified using a parallel DNA encoded library.
The 2.45 compound preserves renal function and reduces tissue damage in mice with
Alport syndrome, a syndrome in which DDR1 is involved [148]. DDR1 inhibition may be a
promising solution in some cancers; however, in pancreatic cancer, long-term inhibition
of DDR1 appears to lead to organ atrophy, as DDR1 is crucial for tissue homeostasis [55].
Furthermore, in some cancers such as renal cancer, DDR1 is downregulated in cancerous
tissues and, therefore, its inhibition does not seem appropriate in this case [41].

Fewer compounds are known that can specifically and selectively inhibit DDR2.
Actinomycin D, the potent mammalian transcription inhibitor, can impair the interaction
between DDR2 and collagen, preventing DDR2 activation [149]. Compound 1 can inhibit
DDR2 phosphorylation but without affecting NSCLC proliferation [150]. WRG-28 inhibits
the interaction between DDR2 and collagen through allosteric modulation. WRG-28
impedes breast cancer cell migration and invasion in vitro and inhibits lung metastasis
formation after injection of tumor cells in the mouse tail vein [117]. Other ways to inhibit

ClinicalTrials.gov
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DDR2 activity include the use of an anti-DDR2 antibody or a recombinant soluble DDR2
form, which prevents collagen binding to DDR2 [79].

Today, the difficulty with patient management lies in the tumor heterogeneity that does
not allow a universal treatment, as well as in the lack of effective treatment, which leads to
the appearance of resistance and cancer relapse. Some researchers have highlighted the
role of DDR1 in treatment resistance in lung [144], breast [151], pancreas [143], glioma [152],
ovarian [153], and head and neck cancers [154]. For example, in glioblastoma, DDR1 drives
chemoresistance by collaborating with the 14-3-3/BECN1 (Beclin 1)/AKT1 multiprotein
complex to enhance cell survival, anti-autophagy, and resistance by AKT/mTOR signal-
ing [152]. However, DDR1 can improve the chemosensitivity of prostate cancer cells, with
DDR1b increasing the sensitivity of cells to doxorubicin and paclitaxel [155].

DDR2 is also involved in treatment resistance. DDR2 has been identified as a critical
target for improved response to anti-PD1 (Programmed death-ligand 1) immunotherapy.
The combination of anti-PD1 therapy and DDR2 inhibition with dasatinib shows a reduc-
tion in tumor burden and results in an increase in CD8+ T-cell counts in bladder, breast,
colon, and sarcoma cancers. Melanoma metastasis in mouse lungs is largely inhibited if
mice receive both treatments in combination [156]. Despite the demonstrated efficacy in
inhibiting DDR2, acquired resistance to dasatinib can occur through acquisition of the
DDR2 gatekeeper mutation T654I in NSCLC [157]. On the other hand, other mutations
such as L595P lead to increased sensitivity to dasatinib in squamous cell lung cancer [70].
No specific DDR inhibitors are in clinical trials. Table 6 summarizes the specificities of the
different DDR inhibitors and their use in preclinical assays.

Table 6. Specific DDR inhibitors and some examples of their used in preclinical assays. Specificity describes the strength of
binding between a receptor and an inhibitor and it is measured by the dissociation constant (KD).

Inhibitor Specificity In Vitro Assay (Cancer) Preclinical
(Cancer)

7rh DDR1 > DDR2

-Pancreatic (decreased DDR1 phosphorylation,
signaling, colony formation, migration)
-Gastric (decreased proliferation)
-Lung (increased apoptosis)

-Pancreatic (mice): decreased tumor development
and proliferation, increased apoptosis and
survival (in association with chemotherapy).
-Gastric (mice): decreased peritoneal tumor
nodules.
-Lung (mice): In association with chemotherapy,
decreased tumor development and increased
apoptosis

7rj DDR1 > DDR2

KST9046 DDR1 > ARAF, FLT3,
LIMK1, LMK2

-Decreased proliferation (leukemia, lung, colon,
brain, melanoma, renal, ovarian, prostate and
breast) and DDR1 phosphorylation

8v DDR1 > DDR2,
BCL-ABL, c-KIT

-Lung: decreased colony formation, proliferation,
migration, invasion and DDR1 phosphorylation

DDR1-IN1 DDR1 > DDR2

-Decreased DDR1 phosphorylation, cell
proliferation (colon, breast, lung, uterus, liver).
-Prostate: decreased proliferation, cell viability,
colony formation, EMT and migration. Increased
apoptosis.

DDR1-IN2 DDR1 > DDR2 Decreased DDR1 phosphorylation, cell
proliferation (colon, breast, lung, uterus, liver)

2.45 DDR1 > DDR2 Decreased DDR1 phosphorylation

Compound 1 DDR2 Decreased DDR2 phosphorylation and lung cell
proliferation.

WRG-28 DDR2 Breast: decreased migration and invasion. Decreased breast metastasis to lung
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4. Discussion

DDRs are involved in different stages of tumor development and metastasis. No
evidence has been observed for their involvement in tumor initiation, but DDR1 and DDR2
play a role in tumor cell proliferation (Figure 1c) and more particularly in TME remodeling
(Figure 2a). Both receptors are important for MMP expression, collagen fiber alignment,
and immune cell migration and activation, whilst DDR2 is important for CAF activity.
They are also associated with tumor angiogenesis and lymphangiogenesis, both processes
enabling tumor cell intravasation (Figure 2b). In addition, DDRs are also important in
tumor cell migration and invasion. DDR1 is involved in collective migration and, certainly,
in individual migration via EMT induction (Figure 2a). After intravasation, no evidence
for the involvement of DDRs in the survival of circulating tumor cells was found (Figure
3a). Nevertheless, some collagens and other noncanonical ligands (e.g., C1q) are found
in the serum of cancer patients. Furthermore, DDR1 increases cell–cell adhesion; hence,
we can hypothesize a role of DDR1 in the adhesion of tumor cells to protective cells such
as platelets, CAFs, or immune cells. No direct evidence for the involvement of DDRs in
extravasation has been found, although there are clues for roles of DDR1 and DDR2 in
extravasation in bone and liver, respectively. The metastatic niche plays a crucial role in the
formation of micrometastases (Figure 3c). The role of DDRs in the metastatic niche depends
on the metastatic tissue and on the DDR isoform. DDR1, but not DDR2, is important
for the formation of the liver niche, whereas DDR2 is necessary for the formation of the
lung niche. Only DDR1, in association with TM4SF1, is essential for the development of
micrometastases in macrometastases (Figure 3c).

In almost all stages of metastasis, apparently contradictory results have been obtained.
Different hypotheses may explain the contrasted effects of DDR1 and DDR2 manipulation
on proliferation, EMT, MMP induction, migration, invasion, and metastasis. First, DDR1
activity may depend on the type of cell and of the presence or absence of an interacting pro-
tein (such as DARPP-32) [118]. Second, DDR1 and DDR2 activity may be assay-dependent.
DDRs induce cell proliferation in a 2D assay; however, in a 3D assay, DDRs inhibit cell
proliferation [60]. Third, the activity of DDR1 activities may be isoform-dependent. As
mentioned above, DDR1 has five different isoforms, the most commonly studied being
DDR1a and DDR1b, although many studies do not mention or distinguish them. In pan-
creatic cancer, DDR1b is able to upregulate N-cadherin in a collagen-dependent manner.
This regulation is due to the interaction between the phosphotyrosine domain of the phos-
phatase Shc1 (SHC Adaptor Protein 1) and Tyr513, absent in DDR1a or DDR1b [158]. On
the other hand, in glioma, DDR1a is able to induce invasion, adhesion, and MMP2 acti-
vation [159] and, in NSCLC, DDR1a has a stronger effect in cell migration and invasion
than DDR1b [160]. A switch between DDR1 and DDR2 during tumor progression has been
demonstrated, but it is not impossible that a switch between the different DDR1 isoforms
during tumor progression may exist. These important aspects remain to be elucidated, and
this will be important for a better adaptation of treatments in different cancers.

Most of the late metastasis cascade (i.e., blood survival, extravasation, micrometastasis,
and macrometastasis) has not been studied individually but as a whole after injection of
tumor cells into the bloodstream. It will be interesting to clarify in which step(s) DDRs
are involved.

There are not many studies that focused on the analysis of the impact of DDR1
and DDR2 within the same cancer, although, very often, both receptors are expressed.
Further studies analyzing the relationship between the two receptors in tumor development
are needed.

DDR inhibitors used in cancer treatment, such as dasatinib or nilotinib, are not specific
DDR inhibitors. Further in vivo analysis of cancer development during treatment using
specific DDR1 or DDR2 inhibitors, such as 7rh, 2.45, or WRG-28, in different cancers
are needed.



Cancers 2021, 13, 1725 20 of 27

5. Conclusions

DDRs are receptors for ECM collagens. They are expressed at the extracellular mem-
brane of tumor cells and of many cells of the TME such as CAFs and immune cells. In
many cancers, DDR1 or DDR2 are overexpressed, suggesting a role for DDRs in tumor
development and metastasis. They are involved in the proliferation and migration of tumor
cells and in the formation of micro- and macrometastases. However, the impact of DDRs in
tumor development or metastasis seems to be cancer-dependent and may be explained by
the DDR1 isoform expressed or by interaction with other receptors. Further experiments
are needed to clarify the activities of DDRs in different cancers. These studies will be
facilitated by the development of specific DDR inhibitors that are being characterized
in vitro and in vivo.
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