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Simple Summary: The primary purpose of this review is to provide an in-depth analysis of existing
Artificial Intelligence (AI) algorithms used in the field of prostate cancer (PC) for diagnosis and
treatment. This review aims to show the research community that AI-enabled technologies have the
potential for widespread growth and penetration of PC diagnostics and therapeutics to simplify and
accelerate existing healthcare processes.

Abstract: As medical science and technology progress towards the era of “big data”, a multi-
dimensional dataset pertaining to medical diagnosis and treatment is becoming accessible for mathe-
matical modelling. However, these datasets are frequently inconsistent, noisy, and often characterized
by a significant degree of redundancy. Thus, extensive data processing is widely advised to clean
the dataset before feeding it into the mathematical model. In this context, Artificial intelligence (AI)
techniques, including machine learning (ML) and deep learning (DL) algorithms based on artificial
neural networks (ANNs) and their types, are being used to produce a precise and cross-sectional
illustration of clinical data. For prostate cancer patients, datasets derived from the prostate-specific
antigen (PSA), MRI-guided biopsies, genetic biomarkers, and the Gleason grading are primarily
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used for diagnosis, risk stratification, and patient monitoring. However, recording diagnoses and
further stratifying risks based on such diagnostic data frequently involves much subjectivity. Thus,
implementing an AI algorithm on a PC’s diagnostic data can reduce the subjectivity of the process and
assist in decision making. In addition, AI is used to cut down the processing time and help with early
detection, which provides a superior outcome in critical cases of prostate cancer. Furthermore, this
also facilitates offering the service at a lower cost by reducing the amount of human labor. Herein, the
prime objective of this review is to provide a deep analysis encompassing the existing AI algorithms
that are being deployed in the field of prostate cancer (PC) for diagnosis and treatment. Based on the
available literature, AI-powered technology has the potential for extensive growth and penetration in
PC diagnosis and treatment to ease and expedite the existing medical process.

Keywords: artificial intelligence; clinical diagnosis; prostate cancer; machine learning

1. Introduction

Prostate cancer (PC) is the second most commonly diagnosed cancer in the male
population and it is the most common cancer type in the United States. In 2020, WHO
provided cancer statistics, which showed 1,414,259 cases of PC in the complete dataset [1].
It was also noted that PC is the most common disease among the Afro-American races. As
per the National Institute of Health (NIH) data, 268,490 new cases of PC were reported
in 2022, with there being 34,500 deaths worldwide [2]. The mortality rate was found to
be increased with an individual’s age, thus, it is the most prevalent among individuals
over 66 years, accounting for more than 55% of the total number of deaths [1]. It was
found that the size of the prostate gland increases with age, which is termed prostatic
hyperplasia (BPH). BPH causes symptoms such as frequent urination which is caused by
the compression of the bladder due to an enlarged prostate. It affects 33% of men over 60
and 50% of men that are over 80 years old. An earlier study indicated BPH as a precursor
for PC, but could not establish a clear association [3].

The associated risk factors for PC included age (above 40) and race (more common in
Black or Afro-American races) as evident from the data of the surveillance, epidemiology,
and end results (SEER) US population registry [4]. Moreover, other factors, such as genetic
mutations in the BRCA2 gene [5], family history [6], smoking [7], obesity, and eating high
fat-containing foods [8], were also linked to the onset of PC. Additionally, more risk factors
for PC include a history of prostatitis, the inflammation of the prostate gland, and the
administration of drugs that inhibit 5 alpha-reductase, which is used to treat BPH [9].
During the initial stage, patients with PC do not exhibit major symptoms, except common
complaints regarding the difficulty with urination, frequent urination, and nighttime
urination, which resemble those of BPH. Symptoms, such as urine retention and back
discomfort are often indicators of the disease. Moreover, back pain is also an indication of
the metastatic stage of PC, showing its spread to the bones [10].

In the healthcare industry, digitizing and storing big medical data has critically con-
tributed to applying artificial intelligence-based techniques in diagnosis and management.
Artificial intelligence (AI) is an automated computing process with a built-in programmed
intelligence that is used to make decisions in an unfamiliar environment. Generally, the
term AI is commonly used to describe the robotic processes constituted of computer algo-
rithms that are connected to the machinery hardware. With advancements in AI, including
the development of machine learning (ML) algorithms and deep learning (DL) models
using mathematical rules and statistical assumptions, the machines are manipulated or
trained to understand the hidden patterns or information from a given dataset. These
advanced algorithms have allowed AI-based systems to grow efficiently for the prediction
of events without being explicitly designed to do so [11].

ML is a branch of AI in which the algorithm learns from the data points without being
explicitly programmed [12], and is classified into the (1) supervised, (2) semi-supervised,
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and (3) unsupervised types [13]. In supervised ML algorithms, labelled data points are
the input data. The model adjusts the weights to obtain the best fit. Alternatively, in
unsupervised learning, the data are not labelled, and the algorithms find the hidden pattern
in the dataset for grouping. The semi-supervised one is a method that uses both the
supervised and unsupervised principles. It first trains the algorithm on a small, labelled
dataset and then, it uses the learning to extract the features from a large, unlabeled dataset.
Besides these three classes, there is one additional class of ML that is known as weakly
supervised machine learning. This represents the cases when the data in the training set
are not adequately labelled as per the ground truth, for instance, due to the excessive cost
that is involved in the labelling process. This category can be further subdivided into three
classes; (a) incomplete: where the only subset of training data are labelled, (b) inexact:
high-level labelling, and (c) inaccurate: the data are not labelled as per the ground truth.
The label generation technique can be used on labelled data and unlabeled data. Incomplete
supervision is also being used to process the data using human intervention, where the
domain expert labels the data. However, it can also use semi-supervised learning to
produce generative models. Inexact supervision is performed by CNN and DL techniques,
and this has the potential to learn automatically across multiple domains. In inaccurate
management, several ensembles are detected as unlabeled and these are checked with the
training data and then, the labels are corrected. A summary of the ML classification is
shown in Figure 1.
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Figure 1. Summary of supervised, semi-supervised, and unsupervised models of machine learn-
ing algorithms.

Deep Learning (DL) is the branch of ML that has attracted the most interest in data-
centric challenges. In this method, the algorithm is completely independent of human
intervention or input, and it devises rules based on the data. Multiple learning layers
are deployed in this technique to extract increasingly higher level information/features
from the data. DL architecture allows the algorithm to handle big data for the learning
process, which assists in the development of robust prediction models. Artificial neural
networks (ANN) fall under DL methods, where they can take the data in multiple formats,
including images, text, and other unstructured data. An ANN is composed of multiple
layers that consist of connected units or nodes that are known as artificial neurons. It starts
with the input layer that feeds the data to the network, and later, weighted matrix schemes
are applied to different hidden layers. Each hidden layer transforms the input feature by
multiplying it with the weight matrix and transferring it to the next consecutive hidden
layer. This weighted matrix is optimized using the training and validation dataset to
achieve the minimum error in the prediction at the output layer. These weights denote the
importance of each feature. A higher weight is assigned to a more important feature. After
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assigning the weights to the feature data, the ANN applies the transform and activation
functions. The transform function uses multiple inputs and converts them into a single
output. An active function receives this output, and a non-linear mathematical model is
applied to convert the transformed input data into a final prediction.

An artificial neural network could be shallow or deep, depending upon the number
of hidden layers that are implemented in the network. A DNN, which stands for deep
neural network, is an advanced method of ANN where “deep” refers to the depth of the
network. This contains multiple hidden layers between the input and output layers. DNN
is most suitable one for big data, where the network rigorously trains itself at each layer
to reduce the error rate. A modified form of ANN called a convolution neural network
(CNN) is intensely used in diagnosis, feeding the diagnostic images to the network and
classifying the stage of the disease. It is composed of three layers: (1) the convolution
layer: which applies filters to the input image and converts it into a feature map, which
is further normalized and resized, (2) the pooling layer: this layer is responsible for the
dimensionality reduction, which effectively avoids overfitting, (3) a fully connected layer:
this layer is a general characteristic of neural network that takes the input vector and
creates an output vector after applying the transform and activation functions. In addition,
a specific form of CNN where the last layer is not fully connected is known as a fully
convolution network (FCN). U-net is the example of an FCN which does not have a fully
connected layer. In the deep neural network architecture, a dropout mechanism is applied
to the fully connected layer to reduce the overfitting of the data and produce an unbiased
prediction. Figure 2 shows the architecture of distinct types of artificial neural networks.
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In recent years, the deployment of AI techniques in the healthcare industry has
resulted in significant improvements in PC diagnosis, prognosis, prediction, and disease
classification [14]. This review article provides an overview of the AI methods that are
being developed and applied successfully for PC diagnosis and treatment.

2. Methodology

This study collected articles on the applications of basic and advanced machine learn-
ing algorithms that were used for the active surveillance of, the disease staging of, the
diagnosis of, and the effective treatment of prostate cancer. Here, the PubMed database was
used to collect the articles. It is a freely available data source with multiple options to filter
the reports based on structured keywords. In addition, AI is applied in a broad spectrum of
domains, and it is highly likely that one would obtain articles from the engineering domain
if the search was performed using a non-medical/biological database. Herein, PubMed
provided a comprehensive, robust, and highly relevant platform to search for the articles
that discuss the application of AI in prostate cancer.

Throughout this investigation, the Preferred Reporting Items for Systematic Review
and Meta-Analysis protocols were employed. The keywords string that was formed in this
search was: (artificial intelligence) or (machine learning) or (deep neural network) or (deep
learning) or (machine vision) or (ai) or (random forest) or (decision tree) or (classification
algorithm) or (linear regression) or (modelling) or (support vector) or (decomposable
model) or (automatic diagnosis) or (computer aided) or (gaussian mixture modelling) or
(natural language progressing) and (prostate cancer) and (review [publication type]).

Initially, these keywords were searched for in multiple phases for the two types of
publications that were mentioned in PubMed: (i) the review and (ii) research articles using
the advanced search option. Initially, keyword strings were searched for in the title section
in the first phase. This implies that keywords should be a part of the title of the review or
journal article. This resulted in 41 reviews and 369 research articles. Later, these keywords
were searched in the Title/Abstract section to expand the search space. This produced
196 reviews and 2735 research articles. Eventually, these keywords were also searched for
in all of the field’s sections; there were 5025 reviews and 46,326 journal articles in the output
set. Articles with keywords found in the title were the most relevant for this study as they
discussed the principle and application of the AI techniques in prostate cancer. Later, the
search output was verified using an intersection exercise. The articles searched from each of
the three sections were compared pair-wise for the review and journal articles. The common
articles were marked for each pair, title, and title/abstract section (n1∩n2), the titles were
marked with the all fields section (n1∩n3), and the title/abstracts were marked with the all
fields section (n2∩n3). As a result, it was found that all of the articles that were found using
keywords in the title section also included them in the title/abstract section (n1∩n2 = n1).
Similarly, all of the articles that were searched for in the title/abstract section were included
in the all fields sections (n1∩n3 = n1). By computing the intersection of these three sets
(n1∩n2∩n3), we invariably ended up with the set that was selected from the title section
only (n1). This showed that the searching technique was consistent as the articles with the
keywords contained them in the title of the article. Further, an exclusion criterion was used
to screen the articles that were classed as opinion letters, commentary, case reports and
surveys, and these were discarded. These exclusion criteria were applied to the 41 journal
articles and 369 review articles that were found by the title-based searching.

Moreover, under the review article, there was no entry that was found under the
opinion letter, commentary, case report, and survey types. However, the journal article
list has 13 commentaries and 1 case report, however, the articles fell under the exclusion
classes. Thus, these 14 articles were excluded from the present study. Finally, the selected
papers were evaluated for their direct relevance to the objective of this review article
(application of AI-machine learning in prostate cancer diagnosis and treatment). In the first
phase, their abstracts and introductions were reviewed to collect the necessary content that
was presented in the introduction section of this review article. Later, the most relevant
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articles were closely examined for their results and conclusions to present their data in the
latter sections. Figure 3 illustrates a flowchart of the data collection that was used in this
review study.
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preparation of the present review article.

Additionally, the studies referred to in the screened articles were also included in this
review article. Later, these articles were evaluated according to the year that they were
published. Figure 4 shows that the number of machine-learning-based studies on prostate
cancer has increased significantly in recent years. The number of publications, particularly
in the last full year (2021), has been relatively high for both the reviews and journal articles.
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3. Results
3.1. Application of AI in Prostate Cancer Diagnosis
3.1.1. AI in Biopsy-Based Detection of Prostate Cancer

A biopsy is a procedure that involves the separation of a sample of cells or a piece
of tissue from the body for laboratory analysis. This is applicable when the patient is
symptomatic or when a physician has identified a substantial concern. A biopsy test can
detect the presence of cancerous cells in a patients’ sample [15]. The classification of the
biopsy methods that are used to diagnose cancer is discussed in Table 1.

Table 1. Classification of biopsy methods used in the detection of PC.

S. No. Biopsy Techniques Summary

1 Needle Biopsy This method of biopsy inserts a needle into the skin for collecting cells from a suspicious area.
This process is also known as a percutaneous tissue biopsy by doctors [16].

2 Endoscopic biopsy
Endoscopy is a procedure in which medical staffs use a flexible and thin tube (endoscope)

with a light at the terminal to examine structures within the body. Further, special
instruments are inserted into the tube to collect a tiny tissue sample to analyze [17].

3 Skin biopsy
A skin biopsy collects cells from the surface of the skin. It is mainly used to identify skin
diseases, including melanoma. The type of cancer that is detected and the extent of the

suspicious cells will determine the sort of skin biopsy that is experienced by the patient [18].

4 Bone marrow biopsy This biopsy method is mainly used after the findings of blood tests or if the doctors propose a
malignancy that affects the bone marrow [19].

5 Surgical biopsy A surgical biopsy may be prescribed if other biopsy procedures are ineffective or if the results
of the initial tests have been inconclusive.

Depending on the method, a histological examination of a biopsy sample may include
the chemical modification or freezing of it before the section preparation of it for its
examination under a microscope. However, the complete process of examination is a
manual, extensive process and requires pronounced precision. In contrast, due to a shortage
of urological pathologists, the existing human resources are insufficient to handle the high
volume of biopsies that are collected for a PC examination. This leads to a condition where
the examination could be conducted partially or fully using an AI system.

Gleason grading is one of the systems that is primarily used in prostate cancer detection
and treatment planning [20]. It is determined by urological pathologists examining the
prostate biopsies. Table 2 shows the classification of the Gleason grading system with
the pathological histological system [21]. Herein, a low score indicates slow-progressing
prostate cancer, which aids in identifying the severity of the condition. A typical area has a
score that is below 3, whereas a malignant area has a score that is greater than or equal to 3.
A sample can exhibit varied Gleason scores.

Table 2. Classification of Gleason grading system with histopathological PC samples.

Grade and Gleason Score Type Pattern Size

1, Score ≤ 6 Benign Single glands with sharp boundaries that are well
defined and consistent. Medium

2, Score 3 + 4 = 7 Benign
Single glands are widely apart and the tumor’s
boundaries are not clearly defined; it is less well

confined.
Medium

3, Score 4 + 3 = 7 Malignant Masses that are single, separated, spherical, irregular,
or larger and have a cribriform or papillary pattern. Small to large

4, Score 4 + 4 or 3 + 5 or 5 + 3 = 8 Malignant Fused gland tumour with predominantly pale cells
and no architecture. Small to medium

5, Score 4 + 5 or 5 + 4 = 9
and 5 + 5 = 10 Malignant Tumors and cords of comedo cancer, solid sheets and

no gland formation. Small
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The Gleason score for the needle biopsy correlates with pathological variables, includ-
ing the margin status of radical prostatectomy specimens, prostate specific antigen levels,
tumor volume, and related molecular markers [22]. The human eye cannot easily detect
the errors in the scoring method due to the ink on the slides, the cutting artefacts, and there
being rare cancer subtypes. Moreover, the Gleason score in several cases underestimates
the severity of the disease. In this context, Nagpal et al. developed a DL-based model to
improve the Gleason score for the prostate cancer slides that are obtained during prosta-
tectomies [23]. In this model, 112 million image patches of 1226 slides annotated by the
pathologists were used and tested on 331 slides from 331 patients. When the results were
compared to the diagnostics and grading by 29 expert urologic pathologists, the accuracy
(mean) that was reported was 0.61 on the validation dataset. However, the DL algorithms
provided a higher accuracy rate of 0.70 [23]. This method indicated the direct application
of DL in classifying the images and compared them with the human eye detection method.

Moreover, this also showed the scalability of training. An algorithm could be trained
on a large dataset (112 million), and it could store the information perpetually. Furthermore,
this dataset could be increased, which can directly improve the learning of an algorithm. In
contrast, the human expert systems can only store a limited set of information which can
result in the wrong classification and quantification of unseen cases.

Later, to achieve a pathologist level of accuracy for Gleason grading, an AI system
based on the DL method was developed [24]. This designed system had a training dataset
of 5209 hematoxylin and eosin-stained digitized biopsies from 1243 patients, while 550 biop-
sies were used to evaluate the model method. In addition, 160 random samples from the
test set were used for the manual evaluation of biopsies to compare the AI-based system
with the observations of the pathologists [24].

An ML-based method with a cascade approach has been developed using the Gleason
grading method to differentiate the needle biopsies of prostate cancer into multiple classes
to provide a more differentiated classification of the cells [25]. An AI-based algorithm was
designed for automated Gleason grading with high sensitivity and accuracy. The tool used
698 biopsies from 174 patients for training, and it was tested on a set of 37 biopsies from
21 patients. The results showed that the algorithm was 100% sensitive to the validation
dataset [26]. However, the size of the dataset is the decisive factor in the training and testing
of any AI-based computing approach. Thus, multiple cross-validations (3-fold or 5-fold)
are required to attain a higher prediction accuracy for the new dataset. In developing ML
algorithms, the dataset’s diversity must also be accounted for. Of note, cross-validation is
a technique that is used to minimize the overfitting in the prediction model. It indirectly
estimates the true performance of the prediction model. If a model shows a high accuracy
in the cross-validation experiment, then the prediction of this model would have higher
reliability factor due to the unbiased nature of the model. Considering the sensitivity
and specificity of it in the light of there being similar scores between the training and test
samples can also indicate the robustness of the prediction algorithm.

Convolution neural networks (CNN) are used to enhance the accuracy of the Gleason
pattern and the Gleason grading-based classification of the histopathological samples from
a prostate cancer patient. The algorithm was designed to improve the PC diagnosis accu-
racy, as the expert pathologist reported numerous errors in manual grading method. The
algorithm was trained on 96 tissue specimens of digitized slides from the biopsies of 38 pa-
tients. However, the study overestimated the accuracy with fewer training datasets [27].
The CNN method is designated to be the most appropriate algorithm for image classifica-
tion. However, the speed of the CNN-based training is a challenging concern due to the
slower calculation in the maxpool layer. This study used a dataset of 96 images, which
is considered to be a small dataset, and the CNN model can be easily trained. In a large
set of biopsy images, a more robust computing system is required to perform training
using the CNN method. In another similar study, an AI-based algorithm was designed to
predict the PC grading and quantification at a higher degree of precision. The system was
developed using a training dataset of 838 digitized biopsies and a test dataset of 162 digi-
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tized biopsies from the whole image. Here, the dataset was larger than it was in the earlier
study, which indicates higher confidence and reproducibility in the prediction. A panel of
three pathologists was employed to evaluate the system using the manual and AI-assisted
grading of the biopsies. It was concluded that AI assistance helped the pathologist to
make observations with a reduced analysis time. In addition, implementing the AI method
reduced the inconsistency in the final results [28].

3.1.2. Artificial Intelligence in MRI-Guided PC Detection

An MRI is a medical imaging technique that employs a magnetic field and radio
waves that are generated by a computer to capture comprehensive images of the organs
and tissues of the body. This approach is incredibly useful in identifying prostate cancer
(PC) or other abnormalities in a variety of internal organs, and it addresses the limitation of
producing a negative biopsy report for actual positive cases.

Schnall et al. attempted to fuse pathology and imaging in 1991, and they had marginal
success in correlating the radiographic and pathological markers [29]. Ward et al. inves-
tigated image-driven specimens with strand-shaped fiducial markers in 2012 to obtain a
digital registration of the images from histology tests and in vivo MRIs [30]. Since 2014,
Litjens et al. have devised a technique to classify MRI images and further characterize them
using different machine learning models, which served as the foundation for the more
recently designed and implemented approaches (analyzing computerized images of the
prostate and the pixels for fundamental image processing) [31].

Prostate segmentation is critical for detecting its deformable capsule, which has appli-
cations in prostate fusion biopsy and brachytherapy. These data are captured using MRI
and transrectal ultrasonography (TRUS). Gaur et al. demonstrated in a multi-institutional
study that implemented AI algorithms for detection purposes that improved the sensitivity
of the images by 78% when they were used it with PI-RADS (Prostate Imaging-Reporting
and Data System) v.2 (version 2) [32]. In this study, AI algorithms resulted in an efficient
performance in the transition zone (TZ) compared to the whole prostate and peripheral
zone. This technique showed a sensitivity of 84% with automated detection compared to
this being 67% when MRI was used alone [33].

Multiple major studies have shown that MRI is an effective method for differentiating
clinically significant PCs from non-significant PCs. It emerged as an alternative method to
transrectal ultrasonography-guided biopsy to direct the pathologist to the accurate site for
excising the tissue samples [34–36]. The MRI method is mostly used one to detect the cancer
stage by recording the image data that show the spread of the cancer outside the prostate.
These images have highly granular information that is often particularly challenging to
interpret. This process can be automated with increased accuracy by using an AI-based
machine-learning algorithm.

Artificial intelligence (AI) has been proposed to assist in diagnosing and identifying
prostate cancer (PC) as the MRI outcome has early significance in the diagnostic process.
The aggressive and non-aggressive forms of PC are critical to distinguish between due to
their highly differential prognosis. Before a biopsy, the European Association of Urology
(EAU) has recommended using multiparametric MRI, which is a crucial step in the diag-
nostic process that has been followed in several studies [37]. Moreover, the predictions
made by these ML programs should assist the doctors in making the final decision instead
of completely ruling out the doctor’s interpretation.

Considering the rise in prostate cancer cases, there is a need for computer-based meth-
ods using AI for an improved and fast assessment of the prostate MRI data [38]. An AI
algorithm that was based on cascade deep learning was developed for the enhanced detec-
tion and bi-parametric classification of prostate MRIs, and it applied the Prostate Imaging
Reporting and Data System (PI-RADS) score. The algorithm used a dataset of 1390 samples
that were obtained at 3 Tesla for the model training, testing, and validation. All of the
samples were also accessed by a radiologist. The algorithm was trained for automated
detection and image segmentation using a 3D U-Net-based residual network architecture.
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The algorithm was found to have a good detection and classification performance in de-
tecting cancer suspicious lesions [39]. The resolution of these MRI images is critical for
machine learning approaches. However, the cost and infrastructure that are required to set
up a high-field MRI scanner are the limitations to generating high-resolution images for
many cases. Algorithms need to be developed more frequently in specific cancer domains
to improve the resolution of the MRI scan images. This could allow us to use a large set of
cleaned MRI scans in a machine learning algorithm. Later, radiomics-based methods were
employed using T2-weighted images (T2W) that were more accurate than the apparent dif-
fusing coefficient (ADC) in the MRI data, as the ADC that was associated with the Gleason
score for categorizing the disease stage appeared to function more efficiently [40]. Recently,
researchers showed that innovative radiomics using high-B value diffusion weighted imag-
ing (CHB-DWI) and ADC modalities outperformed a clinical heuristics-driven method
for prostate cancer detection [41]. Aldoj and his co-workers showed another DL-based
technique [42], a CNN employing multiple 3D combinations (ADC, DWI, T2-weighted
pictures) with an area under the curve (AUC) parameter of 0.91 with 81.2% sensitivity and
90.5% specificity when it was compared to a radiologist using PI-RADS v2 [43]. Further, the
deep CNN approach was designed to analyze and classify mpMRI prostate lesion images
from the ImageNet dataset. The technique was found to be reliable and accurate in the
classification of malignant lesions from non-cancerous tissues [44]. AI has also been used
recently to design, train, and validate a CNN that can decide whether to carry on with
biparametric MRIs or dynamic contrast-enhanced sequences (DCE) in mpMRIs. The study
was performed on 300 prostate MRIs, and the method was found to be 94.4% sensitive
and 68.8% specific for accessing the needs of the DCE sequences. This research may aid in
avoiding DCE-MRI when it is not necessary, hence preventing the DCE-induced negative
effects [45]. Deep learning is the most suitable choice for the cases with a large set of features
where CNN has proven its higher performance for image classification including in MRI
scan images [46]. Several CNN architectures have been designed to improve the accuracy
of the prediction. Alexnet, VGG, ResNet, and Googlenet are a few important and widely
used CNN architectures. ML algorithms are also being applied for the image reconstruction.
Recently, convolutional recurrent neural networks have begun to be applied for this image
reconstruction. Data augmentation is required for medical imaging, including for PC-MRI
scan images. This would generate a dataset that can be optimally used in the CNN network
(VGG) for an improved PC diagnosis, detection, and segmentation.

3.1.3. Artificial Intelligence in Transrectal Ultrasound-Guided Biopsy-Based PC Detection

A transrectal ultrasound biopsy (TRUS) is used for the detailed imaging of the prostate
gland and the surrounding tissues. In a TRUS biopsy, in the patient’s rectum, a device
called a transducer generates high-frequency sound waves. These waves travel through the
body and are reflected back to the transducer after hitting the internal structures, such as
the prostate gland. The transducer converts the returning sound waves into an image called
a sonogram. These sonogram images help to decide the location of the biopsy needles
and where to take the tissue samples from [47]. Before the advent of techniques like MRI
imaging, TRUS was the gold standard for guiding the location of the prostate cancer needle
biopsies. An increasing number of prostate cancer cases makes it difficult for pathologists to
keep up the pace with the diagnostic procedures. Therefore, the ANN-based AI system was
designed to assist the clinicians’ in making decisions. The model was repeatedly trained
with variables like the digital images from TRUS, prostate-specific antigen (PSA) levels,
and age. The validation was performed using a TRUS image output, and the system could
efficiently differentiate between the malignant and non-malignant prostate tissues [48].

On the other hand, TRUS has poor detection and staging accuracy in prostate cancer
as it produces low-contrast images. However, when it is compared to MRI, TRUS provides
the advantages of being less costly, more convenient in the office, and by it providing a
real-time snapshot. TRUS has an overall tumor (T) staging accuracy of between 80% and
95% when it is compared that which is between 75% and 85% for MRIs, except for the T4
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stage when TRUS only provides anterior tumor images. Furthermore, when it is compared
to MRI, TRUS has a limitation of having a remarkably high degree of operator dependency.

The advancement in prostate cancer diagnosis has developed MRI-TRUS fusion-
guided needle biopsies to efficiently predict prostate cancer [49,50]. The technique is
time-consuming and laborious, so AI has been introduced to automate the process to
reduce the burden on clinicians. A dataset including TRUS pictures was obtained from
three institutions utilizing an Aixplorer (Supersonic Imagine, Aix-en-Provence, France)
ultrasound scanner, an iU22 (Philips Healthcare, Bothell, WA, USA), a Pro Focus 2202a (BK
Medical), respectively. The datasets that were used in the study obtained 436 images of
181 men. This deep learning method was designed to perform an automated segmentation
of the TRUS images for MRI. The model was evaluated based on its median accuracy (98%),
Hausdorff distance (3.0 mm), and the Jaccard index (0.93). The pixel-wise accuracies for
the zonal segmentation of the peripheral and transition zones were reported to be 97 and
98%, respectively. The technique has increased the speed of MRI-TRUS fusion-guided
biopsies to target cancerous lesions [51]. Figure 5 shows the application of TRUS to the
deep neural network for predicting prostate segmentation, zonal segmentation, and lesion
segmentation in PC cases. Here, the MRI-TRUS fusion-guided biopsies approach assists
doctors in detecting hidden cancers that other prostate biopsies can miss. It can execute
targeted biopsies by focusing on the problematic regions, directly utilizing advanced
MRI/ultrasound fused images. This method has proven to be particularly effective for men
who had previously negative biopsies. However, it may also assist in detecting aggressive
malignancies in patients who have had no previous biopsy.
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In addition to the studies that are mentioned in this section, a summary of AI/machine
learning algorithms used in PC diagnosis is provided in Table 3. The studies mentioned
in Table 3 are similar in terms of their mathematical modelling and ML algorithms when
they are compared to the techniques that are discussed in this section. However, there are
differences in the dataset collection, preparation, and processing processes.
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Table 3. Summary of studies that mentioned the application of AI/machine learning in diagnosing
the prostate cancer.

S. No. Summary Date Accessed References

1.

This study shows that a higher grade PC is related to increased epithelial
volume and lower stromal and lumen map volumes measured by hybrid

multi-dimensional MRI, thus making this a potential approach in predicting
aggressive PC.

29 August 2022 [52]

2.

TRUS-Bx remains useful in PC diagnosis when it is paired with mpMRI. This
study showed the application of AI algorithms in prostate gland

segmentation, lesion identification, and classification using mpMRI and
TRUS-Bx, reducing interreader variability and minimising the possible lack

of competence of less experienced radiologists.

29 August 2022 [53]

3.

This diagnostic study suggested that an AI-based assistive tool can increase
the accuracy, speed, and consistency of pathologists’ assessment of prostate

biopsy samples. The relatively high number of samples and pathologists
involved in this study allowed for a thorough examination of the advantages
of an AI-based tool for the contemporaneous assessment of prostate biopsies,

as well as insights into potential risks associated with overreliance.

29 August 2022 [54]

4.

As per the findings showed in this study, 18F-1007-PSMA PET-based
radiomics features with 40–50% standardized uptake value (SUV) max

exhibited the most robust predictive ability for evaluating numerous PC
biological characteristics. Radiomics properties, when compared to a single
PSA model, may give significant benefits in predicting the biological aspects
of PC based on the support vector machine. The 50% SUVmax model had

the most powerful predictive performance in trained (AUC, 0.82) and tested
cohorts for predicting Gleason score (GS) (AUC, 0.80). The 40% SUVmax
model has the most significant expected performance for extracapsular
extension (ECE) (AUC, 0.77). In terms of vascular invasion (VI), the 50%

SUVmax model performed the best (AUC 0.74).

29 August 2022 [55]

5.

In this study, artificial intelligence ultrasound of the prostate (AIUSP)
detected the PC (49.5%) when it was compared to transrectal ultrasound
(TRUS)-guided 12-core systematic biopsy (34.60%) and mpMRI (35.80%).

Clinically significant PC (csPC) detection rate in AIUSP group was 32.30%,
which was compared to TRUS-SB (26.3%) and mpMRI (23.1%) groups. The
overall biopsy core positive rate in the TRUS-SB (11.0%) and mpMRI (12.7%)

groups was substantially lower than it was in the AIUSP group (22.7%).

29 August 2022 [56]

6.

The weighted low-rank matrix restoration algorithm (RLRE) algorithm was
used to de-noise MRI images in this study to identify PC from benign

prostatic hyperplasia (BPH) and to evaluate the diagnostic impact of MRI
images with varied sequences. The findings showed that the RLRE algorithm

might increase MRI images’ presentation effect and resolution. However,
RLRE algorithm-based MRI images of the DCE sequence were more useful
in the differential diagnosis of PC and BPH, thus facilitating disease therapy.

29 August 2022 [57]

7.

The objective of this study was to extend artificial intelligence (AI) models
that detect cancer in the prostate that extends to areas outside of it. Herein,
by merging different models with image post-processing procedures and

clinical judgement criteria, an autonomous strategy was developed to detect
cancer spread outside the prostate barrier using prostate MRI images.

29 August 2022 [58]

8.

This study observed that a deep learning-based algorithm using only
H&E-stained digital slides can correctly predict ERG rearrangement status in

most cases of prostatic adenocarcinoma. An artificial intelligence-based
model could eliminate the need for extra tumour tissue to be used in

ancillary studies to look for ERG gene rearrangement in prostatic
adenocarcinoma. All of the models had comparable receiver operating

characteristic (ROC) curves with area under the curve (AUC) values ranging
from 0.82 to 0.85. These models’ sensitivity and specificity were 0.75 and

0.83, respectively.

29 August 2022 [59]
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3.1.4. Artificial Intelligence in 3D Pathology Based PC Detection

The pathological study of the biopsies and surgically removed tissues is critical for
the disease’s diagnosis and its characterization. This detailed examination of the tissue’s
morphological and molecular properties is critical in deciding which therapies are best
for patients. For many malignancies, the biopsy-determined grade of the illness is used to
stratify the patients for clinical care, which might result in drastically divergent therapy
pathways [60,61].

The recent advancement of the use of whole slide imaging (WSI) scanners by a number
of hospitals and healthcare institutions that have begun digitizing their entire pathology
workflows, combined with rapid increases in the computational power, has resulted in
the proliferation of digital pathology approaches in oncology and other areas [62–65].
Kaneko et al. introduced a unique pilot AI method for the 3D prediction of PCa in their
study. The integration of multiparametric MR-US image data with fusion biopsy trajectory-
proven pathology data was used to train the AI. The AI prediction was much higher than
the radiologist’s reading was, and it was in concordance with the data of the clinically
significant cancer (CSCa) center when it was using the robot-assisted radical prostatectomy
(RARP) specimens (83 percent vs. 54 percent, p = 0.036). The AI predicted CSCa volumes
that were more accurate (r = 0.90, p = 0.001) than the radiologist’s readings were [66].

Currently, prostate cancer care relies heavily on two-dimensional (2D) histopathol-
ogy [67], which involves formalin fixing and paraffin embedding (FFPE) a set of core-needle
biopsies to allow for thin sections to be cut, mounted on glass slides, and stained for their
microscopic study. The Gleason grading method is used to measure the aggressiveness of
the cancer, which is purely based on a visual interpretation of the prostate gland morphol-
ogy as seen on a few histology slides (thin 2D tissue slices) of only a “sample” of around
1% of the whole biopsy. The prostate cancer Gleason grading is linked with substantial
interobserver variability and is only marginally connected with the outcomes, particularly
in individuals with intermediate-grade prostate cancer [68–70]. This contributes to the
under-treatment of patients with aggressive cancer [71], which leads to avoidable metasta-
sis and death [72], and the overtreatment of patients with indolent cancer [73], which can
result in serious side effects such as incontinence and impotence [74].

Furthermore, Xie et al. created a method for the non-destructive 3D pathology and
computational analysis of the entire prostate biopsies which are tagged using a speedy and
affordable fluorescent equivalent of conventional hematoxylin and eosin (H&E) staining.
This analysis is based on the interpretable glandular characteristics and is made possible
by the advancement of image translation-assisted 3D segmentation (ITAS3D). ITAS3D
is a generalizable deep learning-based technique for volumetrically segmenting the tis-
sue microstructures in an annotation-free and objective (biomarker-based) way without
immunolabeling them. They photographed 300 ex vivo samples from 50 stored radical
prostatectomy cases, of which 118 included a malignancy, to demonstrate the transla-
tional utility of a computational 3D pathology method vs. a computational 2D pathology
approach. Based on the clinical, biochemical recurrence outcomes, the 3D glandular charac-
teristics of the cancer biopsies outperformed the similar 2D features in a risk assessment of
the individuals with low- to intermediate-risk prostate cancer [75].

3.1.5. Artificial Intelligence in Genomics-Based and Proteomics-Based PC Detection

There is a rising interest in the genomics and proteomics of PC and how mutations in
the PC genome might influence the individual evolution of PC [76]. Prostate-specific anti-
gen (PSA) level testing has aided in the diagnosis and prognosis of prostate cancer [77,78].

Over the last decade, an avalanche of biomarkers have been found and are being
used in clinical assays [79–88]. While many of these biomarkers have been researched and
defined according to the function of each test, there is no typical overlap among all of
these assays, and there is no completely ideal list of biomarkers that are used to predict the
diagnosis and prognosis of PC. Consequently, it is essential to identify and analyze new
biomarkers of clinical significance in a meaningful and dependable manner.
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Thus, the ANN technique under AI can be beneficial in assessing these biomarkers.
According to a study, Ki67 is a significant indicator of survival and illness progression [89].
Green et al. built an ANN model to validate Ki67 gene expression while comparing it to
another probable candidate in DLX2 [90]. Ki67 and DLX2 were also significant predictors
of future metastases in the univariate analysis. However, only 6.8% of the individuals with
prostate cancer had a substantial Ki67 expression. As a result, this study demonstrated
that these two indicators could only be used to select the patients for them to receive
focused treatment. The co-expression of multiple genes needs to be studied to build a
strong prediction platform.

Moreover, the most suitable approach is multi-omics, where genomic, transcriptomic,
and metabolomic data must be combined and fed into the machine learning algorithms.
Here, the interpretability of the prediction model is also critical, while in a deep neural
network model, it behaves as a black box. Basic prediction models always have high
interpretability but limited accuracy in their prediction making. This indicates a trade-
off between accuracy and interpretability. Another limitation or point of concern for
the application of a fully connected dense network is overfitting. However, overfitting
can be controlled using regularization techniques, but it comes with the cost of a high
computing power.

Biological phenotypes are the direct or indirect reflection of the genomic sequence.
The biological sequence data are large scale, and thus, a deep learning method is suitable to
study these data and determine the association of the sequence patterns with the phenotypic
properties of cancer. Here, the sequence data can provide the early detection of cancerous
tissue. The application of deep learning to genomic sequence data is often termed genomic
deep learning (GDL). It establishes the relationship between the sequence variation and the
cancer-associated traits. It is shown that prediction performance is improved by developing
a specific ML model for different cancer types [91]. An open tool was designed to apply the
deep learning algorithms directly to the biological sequence. This algorithm uses CNN and
LSTM to predict the secondary structure, subcellular localization, and binding of peptides
to the MHC Class II molecules. Additionally, this can be sourced from GitHub and modified
for PC detection [92]. NGS (next-generation sequencing) data have been used with the
system biology information, and an ML model was created to characterize the tumour and
tumour type [93]. The DNA sequence of the patient is used in the machine learning model
to classify the cancer patient [94].

In addition to gene expression, proteomics data can also be valuable in detecting
possible biomarkers. Kim et al. used a distinctive technique to find new potential pro-
teomic markers for prostate cancer by integrating targeted proteomics with computational
biology [95]. The investigation was initiated with 133 differentially expressed proteins in a
cohort of 74 patients tested with synthetic peptides [96]. Later, using these candidates, a
machine-learning methodology was used to construct the clinical prediction models [97,98].
This result indicates that computationally driven proteomics can uncover new non-invasive
biomarkers. Several research studies have shown the ability of AI ANNs to facilitate more
effective biomarker identification and validation, which may aid prostate cancer monitor-
ing. Figure 6 shows the application of PSA and other supportive patient data to predict
the chance of a positive prostate biopsy using an ANN. The prostate-specific antigen (PSA)
test is a blood test that detects the number of PSA molecules that are present in the blood.
This test can be helpful in the detection of prostate cancer, the monitoring of its treatment,
and the evaluation of its recurrence. There is always a detectable level of prostate-specific
antigen (PSA) in the blood samples of men, however, a low level of PSA is considered
normal, while an elevated level of PSA can be an indicator of prostate cancer.
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3.1.6. Artificial Intelligence in CT Scan-Based PC Detection

An artificial intelligence (AI) algorithm created by Australian researchers can detect the
early symptoms of prostate cancer by analysing normal computed tomography (CT) images.
The study was performed at RMIT University and by St Vincent’s Hospital Melbourne
researchers. The AI system was developed by examining asymptomatic individuals with
and without prostate cancer CT scans to identify the disease’s characteristics [99]. As per
the early studies, CT scans are highly acceptable data points for diagnosing bone and joint
disorders, but the radiologists had difficulties recognising prostate cancer in the CT scan
images. This approach is not recommended for a normal cancer examination because of its
high radiation doses, which may have long-term effects. Furthermore, AI technology may
be used to screen for cancer in men whose abdomen or pelvis were being diagnosed with
other complications. In this study, the AI programme was trained to seek for illness signs
in a range of scans and to detect the area of examination in the image, thus eliminating the
need to manually trim the input images. The algorithm’s performance was assessed by
comparing it to the results of the professional radiologists using cross-validation techniques
on a dataset of 571 CT images of the abdomen and pelvic areas. The AI algorithm resulted in
a better outcome and assisted in identifying malignant growths in a short time (~seconds).
In addition, the AI approach improves with each scanned image, learning to interpret the
scans from various machines to detect even the smallest anomalies.

Dr Mark Page from St. Vincent’s hospital in Melbourne mentioned that this technology
could allow healthcare workers to detect prostate cancer early. The patients with critical
conditions that had CT scans might be tested for prostate cancer simultaneously, and its
early identification by this technology could significantly improve their prognosis [99].
Here, the early diagnosis of prostate cancer is an essential factor for the patients. Even in
the case of a false positive prediction using CT scan-based ML predictions, the patients can
undergo other tests where the diagnosis can be re-confirmed. However, a false negative
in the final prediction could lead to a problematic stage. Thus, these algorithms must be
trained on diverse CT scan data to reduce the false negative prediction rates. The patient
must go through radiation therapy, which is very expensive. The contrast between the
prostate and the tissues around it is not strong enough in CT images to make it easy to
separate the prostate from the other tissues. Simultaneously, CT scans can help to detect
prostate cancer’s spread in bone tissue and determine whether prostate brachytherapy
is required.
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3.2. Artificial Intelligence in PC Treatment

The treatment decision process for newly diagnosed prostate cancer patients is com-
plicated and demands a shared decision-making process as various treatment options
are available, including surveillance. In the PROTECT study, 1643 men were randomly
assigned to radical prostatectomy, or radiation and active monitoring [100]. It was reported
that the cancer-specific mortality rate was minimal, independent of randomized therapy
at a 10-year median follow-up, and all of the therapies were statistically equivalent. The
study suggested that when surgery and radiation were used as treatment options, they
greatly reduced the development of cancer and metastases. Still, these treatment processes
also brought higher comorbidities that impacted their quality of life. An informed decision
is based on various elements, such as the biological description of the illness, the treatment
outcome, adverse effects, and, most importantly, the patient’s preferences based on the
patient-specific data.

Electronic medical records and clinical registries are already collecting huge quantities
of data that are easily accessible for data mining [101]. However, these registries must
undergo an adequate analysis and interpretation to provide the therapeutically relevant
advantages to the patients. Historically, statistical models have served this purpose. How-
ever, they cannot analyze the data with high dimensions and cannot dynamically adapt to
the augmentation of new data points. Although the data from clinical registries assist the
doctors in making data-driven choices, the patients have few opportunities to gain access
to these registries actively and further, be informed about future decisions. As clinicians
are expected to handle massive volumes of data ranging from macro-level physiology
and behavior to laboratory investigations, and increasingly, “-omic” data, artificial intel-
ligence (AI) is the best solution to use these data to build a prediction model. The ability
of AI to manage this complexity has outperformed the methods of human accuracy and
management. It helps the doctors to understand the patient’s condition genuinely.

Auffenberg et al. demonstrated a prediction program where the patient’s medical
information was used to build a prediction model using random forest machine learning
techniques that can further assist in making treatment decisions [102]. In this study, the data
registry included 7543 men who were diagnosed with prostate cancer, 45% of whom were
treated with radical prostatectomy, 17% of whom were treated with radiotherapy, and 30%
of them were treated with surveillance, 6% of them were treated with an androgen depriva-
tion treatment, and 2% of them were treated with a watchful waiting treatment. In addition,
the data were divided into the train and test subgroups using a 2:1 randomized split that
was classified by training location. Overall, the customized model was significantly accu-
rate, which showed the area under the curve (AUC) of 0.81 for a classification. This further
also concluded that age is the most relevant variable that influences the patient’s treatment
decisions, while the number of positive cores also affects the treatment process, and this
is followed by the Gleason score. The random forest method is less interpretable than the
decision tree is, but it is more accurate as it is composed of multiple decision trees. As in
this study, a limited number of numerical data points were fed to the model. Even basic
algorithms such as the random forest can produce an acceptable prediction. However, a
deep network can be explored if an extensive collection of patient records is available. In
general, multiple ML methods need to be tested, and their AUCs must be compared before
the model is finalized. The characteristic of the data determines the suitability of data basic
or advanced ML models. Figure 7 summarizes the application of AI in PC treatments.
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3.3. Recent Advancements and Future Aspects

The diagnosis and treatment of prostate cancer demand the wide application of deep
learning methods. Recently, publications have been published that include several DL
implementations that help urologists to diagnose PC at different stages. Table 4 presents an
overview of the several models that have been employed in recent research, along with
their evaluation matrix (area under curve score, AUC), which indicates their accuracy in
identifying prostate cancer. The small dataset and the absence of a federated learning
strategy were identified as the two major limitations of these computer-aided detection
techniques. Federated learning models can be used to enhance the process of collecting and
sharing data for research objectives. As a result of adequate training, increasing the sample
size may improve the performance of multilayer DL models. Increased the sample size
allows the neural networks with more hidden layers and nodes to extract a broad spectrum
of feature sets and avoid early overfitting. An increase in the variables utilized to identify
prostate cancer can also improve the performance of a neural network model.

Table 4. Summary of dataset used in several studies with their respective performance on PC detection.

S. NO. Dataset Method AUC References

1.
The bpMRI of 1513 including 73 patients 2

consecutive bpMRI scans with clinical variables (PSA,
PSA density, and age)

Deep learning algorithm 0.86 [103]

2. Trans-rectal prostate biopsy of 109 patients

Random forest
Neural network

Ctree
Support vector machine

0.83
0.74
0.74
0.72

[104]

3.

Dataset of 551 patient including age, BMI,
hypertension, diabetes, total PSA (tPSA), free PSA
(fPSA), the ratio of serum fPSA to tPSA (f/tPSA),

prostate volume (PV), PSA density (PSAD),
neutrophil-to-lymphocyte ratio (NLR), and

pathology reports of prostate biopsy

Tpsa logisticregression
Multivariate logistic regression

Decision tree
Random forest

Support vector machine

0.84
0.91
0.92
1.00
0.88

[105]
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Table 4. Cont.

S. NO. Dataset Method AUC References

4.

dataset of 315 patients available with preoperative
T2WI, DWI, ADCMR images. Also, Trus-guided

12-needle puncture was performed within 3 months
after MRI and provided P504S and P63 status

Random forest
Gradient boosting Decision tree

Logistic regression
AdaBoost

K-nearest neighbours.

0.92
0.91
0.89
0.89
0.89

[106]

5. 356 patients undergoing transrectal
ultrasound-guided prostate biopsy

Logistic regression
Decision tree classifier
Dense neural network

0.80
0.78
0.94

[107]

6.
103 patients with mpMRI scan, PI-RADS V2 score

was 4/5 and Prostatic biopsy results confirmed
prostatic hyperplasia or PC

R-logistic
R-SVM

R-AdaBoost

0.93
0.84
0.73

[108]

7. 438 men with metastatic prostate cancer

Gradient boosting machine
Model1
Model2
Model3
Model4
Model5
Model6

0.76
0.73
0.86
0.82
0.79
0.79

[109]

3.4. Available Codes and Programs

A few studies made the source code public, and these are available at the github.
prostatecancer.ai (accessed on 30 June 2022) is the platform that provides an AI model
in the web browser for the computer-assisted detection, diagnosis, and prognosis. Their
codes are available at https://github.com/Tesseract-MI/prostatecancer.ai (accessed on 31
June 2022). As discussed, bpMRI images are helpful in PC detection. A source code for
Hierarchical Probabilistic 3D U-Net is available at https://github.com/DIAGNijmegen/
prostateMR_3D-CAD-csPCa (accessed on 31 June 2022) for public use. In the genetic
data, sigminer prediction developed a model to predict the cancer subtypes based on the
mutational signature. The source code is available at https://github.com/ShixiangWang/
sigminer.prediction (accessed on 30 June 2022). A deep learning network using CNN was
developed to detect the glandular cells in the digitized biopsies, and the source code was
made available at the github https://github.com/alvarillo89/Glands-detection (accessed
on 1 July 2022).

4. Conclusions

This review article applied an organized search approach using the search string of
multiple keywords in PubMed to collect the relevant reports. The methodology mentioned
in this study depends on the keyword formation and their combination using a logical
operator. PubMed has multiple filter criteria to customize the search. The search was
oriented towards the application of AI in prostate cancer. There has been continuous
rigorous discussion and controversy around the application of artificial intelligence in the
medical/treatment domain. However, technological advancements in AI algorithms and
data generation have recently made significant progress and contributed mainly to the
diagnostic and treatment domain. AI has the potential to extract valuable features from
a large dataset and establish sophisticated relationships between the prediction variable
and other known parameters. However, the manual management and prediction of large-
scale datasets are not feasible. Furthermore, diagnostic and risk assessments are essential
for active surveillance studies and early prostate cancer detection. AI has reduced the
subjectivity of the outcome and made it possible to conduct tests with fewer resources while
improving the overall competence and precision. The FDA has authorized the use of AI in
detecting prostate cancer. The risk of false negatives is reported less often in this method
as it is performed by doctors and pathologists considering laboratory studies, patients’

https://github.com/Tesseract-MI/prostatecancer.ai
https://github.com/DIAGNijmegen/prostateMR_3D-CAD-csPCa
https://github.com/DIAGNijmegen/prostateMR_3D-CAD-csPCa
https://github.com/ShixiangWang/sigminer.prediction
https://github.com/ShixiangWang/sigminer.prediction
https://github.com/alvarillo89/Glands-detection
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history, and other relevant clinical information. AI-assisted diagnostics in PC biopsies can
improve the quality of the outcome and cut down on the price and time that are involved.
However, AI is not used to replace human expertise in detecting PC, but to reduce the
chance of missing actual positive cases.
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