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The decision to give systemic COVID vaccines to children aged 5–11 is finely balanced, since
very few young children suffer severely with SARS-CoV-2 infection, probably because of their
more effective innate immunity (1). In addition recent data suggests that Pfizer vaccine efficacy
is low in 5–11 year olds (2). Presumably the need to reduce viral transmission and hence the
development of new strains is one consideration. Some 12months after the first COVID-19 vaccine
received WHO Emergency Use Listing (EUL), more than 9 billion COVID-19 vaccine doses have
been administered globally. These systemic vaccines have been remarkably successful in reducing
morbidity and mortality from SARS-CoV-2 but have only modest effect on viral transmission (3),
probably because systemic vaccination does not provide sufficient mucosal protection (4).

If there is a need to vaccinate children worldwide then an alternative mucosal route might be
safer, simpler and superior in reducing transmission, as well as more acceptable to children and
their carers.

SARS-CoV-2 enters the body mainly via the ciliated cells in the upper airway (5). The nose
defends the lower airways and the lungs and provides a route for therapy (6). Part of this defence
is innate, involving muco-ciliary clearance, interferon, nitric oxide gas; the adaptive (educable)
immune system is also involved. This is the mucosal, not the systemic immune system. The major
relevant antibody is not IgG, but IgA. Local generation of secretory IgA (SIgA) which constitutes
the body’s biggest humoral immune system can exclude pathogens, neutralize viruses inside virus-
infected epithelial cells and can redirect antigens in the lamina propria to the lumen (7). Viral upper
airway infections such as influenza, rhinovirus and SARS-CoV-2 are associated with an increase of
S-IgA in nasal lavage. IgA plays an important role in the protection against influenza in humans
(8, 9). Mice lacking S-IgA have increased viral load after intranasal challenges (10) and transfer
of nasal IgA from immunized to naïve mice leads to protection (11). Volunteers infected with
coronavirus 229E had IgA antibody in nasal fluids associated with reduced periods of viral shedding
(12). Elite athletes with increased viral colds show decreased salivary S-IgA (13–15). In COVID
infection IgA antibodies against SARS-CoV-2 were elevated in nasal fluids, tears, and saliva (16, 17).
Salivary antibodies persisted for at least 3 months (18).

Systemic (intramuscular) immunization does not confer significant mucosal immunity (4). The
reverse is not true. The advantages of the intranasal route, in addition to rapidity and needle-
free administration, include the generation of both mucosal (SIgA) and circulating (IgG and
IgA) antibodies, as well as T cell responses. Intranasal vaccination induces resident memory T
cells (TRM) which provide stronger protective immunity than circulating T cells (19) and could
be particularly beneficial for rapidly mutating pathogens, such as SARS-CoV-2, where antibody-
mediated protection is swiftly evaded (20). Intranasal vaccination might achieve desirable results,
such as reduced viral transmission, not obtained with systemic immunization. It is also less
likely to result in systemic inflammatory problems such as pericarditis and myocarditis, seen in
systemically-immunized adolescents. Adverse events of vaccination such as vaccine-associated
enhanced respiratory (VAERD) disease (21), as seen in some newly-infected children who have
received systemic inactivated measles or RSV immunization, is less likely with a nasal vaccine
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which should result in inability of the virus to combine
with its receptor and immune exclusion by phagocytosis after
combination with divalent IgA, linked by secretory piece (6),
thus obviating lower respiratory tract infection. Th2 stimulation,
seen with COVID infection and with current systemic COVID
vaccines, might be avoided by use of a suitable adjuvant (22).

Intranasal vaccines are already available against influenza,
others are under development against COVID 19 (23). Used
in UK children live attenuated nasal influenza vaccine shows
consistently good effectiveness and indirect protection extending
to both older and younger age groups has been demonstrated
(24). Another advantage of intranasal influenza vaccine over the
injection route is the induction of cross-reactive antibodies which
provide variant strain protection (25). This concept may also
apply to SARS-CoV-2, though as yet there is no evidence. The
nasally applied influenza virus has been temperature-adapted so
that it can only replicate in an environment as cold as the nose,
not in the warmer lung. The Omicron variant of SARS-CoV-2
also appears to be similarly restricted, causing significantly less
lung disease than its predecessors, whilst improving immunity
against the more pathogenic delta variant (26). Site—directed
mutagenesis might provide a similar asymptomatic or minimally
symptomatic variant confined to the nose and appropriate as
a vaccine.

In order to evoke a nasal mucosal immune response the
SARS-CoV-2 virus would need to evade the normal nasal
defence mechanisms such as mucociliary clearance, and achieve
absorption through the mucosa in order to reach the local
nasal associated lymphoid tissue (NALT). The spike protein
should enable viral adhesion via its affinity for ACE 2 and
TLR4 receptors which are present on the nasal epithelium (27).
Children have lower respiratory ACE 2R expression than adults,
topical corticosteroids also reduce ACE 2R expression. If the
virus fails to interact with the nasal mucosa it will be moved by
muco-ciliary clearance to the throat and swallowed, reaching the
gut. Here a mucosal response can also be initiated by the local
associated lymphoid tissue (GALT), which as part of the mucosal
associated lymphoid tissue (MALT), can protect the respiratory

tract (28). In COVID-19 infection (GI) symptoms predict better
clinical outcomes with significantly lower death rates (29).

If nasal immunization is insufficient to provide protective
immunity, then an alternative strategy would be to initiate a
response by systemic vaccination, but to boost this nasally (30).

Animal studies suggest the feasibility of a nasal approach.
A Newcastle disease virus (NDV)-based SARS-CoV-2 vaccine
encoding a human codon-optimized full-length wild-type spike
(S) protein of SARS-CoV-2 (rNDV-S) via a reverse genetic
approach (31) and given as two intranasal doses to mice resulted
in systemic humoral and cell-mediated immune responses
with high levels of SARS-CoV-2 NAbs and anti-SARS-CoV-
2 immunoglobulin A (IgA) and IgG2a. Similarly, hamsters,
nasally vaccinated then challenged with SARS-CoV-2, were
protected against lung infection and inflammation with reduced
viral shedding into nasal turbinate and lungs. Intranasal
immunization of rNDV-S has the potential to control SARS-
CoV-2 infection at the site of inoculation, preventing both
disease and transmission (32). A single intranasal spray of a

cold-adapted live-attenuated COVID-19 vaccine induced potent
humoral, cellular, andmucosal IgA immune responses in human-
ACE2 transgenic mice who were completely protected from
viral challenge without detectable virus in nasal turbinates
and vital organs (33). In rhesus macaques, a single intranasal
dose of adenovirus-vectored vaccine protects against upper and
lower SARS-CoV-2 respiratory infection (34). A state-of-the-art
summary of intranasal COVID-19 vaccines in development is
recently available including the few in clinical trials (35). An
ex-vivo model of the human nose might facilitate development
and assessment of putative vaccines (36). When considering the
next generation of COVID and other respiratory vaccines the
intranasal route should not be completely ignored, as it is in a
recent publication (37).
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