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ABSTRACT
In recent years, genes associated with N6-methyladenosine (m6A) modification were found to 
participate in modulation of multiple tumor biological processes. Concomitantly, the signifi-
cantly complicated dual effects of tumor microenvironment have been observed on cancer 
progression. The present study aims to investigate m6A-related immune genes (m6AIGs) for 
their signatures and prognostic values in bladder cancer (BC). Out of 2856 differentially 
expressed genes (DEGs) of BC, a total of 85 genes were obtained following intersection of 
DEGs, immune genes and m6A-related genes. The results of multivariate Cox regression analysis 
illustrated four genes (BGN, GRK5, IL32, and SREBF1) were significantly associated with the 
prognosis of BC patients. The BC samples were divided into two types based on the consensus 
clustering, and the principal component analysis demonstrated a separation between them. It 
was found that high expression of BGN and GRK5 were linked with advanced T and N stage, and 
the expression of SREBF1 in early T stage was higher than that in advanced T stage. 
Subsequently, the nomogram to predict 3- and 5-year survival probability of BC patients was 
developed and calibrated. GSEA analysis for risk subgroups showed WNT and TGF-beta signaling 
pathways were involved in regulation of BC progression in high risk level group. In the low risk 
level group, cytosolic DNA-Sensing cGAS-STING and RIG-I-like receptors signaling pathways 
were found to be correlated with BC development. These findings provide a novel insight on 
studies for BC progression.
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Introduction
Bladder cancer (BC) is a disease with high inci-
dence and mortality, ranking 13th in respect of the 
number of deaths, the new cases of BC reach 
approximately 550,000 and the number of deaths 
reaches 200,000 in the world per year [1]. 
Urothelial BC is the major subtype of BC. About 
75% of patients with BC are diagnosed as non- 
muscle-invasive disease (NMIBC), and because of 
the risk of recurrence and progression, a timely 
intervention and active surveillance are extraor-
dinary necessary [2,3]. The remaining 25% are 
advanced cancer called muscle-invasive disease 
(MIBC), treated with operation centered compre-
hensive therapies [3,4], but recurrence is the ser-
ious problem with MIBC after radical cystectomy 
[5]. Identifying biomarkers related with the prog-
nosis and improving the accuracy of prediction of 
recurrence and progression are essential for the 
management and treatment of patients with BC.

New evidences have showed that bladder 
inflammatory disease increased the risk of devel-
oping cancer [6], and studies on tumor microen-
vironment (TME) [7,8] demonstrated that the 
tumor infiltrating immune cells (TIICs) were clo-
sely associated with the growth and progression, 
immune escape, infiltrated metastasis, recurrence 
and clinical outcomes in varied tumors. 
Neutrophils, mast cells, eosinophils, NK cells, 
B cells, some subpopulation of T cells and M2 
phenotype of tumor-associated macrophages were 
capable to promote angiogenesis by diverse med-
iators and signaling pathways, leading to tumor 
growth and progression [9]. The loss of functions 
of natural killer cells (NK) and CD8 + T cells 
caused from suppression by tumor-associated 
macrophages and neutrophils through production 
and expression of various factors contributed to 
immune escape following metastasis [10]. The 
majority of TIICs had a clear effect on clinical 
events, and due to the variety and abundance of 
TIICs, the impact on clinical outcomes varied 
from tumor types [8]. Curiel et al. demonstrated 
a correlation between regulatory T cells and the 
poor survival in ovarian cancer patients [11], in 
contrast, Winerdal et al. suggested regulatory 
T cells with FOXP3 expression prolonged the 
overall survival of BC patients [12].

More than 100 types of post-transcriptional mod-
ification on RNA have been identified [13]. Apart 
from the modification of 5� cap and the 3� poly (A) 
tail – already known, eukaryotic RNA also features 
ubiquitous and dynamic N6-methyladenosine 
(m6A) internal modification [14]. The dynamic 
modifications of RNA m6A was involved in the 
installation, recognition and removal [13], executed 
by methyltransferases (such as METTL3, termed as 
‘Writers’), m6A-specific binding proteins (such as 
YTHDF1, termed as ‘Readers’) and demethylases 
(such as FTO, termed as ‘Erasers’) respectively [15]. 
RNA with m6A modification gains the functions as 
metabolism regulation, structural changes, affecting 
maturation, facilitating decay and cell function 
shaped, etc, to enable the post-transcriptional gene 
regulation [15]. Further evidences suggested tumor-
igenesis, progression and metastasis on tumors were 
highly correlated with changes of the level of gene 
expression resulting from dysregulation of m6A 
modification [16,17]. Increasing global m6A RNA 
modification via FTO activity inhibited by 
R-2-hydroxyglutarate (R-2 HG) attenuated the sta-
bility of MYC/CEBPA transcripts, suppressing 
tumor signaling pathway for anti-leukemic functions 
[16]. METTL3 facilitated the proliferation of BC 
through -acceleration of maturation of pri-miR 
221/222 in an m6A-dependent manner to decrease 
PTEN expression, and METTL3 was also capable of 
modulating the AFF4/NF-κB/MYC signaling path-
way in an m6A-dependent manner, giving rise to 
progression of BC [17]. In ovarian cancer, YTHDF1 
could bind to EIF3C mRNA with m6A modification 
to elevate translation of EIF3C, thereby leading to 
tumorigenesis and metastasis [18]. Some studies 
showed m6A modification regulators could serve as 
tumor suppressors. METTL3/14 could inhibit the 
growth and self-renewal of glioblastoma stem cell 
through influence of m6A enrichment and transcrip-
tion [19]. In hepatocellular carcinoma, METTL14 
served as an inhibitor on metastasis by regulating 
microRNA 126 in an m6A-dependent manner [20].

The most common chemical modification in 
eukaryotic cells enables us to concentrate on the 
signatures of post-transcriptional immune genes of 
m6A modification for identifying potential biomar-
kers in BC. Since m6A modification and tumor 
microenvironment play an important role in 
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regulating tumor progression, the impact of m6AIGs 
on tumor behaviors are of interest. It is therefore 
very important to screen prognosis-associated 
m6AIGs in BC. However, no m6AIGs were identi-
fied in BC. The present study aims to identify m6A- 
related immune genes associated with prognosis, 
construct a risk level model based on m6AIGs, ana-
lyze the influence of m6AIGs on tumor progression 
and patients’ prognosis, develop a robust and reliable 
nomogram to predict prognosis and investigate the 
potential regulatory pathways.

Material and methods

Acquisition and analysis of relevant dataset

The gene expression profile containing 414 tumor 
and 19 normal tissues of BC samples and the 
clinical characteristics of corresponding patients 
(n = 412), including age, gender, stage, grade, 
Tumor-Node-Metastasis (TNM) classification, 
were obtained from TCGA database (https://por 
tal.gdc.cancer.gov/). Cohort with prognostic char-
acteristics was gained from Gene Expression 
Omnibus (GEO) (GSE31684) (https://www.ncbi. 
nlm.nih.gov/geo/query/acc.cgi?acc=GSE31684) 
[21]. The missing or unknown values in the clin-
ical datasets were excluded. The R package 
(‘DESeq2’) was utilized to perform differentially 
expressed analysis on the gene expression profile 
of BC in terms of the criteria of | log2-fold change 
| > 1 and false discovery rate (FDR) < 0.05 [22]. 
The immune gene dataset and the m6A-related 
gene dataset were downloaded from InnateDB 
(https://www.innatedb.com/) [23] and RMVar 
(http://rmvar.renlab.org/) [24] respectively. All 
data processing and drawing were accomplished 
with R software (version: 4.0.2). Analytical data 
with p < 0.05 was regarded as statistically 
significant.

Screening m6A-related immune genes and 
assessing their signatures and prognostic values

The differentially expressed genes (DEGs), the 
immune genes and the m6A-related genes were 
intersected to obtain m6A-related immune genes 
(m6AIGs) in BC. The univariate Cox regression 
analysis was performed on m6AIGs to identify 

m6AIGs associated with the overall survival 
of BC patients. The result of univariate analysis 
was filtered with the Least Absolute Shrinkage and 
Selection Operator (LASSO) regression analysis, to 
avoid over fitting [25]. The multivariate Cox 
regression analysis was performed to finally deter-
mine independent m6AIGs affecting the prog-
nosis. Then the risk score model was constructed 
based on the results of multivariate Cox regres-
sion, i.e. multiplying the expression values of 
m6AIGs with P < 0.05 by their coefficient in the 
model and then adding them together. The recei-
ver operating characteristic (ROC) curve showed 
the performance of the risk score model for 3-and 
5-year prediction. External cohort was used to 
validate the risk score model and the ability of 
prediction for ROC. The Kaplan–Meier (KM) sur-
vival analysis was performed on independent 
m6AIGs and the risk score level of BC patients.

Expression in immune cells

The correlation of the screened m6AIGs expres-
sion with immune cells infiltration level was 
analyzed in the Tumor IMmune Estimation 
Resource (TIMER, https://cistrome.shinyapps.io/ 
timer/) [26].

Consensus clustering analysis and principal 
component analysis (PCA)

In order to investigate the classification of BC 
subtypes based on m6AIGs, the consensus cluster-
ing analysis was used to estimate the category 
amount and determine the optimum category 
amount [27]. The rationality of the clustering 
among samples was evaluated with the PCA, and 
the differential survival among the categories was 
compared with the KM survival analysis.

Analysis of expression level of m6AIGs in 
different TNM stages

The expression level of screened m6AIGs in dif-
ferent TNM stage was analyzed to elucidate the 
influence on tumor progression.
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Combination of clinical characteristics and 
construction of a nomogram

The univariate and multivariate Cox regression 
analyses were performed on clinical characteristics, 
the risk score level and the classification, to inves-
tigate the impact of these factors on the overall 
survival of BC patients; and a nomogram in terms 
of these factors was developed to predict the 3- 
and 5-year prognosis. The accuracy of the model 
was estimated with the concordance index 
(C-index) and calibration curve. The heatmap dis-
played the association between screened m6AIGs 
and the clinical characteristics, the risk score level 
and the classification.

Signaling analysis of screened m6AIGs

The potential function and regulatory signaling 
pathways for risk level subgroups in BC were 
investigated by Gene Set Enrichment Analysis 
(GSEA) [28].

Statistical analysis

All statistical analyses and plots were performed in 
R software. Cox and LASSO regression analyses were 
carried out to screen independent prognosis- 
associated m6AIGs. KM survival analysis with log- 
rank test was used to assess prognostic values of the 

m6AIGs. Student’s t-test was performed to evaluate 
the expression level of m6AIGs in different TNM 
stage. The statistically significant threshold was 
P < 0.05.

Results

The present study aims to identify m6A-related 
immune genes associated with prognosis in BC. 
Four prognosis-related m6AIGs were screened, 
based on which a risk score level model was con-
structed. The model was validated by external 
cohort. Then, the immune infiltration analysis, 
PCA analysis and TNM analysis were performed 
to assess the impact of the four m6AIGs on tumor 
behaviors. Combined with clinical characteristics, 
a nomogram for predicting prognosis was devel-
oped and calibrated. Functional analysis based on 
GSEA was conducted to investigate the potential 
signaling pathways influencing tumor progression.

Processing data from TCGA to obtain 
m6A-related immune genes

The total number of DEGs were 2856, as shown in 
Figure 1(a). The intersection was performed on 
DEGs, immune genes and m6A-related genes, to 
obtain 85 m6AIGs as shown in Figure 1(b). After 
clearing up the missing and unknown data, 373 

Figure 1. The m6A-related immune genes gained. (a) 2856 DEGs in BC were shown in volcano plot. The green, red, and blue dots 
mean downregulated and upregulated genes and no differential expression, respectively. (b) The Venn diagram shown the result of 
the intersection of the DEGs, immune genes and m6A-related genes.
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Figure 2. m6AIGs associated with prognosis and functional annotation. (a) Forest plot illustrated the result of multivariate Cox 
regression analysis for the 22 m6AIGs. (b–f) The survival analysis for the BGN, GRK5, IL32, SREBF1 and risk score level, respectively. (g) 
In TCGA cohort, ROC curve predicted the 3- and 5-year survival. (h) Risk score level model was developed within GEO cohort. (i) The 
area under ROC curve was calculated within GEO cohort.
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clinical characteristics were obtained 
(Supplementary Table 1).

Identifying m6AIGs associated with prognosis 
and investigating signatures

The outcome of the univariate Cox regression 
analysis on 85 m6AIGs was listed in 
Supplementary Table 2. A total of 28 m6AIGs 
were regarded as statistically significant. The 
LASSO analysis was carried out on m6AIGs 
(P < 0.05), obtaining 22 m6AIGs (Supplementary 
Figure S1a and 1b). The multivariate Cox regres-
sion analysis was performed on 22 m6AIGs, to 
obtain 4 m6AIGs, i.e. BGN (P = 0.0271, HR: 
1.0010, 95% CI: 1.0001−1.0020), GRK5 
(P < 0.001, HR: 1.0922, 95%CI: 1.0424−1.1444), 
IL32 (P = 0.0175, HR: 0.9877, 95%CI: 0.9777 
−0.9978) and SREBF1(P = 0.0077, HR: 1.0089, 
95 CI%: 1.0023 − 1.0154), as independent prog-
nostic factors, as shown in the forest plot in 
Figure 2(a). The prognostic model was developed 
on the basis of the 4 m6AIGs as follows: The risk 
score level model = (0.001035 × expression of 
BGN + 0.08818 × expression of GRK5 – 0.01236 

× expression of IL32 + 0.008825 × expression of 
SREBF1). The median value of the model was 
1.009, as the cutoff to classify samples into the 
low risk score level group and the high risk score 
level group. The KM survival analysis for each of 
the four m6AIGs did not show the differential 
survival in the light of log-rank test (Figure 2(b– 
e)), and the risk score level subgroups exhibited 
the survival difference (figure 2(f)). In TCGA 
cohort, the area under the ROC curve based on 
the risk score model for predicting the 3- and 
5-year survival was 0.703 and 0.675, respectively 
(Figure 2(g)).

A risk score level model was also constructed 
based on the four m6AIGs within GEO cohort, to 
validate the performance of the model developed 
by TCGA cohort. The prognostic model based on 
GEO cohort was developed as follows: The risk 
score level model = (0.21 × expression of BGN + 
0.44 × expression of GRK5 – 0.07 × expression of 
IL32 + 0.37 × expression of SREBF1). The median 
value of the model was 1.013. External cohort from 
GEO validated the survival difference between risk 
score level subgroups (Figure 2(h)). External 
cohort showed the area under the ROC curve for 

Figure 3. The correlation of the four m6AIGs expression with the tumor purity, B cell, CD8 + T cell, CD4 + T cell, Macrophage, 
Neutrophil and Dendritic cell.
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predicting the 3- and 5-year survival was 0.929 and 
0.679 respectively (Figure 2(i)), showing the good 
performance of the risk score level model in pre-
dicting the prognosis.

Four m6AIGs expression in immune cells

The TIMER analysis demonstrated that BGN 
expression was in highly negative correlation 
with B cell (r = −0.179, P = 6.18e−04), and 
positive association with infiltration of 
CD8 + T cell (r = 0.118, P = 2.44e-02), 
CD4 + T cell (r = 0.213, P = 4.01e-05), 
Macrophage (r = 0.423, P = 2.85e-17), 
Neutrophil (r = 0.164, P = 1.7e-03) and 
Dendritic cell (r = 0.193, P = 2.13e-04); that 
GRK5 expression was significantly in connection 
with B cell (r = −0.107, P = 4.08e-02), and was 
positively correlated with infiltrating CD8 + T 
cell (r = 0.325, P = 1.80e-10), CD4 + T cell 
(r = 0.19, P = 2.55e-04), Macrophage 
(r = 0.311, P = 1.31e-09), Neutrophil 
(r = 0.359, P = 1.77e-12) and Dendritic cell 
(r = 0.326, P = 1.68e-10); that IL32 expression 
was significantly positively associated with infil-
tration of CD8 + T cell (r = 0.204, P = 8.13e-05), 
CD4 + T cell (r = 0.426, P = 1.52e-17), 
Macrophage (r = 0.103, P = 4.98e-02), 
Neutrophil (r = 0.582, P = 3.09e-34) and 
Dendritic cell (r = 0.613, P = 5.79e-39); that 
SREBF1 expression was negatively correlated 
with infiltrating immune cells of CD4 + T cell 
(r = −0.131, P = 1.24e-02) and Dendritic cell 
(r = −0.134, P = 1.02e-02) (Figure 3).

Classification for BC on the basis of four m6AIGs

The consensus clustering analysis demonstrated 
the optimum category in BC samples could be 
obtained when K = 2 (Figure 4(a-b)). When 
K took over other values, the classification was in 
such case as illustrated in Supplementary Figure 
S2. The PCA revealed a separation between the 
two classifications of BC samples (Figure 4(c)). 
The survival difference between the two classifica-
tions was analyzed by the KM survival analysis 
(Figure 4(d)).

Correlation of expression of four m6AIGs with 
clinical traits of TNM stage

By comparing the expression level of the four 
m6AIGs in different TNM stages, high expression 
of BGN (Figure 5(a-b)) and GRK5 (Figure 5(c-d)) 
were found closely associated with advanced T and 
N stage, showing they were factors promoting 
tumor progression and lymph node metastasis. 
The expression of SREBF1 in early T stage was 
higher than that in advanced T stage (Figure 5(e)), 
suggesting it may be the factor facilitating tumor-
igenesis. There was no differential expression in 
N stage (figure 5(f). The expression of IL32 was 
not correlated with T and N stage (Figure 5(g-h)). 
There were no evidences demonstrating they were 
linked with M stage (Supplementary Figure 
S3a–3d).

Analysis on clinical characteristics and 
prognostic prediction

The univariate Cox regression analysis showed 
that age, stage, T-stage, N-stage, risk score level 
and the classification were closely correlated with 
the prognosis (Figure 6(a)). The multivariate Cox 
regression analysis identified the risk score level 
(P = 0.0111, HR: 2.1238, 95 CI%: 1.1879−3.7969) 
as independent prognostic factor (Figure 6(b)). 
A nomogram in the light of age, T-N stage, risk 
score level and the classification for predicting 3- 
and 5-year survival was constructed (Figure 6(c)) 
and calibrated (Figure 6(d-e)), showing the model 
on 3-year and 5-year prognostic prediction was 
satisfactory, with C-index of 0.694 (95%CI: 
0.620–0.768). The P value of likelihood ratio test 
for C-index was 0.001. The association of the four 
m6AIGs with the age, gender, stage, T-N-M stage, 
risk score level and survival state was illustrated in 
figure 6(f).

Signaling pathways for risk level subgroups 
based on GSEA

Signaling pathways with | NES | > 1, NOM p-value 
< 0.05, FDR q-value < 0.25 were considered as 
statistically significant. GSEA analysis for risk sub-
groups showed WNT signaling pathway and TGF- 
beta signaling pathway were involved in regulation 
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of BC progression in the high risk level group 
(Figure 7(a-b)). In the low risk level group, cyto-
solic DNA-Sensing cGAS-STING signaling path-
way and RIG-I-like receptors signaling pathway 
were found to be correlated with BC development 
(Figure 7(c-d)).

Discussion

It is universally recognized that CD8 + T cells play 
the role of killing tumor cells by distinguishing 

tumor-specific antigens presented on major histo-
compatibility complex class I (MHCI). The func-
tion and activation of CD8 + T cells are influenced 
by cytokines secreted from tumor cells and other 
cells [29]. The mature and activated infiltrating 
CD8 + T cells in TME contributed to prolonging 
the overall survival of patients with malignancies 
[8,29]. CD4 + T cells discerned antigens derived 
from major histocompatibility complex class II 
(MHCII). CD4 + T cells subsets acting as effectors 
(such as helper T cells and assist cytotoxic T cells) 

Figure 4. Identification of the category. (a, b) Determination of the optimum classification number. (c) The outcome of PCA. (d) KM 
survival analysis for BC samples in accordance with the two categories.
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Figure 5. Analysis of TNM stage correlation . (a, b) The correlation of the expression of BGN with T and N staging. (c, d) The 
correlation of the expression of GRK5 with T and N staging. (e, f) The correlation of the expression of SREBF1 with T and N staging. 
(g, h) The correlation of the expression of IL32 with T and N staging.
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could transition to the memory state after elimina-
tion of antigens and cytokines [30,31]. 
Macrophages are the most faithful partners in 
tumor growth and metastasis which cause chronic 
inflammation, facilitate angiogenesis, degrade and 
remodeling matrix, and assist in tissue invasion 

and intravasation [32]. Ali et al. [33] showed the 
proportions of M0, M1, and M2 macrophages 
possessed prognosis significance according to the 
clustering analysis and clinical results determined 
by the proportion of M0 and M2 macrophages 
[34]. Neutrophils are the first leukocyte to reach 

Figure 6. Screening the clinical characteristics and predicting prognosis. (a, b) Forest plot shown the result of the univariate and 
multivariate Cox regression analysis. (c) A nomogram based on age, T, N, risk score level, cluster, for predicting 3- and 5-year 
prognosis. (d, e) Calibration curve of nomogram for 3- and 5-year prediction. X-axis represents nomogram−predicted probability of 
overall survival and Y-axis stands for actual survival. The more the blue solid line fits the black dotted line, the better the prediction 
effect is. (f) Heatmap displayed the correlation between the four m6AIGs and the clinical characteristics and the risk score level.
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the site of inflammation, which can induce tumor-
igenesis by destroying specific tissues, releasing 
reactive oxygen species (ROS), and reactive nitro-
gen species (RNS) or proteases [35,36]. 
Neutrophils are also attributable to extracellular 
matrix degradation, tumor cell migration and 
invasion, and angiogenesis and regulation and 
suppression of T cells give rise to tumor growth 
and metastasis [37]. The functional consistency 
between neutrophils and macrophages is 

manifested in the synergistic interaction of TME 
to promote tumor progression and metastasis, 
which indicates that there are many factors in 
microenvironment jointly maintaining tumor 
characteristics, with the same clinical outcomes 
in BC [38]. Dendritic cells linking the innate and 
adaptive immune responses activate CD4+ and 
CD8 + T cells by presenting the specific-antigens, 
to play the indirect role in anti-tumor immunity; 
however, the process may be lost or attenuated in 

Figure 7. Signaling pathways analysis. (a, b) WNT signaling pathway and TGF-beta signaling pathway in high risk level group. (c, d) 
cytosolic DNA-Sensing cGAS-STING signaling pathway and RIG-I-like receptors signaling pathway in low risk level group.
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TME [39]. Therefore, these immune cells have 
prominent therapeutic and prognostic values for 
the final survival of BC patients.

As the most common modification in eukaryo-
tic cells, m6A post-transcriptional modification 
influences RNA transcription, processing, splicing, 
degradation and translation; and dysregulated 
m6A modification in these bioprocesses was highly 
linked to tumorigenesis [40]. EMT process was 
facilitated by stable ZMYM1 through up- 
regulation of METTL3 in gastric cancer [41]. 
m6A modification of oncogenes of CDCP1 and 
MYC were elevated due to up-regulation of 
METTL3, leading to BC for proliferation and pro-
gression [42,43]. Therefore, identifying m6A- 
related genes are crucial for surveillance and man-
agement for multiple cancers. In our study, four 
m6AIGs in BC were screened. KM survival analy-
sis is a univariate analysis, which is easily affected 
by confounding factors and cannot accurately 
reflect the prognosis of factors. The multivariate 
Cox regression analysis is able to exclude the 
influence. Although KM survival analysis did not 
show the differential survival for the four m6AIGs, 
the result from multivariate Cox regression analy-
sis demonstrated BGN, GRK5, IL32 and SREBF1 
were independent prognostic factors. Therefore, it 
is reasonable to believe they were prognosis- 
associated m6A-related immune genes. The 
immune infiltration analysis showed they may 
modulate tumor behaviors by regulating various 
immunocytes infiltration in microenvironment. 
TN stage correlation analysis demonstrated BGN, 
GRK5 and SREBF1 were closely correlated tumor 
progression. In order to predict prognosis accu-
rately, a nomogram based on age, T stage, N stage, 
risk score level and cluster was developed, and 
calibration curve and C-index showed it was 
a reliable model. Overexpressed BGN facilitates 
epithelial-mesenchymal transition (EMT) and is 
significantly linked to the poor prognosis of BC 
patients [44]. In gastric cancer, BGN promotes 
tumor angiogenesis through activation of VEGF 
regulated by TLR signaling pathway, resulting in 
tumor invasion and progression [45]. Given the 
positive association of BGN expression with infil-
trating CD4 + T cells, Macrophages and Dendritic 
cells in our study, BGN with m6A modification 
might regulate the bioprocess of Macrophages to 

affect the carcinogenesis and progression of BC. 
GRK5 was found to facilitate proliferation and 
progression and be related with the regulation of 
cell cycle in non-small-cell lung cancer [46]. m6A- 
related GRK5 was downregulated expression in BC 
and linked to unfavorable prognosis, therefore, we 
hypothesized downregulated GRK5 chiefly ham-
pered the infiltration of CD8 + T cells, CD4 + T 
cells and Dendritic cells to attenuate the response 
of antitumor. Then, modulated by AKT, β-catenin 
and HIF-1α signaling pathways, IL32 was closely 
associated with metastasis of gastric cancer [47]. 
Overexpressed IL32 led favorable prognosis in BC; 
thereby, we suppose the overexpression of IL32 
with m6A modification would boost the recruit-
ment of CD4 + T cells and Dendritic cells, to play 
the role of antitumor. SREBF1 was involved in 
fatty acid metabolism, and expression of SREBF1 
mediated by AR/mTOR complex accelerated 
metabolism of fatty acid, to meet the demand for 
prostate cancer cell growth [48]. In our study, we 
found the high expression of SREBF1 was corre-
lated with low infiltration level of CD4 + T cell 
and Dendritic cell, bringing poor prognosis. These 
findings on the signatures of the four m6AIGs 
provided theoretical bases for future research.

However, some limitations exist in our study. 
Firstly, genes with m6A modification in RMVar 
database are updated continuously, and only the 
existing genes with m6A modification in database 
are retrieved in our study. Secondly, the clinical 
characteristics included in the nomogram for pre-
diction are limited. Thirdly, genetic/epigenetic reg-
ulations related to infiltrating immune cells have 
not been fully studied in BC, so potential regula-
tory signaling pathways for the four m6AIGs in 
immune cells are required to be investigated.

Conclusion

In the study, m6AIGs associated with the prog-
nosis in BC were screened, the correlation of 
m6AIGs with the infiltration of immune cell and 
the TNM stage was examined, the BC samples 
were classified in the light of the four m6AIGs, 
combined the four m6AIGs with clinical charac-
teristics to analyze the prognosis and the potential 
regulatory pathways for risk level subgroups were 
investigated. These works are conductive to 
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identification of immunomarkers with m6A mod-
ification in BC.
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