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Procrastination is the voluntary but irrational postponing of a task despite being aware
that the delay can lead to worse consequences. It has been extensively studied in
psychological field, from contributing factors, to theoretical models. From value-based
decision making and reinforcement learning (RL) perspective, procrastination has been
suggested to be caused by non-optimal choice resulting from cognitive limitations.
Exactly what sort of cognitive limitations are involved, however, remains elusive. In the
current study, we examined if a particular type of cognitive limitation, namely, inaccurate
valuation resulting from inadequate state representation, would cause procrastination.
Recent work has suggested that humans may adopt a particular type of state
representation called the successor representation (SR) and that humans can learn to
represent states by relatively low-dimensional features. Combining these suggestions,
we assumed a dimension-reduced version of SR. We modeled a series of behaviors
of a “student” doing assignments during the school term, when putting off doing the
assignments (i.e., procrastination) is not allowed, and during the vacation, when whether
to procrastinate or not can be freely chosen. We assumed that the “student” had
acquired a rigid reduced SR of each state, corresponding to each step in completing
an assignment, under the policy without procrastination. The “student” learned the
approximated value of each state which was computed as a linear function of features
of the states in the rigid reduced SR, through temporal-difference (TD) learning. During
the vacation, the “student” made decisions at each time-step whether to procrastinate
based on these approximated values. Simulation results showed that the reduced SR-
based RL model generated procrastination behavior, which worsened across episodes.
According to the values approximated by the “student,” to procrastinate was the better
choice, whereas not to procrastinate was mostly better according to the true values.
Thus, the current model generated procrastination behavior caused by inaccurate
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value approximation, which resulted from the adoption of the reduced SR as state
representation. These findings indicate that the reduced SR, or more generally, the
dimension reduction in state representation, can be a potential form of cognitive
limitation that leads to procrastination.

Keywords: procrastination, value-based decision making, reinforcement learning, temporal difference learning,
state representation, successor representation, dimension reduction

INTRODUCTION

Delaying a task until the last minute and struggling to meet
the due date is not an enjoyable thing to do. While sometimes
people do this because it is inevitable or the better choice to
be made, there are also other times when people voluntarily
postpone the task when it could be and would better to be
avoided. This irrational but voluntary delay of a course of action
is known as procrastination. Previous studies have suggested that
such behavior can result in not only worse academic or working
performances, but also anxiety and stress in the procrastinators
(e.g., Day et al., 2000; Stead et al., 2010). Procrastinators can
be fully aware of the bad consequences that could potentially
arise, as it was mentioned that most of procrastinators wish
to reduce procrastination [mentioned in Steel (2007) by citing
(O’Brien, 2002)]. The question is then raised why humans would
make such seemingly irrational decisions in the first place,
even when they know that such postponing could potentially
worsen the situation.

Both task characteristics, such as task aversiveness and timing
of rewards and punishments, and certain personality traits, such
as lack of self-control and high degree of impulsivity, have been
found to contribute to procrastination behavior (Steel, 2007).
As it happens when the long-term and distant values give way
to immediate experiences, it is also interpreted as a form of
self-regulation failure (Rozental and Carlbring, 2014).

Along with these empirical findings, researchers also set out
to build theoretical frameworks of procrastination. In particular,
Temporal Motivation Theory (Steel and König, 2006) has been
proposed as a comprehensive formulation of the mechanisms
underlying procrastination. Derived from expectancy theory and
hyperbolic discounting, the theory describes one’s motivation to
complete a task by integrating the expectancy and the value of a
task, divided by the time delay and the impulsiveness (i.e., one’s
sensitivity to the delay). More recently, integrating the Temporal
Motivation Theory and the self-regulation failure perspective, the
temporal decision model (Zhang et al., 2019b) has been proposed.
This model explicitly incorporates engagement utility or task
aversiveness as an important factor related to procrastination.

Referring to these existing models, in the present study, we
attempt to model procrastination from a different perspective,
which is value learning and value-based decision-making. When
faced with a task, whether to finish it now or to procrastinate
until later is indeed a decision to be made. As mentioned
above, one suggested reason for procrastination is because the
procrastinators fail to prioritize values in the distant future
(i.e., “delay” as in Temporal Motivation Theory), and choose
immediate values instead. Task aversiveness considered in the

temporal decision model, or effort cost for task engagement,
should entail negative values. How humans learn and integrate
these values to choose whether to procrastinate or not would
thus be an interesting question in terms of value learning and
value-based decision making.

Value leaning and value-based decision making, including
those involving effort cost, have been widely studied in humans
(e.g., Croxson et al., 2009; Kool et al., 2010; Skvortsova et al.,
2014; Nagase et al., 2018; Lopez-Gamundi et al., 2021) as well
as in animals (e.g., Salamone et al., 1994; Walton et al., 2003;
Floresco et al., 2008; Gan et al., 2010; Cai and Padoa-Schioppa,
2019). These behaviors and their neural mechanisms have been
modeled (e.g., Niv et al., 2007; Collins and Frank, 2014; Kato
and Morita, 2016; Möller and Bogacz, 2019) using the framework
of reinforcement learning (RL) (Sutton and Barto, 1998). It is
grounded by accumulated suggestions in the past few decades
that human and animal behavior can be approximated by RL
models, certain neural signals appear to represent RL variables
[in particular, dopamine’s encoding of reward prediction error
(RPE) (Montague et al., 1996; Schultz et al., 1997) and striatal
encoding of action values (Samejima et al., 2005)], and cortico-
basal ganglia circuits could implement RL and action selection
mechanisms (e.g., Doya, 1999; Frank et al., 2004; Lo and Wang,
2006; Khamassi and Humphries, 2012; Helie et al., 2013; Morita
et al., 2016; see Niv and Montague, 2008; Lee et al., 2012
for a comprehensive review). It is thus reasonable to consider
procrastination, a behavior also involving the process of value-
based decision-making, on the basis of RL.

There have already been studies applying RL to
procrastination (Lieder and Griffiths, 2016; Lieder et al.,
2019). In their study, procrastination was considered to be
a choice of the inferior option with larger proximal reward
but smaller overall value due to, as suggested by the authors,
cognitive limitations. They then proposed an innovative idea
based on the RL theory, which was adding “pseudo-rewards” so
that the optimal option will always have the maximal proximal
reward (original + pseudo) and can be chosen even by the most
short-sighted decision maker with cognitive limitations. The
authors demonstrated in behavioral experiments with human
subjects that their method successfully reduced procrastination
resulting from myopic decisions.

It has, however, remained elusive exactly how (and what)
cognitive limitations lead to a non-optimal choice (i.e., choice of
an action whose true value is smaller than that of the optimal
action). It has been suggested in the RL framework (Daw et al.,
2005; Dolan and Dayan, 2013) that humans show both goal-
directed and habitual behaviors, potentially approximated by
model-based and model-free RL, respectively. The habitual or
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model-free behavior is suggested to be computationally efficient
but less flexible, which in a sense reflects cognitive limitations
and potentially underlies unhealthy behaviors (Story et al.,
2014). Recent studies (Momennejad et al., 2017; Russek et al.,
2017) have shown that humans may have also adopted an
intermediate behavior between goal-directed/model-based and
habitual or model-free behaviors by using a particular type of
state representation named the successor representation (SR)
(Dayan, 1993). As an intermediate type between model-based
and model-free RL, SR-based behavior is more flexible than
model-free RL, but still has some limitations as compared to
fully model-based RL.

Another possible source of cognitive limitations would
be dimension reduction in state representation in the brain
(Gershman and Niv, 2010; Niv, 2019). As there is a tremendous
number of states in the environments surrounding the humans
that should not be able to be individually represented in the
human brain, some sort of dimension reduction is thought
to be necessary. Although low-dimensional representation can
be efficient (Niv, 2019), dimension-reduced representations of
states can inevitably be inadequate. For example, representing
the agent’s position in the three-dimensional space by two-
dimensional (x and y) coordinates cannot tell at what height
(altitude) the agent exists. Inadequate state representation
could cause inaccurate valuation and lead to non-optimal
choice behavior.

Combining these notions, in the present study, we considered
that humans may adopt a dimension-reduced version of SR
(Gehring, 2015; Barreto et al., 2016; Gardner et al., 2018),
in particular, the goal-based reduced SR (Shimomura et al.,
2021) (see section “Methods”). We explored whether and how
an RL model with the reduced SR generated procrastination
behavior. More specifically, we examined if procrastinating
choice, which is non-optimal in terms of true values, can
nevertheless be optimal in terms of approximated values based
on the approximation of state values as a linear function of
features in the reduced SR in a model of Student’s behavior during
vacation after a school term.

METHODS

Modeling the Student’s Behavior in the
School Term and the Vacation Period
We simulated a situation where a student experienced the
school term and then started the vacation. The student, who
was not allowed to procrastinate while working on assignments
in the classroom during the school term, became able to
choose freely whether to procrastinate while working on
assignments at home during the vacation. We modeled the
Student’s behavior of working on each single set of assignments
(e.g., a set of math problems or short essays) by an episode
of actions of an agent moving from the start state to the
goal state (Figure 1A). As shown in Figure 1A, we assumed
five states, and this could potentially represent the following
situation, for example: each set of assignment requires about
an hour of concentration (focused attention) in total, and if

the student can be continuously focused for 10–15 min, s/he
needs about 4–6 times of concentration, each of which could
correspond to each state (except for the goal state) in our
model. Notably, however, there is a study (Wilson and Korn,
2007) arguing that the frequently claimed 10–15 min duration
for Student’s attention during lectures was hardly supported by
the literature, and here we considered it just as an intuitive
example. At each episode, the agent started from the start
state, and selected at each time-step whether to go to the next
state (“GO” action) with cost imposed, or stay at the current
state (“STAY” action) with no cost, until reaching the goal
state, where reward could be obtained (the sequential “GO” and
“STAY” architecture is shared with the model of Shimomura
et al. (2021) dealing with addiction, but the cost for “GO”
action was introduced in the present model). The agent initially
experienced 20 episodes, corresponding to the school term, under
the policy of choosing “GO” at all states (i.e., without any
procrastination). Subsequently, the agent experienced another 20
episodes, corresponding to the vacation period, during which
the agent chose “GO” or “STAY” according to the approximated
values (described below).

Notably, the “school-term/vacation” paradigm is not
necessarily limited to the literal school-term or vacation. More
generally, the “school-term” period could potentially simulate
an “in-class” situation where the student is under supervision
by the teacher or supervisor and needs to take actions under
instruction. The “vacation” period, on the other hand, could
potentially be analogous to a situation outside of the class where
the student has the freedom to take actions.

Goal-Based Reduced Successor
Representation (SR) of States
As described in the Introduction, based on the recent suggestions
of SR and dimension reduction in state representation in the
brain, we assumed that the agent had acquired a dimension-
reduced version of SR, specifically, the goal-based reduced SR
(Shimomura et al., 2021) of each state under the policy without
procrastination taken in the school term (Figure 1B). Specifically,
we considered the discounted future occupancy of the final
successor state (i.e., the goal state) under the policy of choosing
“GO” at all states as the feature variable representing each state.
Feature variable x for k-th state Sk (k = 1,. . ., n; Sn corresponds to
the goal state, and n = 5 was assumed) was assumed to be:

x(Sk) = γn−k

where γ is the time discount factor (γ = 0.85 was assumed in
most simulations, but we also examined a case with γ = 0.95).
We assumed that this representation had already been established
at the beginning of the initial 20 episodes of the school term
that were simulated, and that it was rigid enough to remain
unchanged even after the vacation period began and the agent
started to also choose “STAY,” although later we also examined
the case where the reduced SR was slowly updated during the
vacation period.
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FIGURE 1 | Schematic diagrams of the model and the reduced successor representation (SR). (A) Schematic diagrams of the model. There are 5 states for each
episode, with S1 the start state and S5 the goal state. The student first experiences 20 episodes of school term, choosing “GO” at all time-steps
(“non-procrastinating policy”), and then enters vacation for another 20 episodes during which the choice to “STAY” or “GO” (i.e., to procrastinate or not) is made
according to the approximated values of these actions. Cost (c) is imposed for “GO” action and reward (R) is given at the goal state (S5). (B) Schematic diagram of
the SR and the goal-based reduced SR under the policy without procrastination. The SR is the way to represent each state by a set of discounted future
occupancies of all the states, i.e., to represent S1 as (1, γ, γ2, γ3, γ4) (where γ is the time discount factor), S2 as (0, 1, γ, γ2, γ3), S3 as (0, 0, 1, γ, γ2), S4 as (0, 0, 0,
1, γ), and S5 as (0, 0, 0, 0, 1), as indicated by the light blue marks. The goal-based reduced SR is the way to represent each state by the discounted future
occupancy of only the goal state, i.e., to represent S1 as γ4, S2 as γ3, S3 as γ2, S4 as γ, and S5 as 1, as indicated by the orange marks.

Approximated State Values Based on the
Reduced SR, and Their Updates
The agent was assumed to approximate the state value of state
Sk under the policy that the agent was actually taking by a linear
function of the feature variable x:

ṽ(Sk) = wx(Sk)

where ṽ(Sk) denotes the approximated state value of Sk. Such an
approximation of value function by a linear function of features
has been made as a standard assumption (Montague et al., 1996;

Schultz et al., 1997). It can potentially be implemented through
dopamine-dependent plasticity in the brain. The coefficient w was
updated through temporal difference (TD) learning at each time-
step:

δ(t) = r(t)+ γṽ(S(t + 1))− ṽ(S(t))

w←w+ aδ(t)x(S(t))

where δ(t) denotes the TD reward prediction error (RPE), S(t)
the state at time t, r(t) the reward or cost [modeled as negative
r(t)] obtained at time t, and a, the learning rate. The reward/cost
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r(t) was assumed to be R = 1 when the agent reached the goal
state, -c (representing the cost) when the agent chose “GO,” and
0 otherwise. The cost amount c was assumed to be 0.1 in most
simulations, but we also examined the cases with c = 0, 0.01,...,
0.15. In most cases shown in the Results, the learning rate a was
assumed to decrease over episodes (m = 1, . . ., 20):

a = 0.5/(1+ 0.2m),

simulating habituation to the situation, in both the initial 20
episodes corresponding to the school term and the subsequent 20
episodes corresponding to the vacation period (i.e., the learning
rate was assumed to once increase at the beginning of the vacation
period). We also examined the cases where the learning rate
was constant at 0.2 or 0.4 in both school term and vacation
period. The initial value of w for the initial 20 episodes (the
school term) was set to 0, and for the subsequent 20 episodes
(the vacation period), was set to the final value of w at the end
of the initial 20 episodes.

Approximated Action Values Based on
the Reduced SR, and Action Selection
As mentioned above, we assumed that the agent initially
experienced 20 episodes during the school term under the policy
of choosing “GO” at all states (i.e., without any procrastination).
Subsequently, action “GO” or “STAY” was selected at each
time-step according to their approximated values in a soft-max
manner. We assumed that the agent computed the approximated
values of the actions “GO” and “STAY” at state Sk (k = 1,., 4)
by using the approximated state values under the policy that the
agent was taking (described above) as follows:

q̃(Sk, GO) = γṽ(Sk+1)− c

q̃(Sk, STAY) = γṽ(Sk)

Action was then assumed to be selected according to the
following probability:

Prob(A) = ebq̃(Sk,A) / {ebq̃(Sk,GO)
+ ebq̃(Sk,STAY)

}

where A is “GO” or “STAY,” and b is a parameter representing the
inverse of the degree of exploration (i.e., inverse temperature).
In most cases shown in the Results, the inverse temperature was
assumed to be constant at 20. We also examined the cases where
the inverse temperature was 10 or 30.

True State/Action Values
We explored if the agent’s behavior, determined by the
approximated values based on the reduced SR, could be said to
be irrational in reference to true values under the policy that the
agent was taking. The true state value under the policy without
procrastination for the initial 20 episodes (i.e., without “STAY”)
can be exactly calculated as:

v(Sk) = γn−kR− Ck

where R represents the reward at the goal state, assumed to be 1
as mentioned above, and Ck stands for the summation of all the
discounted future costs:

C1 = c+ γc+ γ2c+ γ3c

C2 = c+ γc+ γ2c

C3 = c+ γc

C4 = c

After the initial 20 episodes, the agent could freely select an
action and therefore the true state values under the policy that the
agent was taking should change accordingly. We considered that
the agent (or the agent’s brain) could potentially estimate these
values by using TD learning based on individual representation
of states, in parallel with the reduced SR-based TD learning
described above. Specifically, we assumed that the estimated true
state value under the policy that the agent was taking v̂(S) was
updated as:

δ′(t) = r(t)+ γv̂(S (t + 1))− v̂(S (t))

v̂(S (t))← v̂(S (t))+ aδ′(t)

with the initial values for v̂(S) set to the abovementioned true
state values under the non-procrastinating policy. Then, given
these estimated true state values, estimated true action values
under the policy that the agent was taking were calculated as:

q̂(Sk, GO) = γv̂(Sk+1)− c

q̂(Sk, STAY) = γv̂(Sk)

Apart from the state/action values under the policy that the agent
was taking, we can also consider the optimal state/action values,
i.e., the state/action values under the optimal policy, as defined
in the RL theory (Sutton and Barto, 1998). In our model with
the abovementioned standard parameter values (n = 5, γ = 0.85,
R = 1, and c = 0.1), the optimal policy is considered to be the non-
procrastinating policy (i.e., without choosing “STAY”), because
taking a “STAY” results in one more time-step discounting of
the reward and all of the future costs whose (discounted) sum
is positive. We considered that the agent (or the agent’s brain)
could also potentially estimate the optimal action values based on
individual representation of actions, for example, if Q-learning
can be implemented in the brain (c.f., Roesch et al., 2007; Morita,
2014; Morita et al., 2016). On the other hand, it would be difficult
for the agent to approximate the optimal action values based on
the reduced SR, given that approximation of value function as a
function of features is harder for off-policy, than for on-policy,
learning (c.f., chapter 11 of Sutton and Barto, 2018).
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“Penalty,” or “Regret,” for Taking Action
“STAY”
We also conducted separate sets of simulations, in which a
“penalty” for “STAY” choice depending on the elapsed time,
or an unpredictable “regret” for “STAY” choice, was added
to the original model. The “penalty” term was introduced
to simulate the devaluation of “STAY” choice caused by the
pressure to procrastinate as the deadline approaches and/or
the elapsed time increases. We added “− p(tv)cp” to the
approximated value of “STAY” used for action selection and
the true value of “STAY,” as well as the TD RPEs [δ(t) and
δ’(t)] upon taking “STAY.” The parameter cp controls the
amount of the “penalty,” which was set to 0.1, and p(tv)
is a function of time step in the vacation period (tv) that
is 0 until tv becomes a certain value, specifically, 150 time-
steps, and thereafter linearly increases, specifically, according to
(tv − 150)/150.

The unpredictable “regret” term, on the other hand, was added
to simulate “the sense of guilty” after choosing “STAY” (i.e.,
procrastinating). Different from the “penalty” for the “STAY”
choice, the “regret” term was not added to the approximated value
of “STAY” used for action selection, but only added to the true
value of “STAY” as well as the TD RPEs [δ(t) and δ’(t)] upon
taking “STAY,” in order to simulate that regret only showed up
after “STAY” had been chosen. Specifically, we added “− cr” to
the true value of “STAY” and the TD RPEs [δ(t) and δ’(t)] upon
taking “STAY,” where cr is a parameter representing the amount
of the “regret,” which was set to 0.02.

Slow Updates of the Reduced SR During
Vacation
As mentioned above, so far, we assumed the goal-based reduced
SR to be rigid and remaining unchanged in the vacation period.
However, we also examined the case where the reduced SR was
slowly updated during vacation. In the reduced SR, each state is
represented by its feature variable that is the discounted future
occupancy of the goal state, which can be said to be a sort
of temporal proximity to the goal. As the agent changes the
policy from the non-procrastinating one to the procrastinating
one, the agent will need more time to reach the goal state,
and thus the temporal proximity to the goal state will change
(decrease). If the reduced SR changes according to the change
in the policy, the feature variable for each state should also
change accordingly. Such a change in the reduced SR can be
done through TD learning (Shimomura et al., 2021), in the
same manner as in the case of the genuine SR (Gershman
et al., 2012). Specifically, the feature variable for state S(t) [i.e.,
x(S(t))] other than the goal state was updated by αSRδSR(t), where
δSR(t) = γx[S(t + 1)] − x[S(t)] was the TD error for the feature
variable and αSR was the learning rate for this update, which
was set to 0.05.

Simulations
Simulations were conducted 10,000 times for each condition
by using MATLAB.

RESULTS

Learning of the Reduced SR-Based
Approximated Values During the School
Term
Figure 2A shows the change of the coefficient “w” of the reduced
SR-based approximated state value function during the school
term, in which the agent was assumed to take the policy of
choosing “GO” all the time. The agent transitioned from state S1
(corresponding to the leftmost in Figure 2A) to the goal (state S5,
rightmost) in each episode from the first episode (topmost) to the
20th episode (bottommost), and each color square in Figure 2A
indicates the value of “w” at the timing just after the agent left
the corresponding state in the corresponding episode. Figure 2B
presents the same data in a different way: each line indicates the
over-episode change of “w” just after the agent left each state. As
shown in the figures, the coefficient “w” generally increased over
the episodes, while there was a gradual decrease from S1 to S4,
followed by a sharp rise at the goal state (S5), in each episode.
After the update for 20 episodes, the coefficient at every state
showed a tendency to gradually approach a stable value. This
indicates that the agent gradually learnt, through the TD learning,
the reduced SR-based approximated state values.

Procrastination Behavior at the First
Episode in the Vacation Period
Figure 3Aa shows the difference between the values of actions
“GO” and “STAY” at each state at the beginning of the first
episode in the vacation period, for the true values under the non-
procrastinating policy (i.e., choosing “GO” only) (black line) or
the reduced SR-based approximated values (red line), averaged
across simulations. As shown in the figure, the true value of
“GO” was larger than the “STAY” value at every state, and this
gap widened as the agent approached the goal state. In contrast,
the reduced SR-based approximated value of “GO” was smaller
than that of “STAY” at all states, though this gap narrowed as
the agent approached the goal state. This contradiction indicates
that the agent behaving according to the approximated values
should make irrational choices of “STAY,” i.e., procrastination.
Specifically, although the action “GO” had larger values than
“STAY” in terms of the true values, the reduced SR-based
approximated values of “GO” were smaller than those of “STAY,”
and thus the agent should tend to choose “STAY” more frequently
than “GO.”

Notably, the agent was assumed to update the approximated
values at every time step (to approximate the values under the
policy that the agent was taking) and make choices according
to such continuously updated approximated values. Figure 3Ab
shows the difference between the approximated values of “GO”
and “STAY” at the time when the agent initially entered each
state in the first episode in the vacation period, averaged across
simulations. The value at S1 in this figure indicates the value at
the beginning of the vacation, which is the same as the one shown
in Figure 3Aa, but the average values at S2–S4 deviate from the
values in Figure 3Aa, reflecting the continuous updates of the
approximated values.
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FIGURE 2 | Learning of the reduced SR-based approximated values during the school term. The change of the coefficient “w” of the reduced SR-based
approximated state value function during the school term is shown in two different ways. (A) The horizontal axis indicates states (S1∼S5, from the left to the right),
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Figure 3B shows the mean number of times for the agent to
choose “STAY” at each state at the first episode in the vacation
period, averaged across simulations, and Figure 3C shows the
distribution of the number of times of “STAY.” As expected
from the larger approximated values of “STAY” than the values
of “GO,” the agent made more than one “STAY” at every state
on average. As approaching the goal state, the tendency of
procrastination gradually decreased, and this can also be expected
from the decrease in the difference between the approximated
values of “GO” and “STAY” across states. Notably, however, as
shown in Figure 3C, the distributions of the number of times
of “STAY” for the four states were wide and skewed, and largely
overlapped with each other.

Changes in the Reduced SR-Based
Approximated Values During the
Vacation Period
Figure 4A shows the change of the coefficient “w” of the reduced
SR-based approximated state value function under the policy that
the agent was taking, averaged across simulations, during the
vacation period, in which “GO” and “STAY” could be chosen
freely. Figure 4B presents the same data in a different way:
each line indicates the over-episode change of “w” just after the
agent left each state. As shown in the figures, for each state, the
coefficient “w” generally decreased during the vacation period,
while there is again a gradual decrease from S1 to S4 and a
sharp rise at the goal state (S5) in each episode. This general
decrease across episodes indicates that the reduced SR-based
approximated state values under the policy that the agent was
taking became lowered during the vacation period, and this is
considered to reflect that the policy itself gradually changed as
we will see below.

Changes in the Procrastination Behavior
During the Vacation Period
The red lines in Figure 5A show the over-episode changes of the
difference between the reduced SR-based approximated values
of actions “GO” and “STAY” under the policy that the agent
was taking at entering each state, and the red line in Figure 5B
shows the value difference at the 20th episode, averaged across
simulations. Figure 5C shows the over-episode changes of the
mean number of times for the agent to choose “STAY” at each
state, and Figures 5D,E show the mean number of times to
choose “STAY” at the 20th episode, averaged across simulations,
and its distribution, respectively. As shown in Figure 5A,
the difference between the approximated values of “GO” and
“STAY” at entering every state widened over episodes (i.e.,
became more negative). Reflecting this, there is a clear trend
of increasing in the tendency of procrastination behavior over
episodes (Figure 5C). Meanwhile, the decreases in the absolute
difference of the approximated values of “GO” and “STAY” and
in the procrastination tendency across states within an episode
remained consistent across episodes. It can thus be said that the
agent’s procrastination behavior was reduced as getting closer to
the goal state but was generally getting worse across the episodes.

The black lines in Figure 5A show the over-episode changes
of the difference between the estimated true values of actions
“GO” and “STAY” under the policy that the agent was taking at
entering each state, and the black line in Figure 5B shows the
value difference at the 20th episode, averaged across simulations.
As shown in the bottom panel of Figure 5A, the “GO”—“STAY”
difference in the estimated true values at entering S4 increased
across episodes. By contrast, as shown in the top panel of
Figure 5A, the “GO”—“STAY” difference at entering S1 decreased
across episodes, and eventually became negative, as also appeared
in Figure 5B. This indicates that at this point, choosing “STAY”
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FIGURE 3 | Procrastination behavior at the first episode in the vacation period. (A) (a) The difference between the values of actions “GO” and “STAY” at each state at
the beginning of the first episode in the vacation period, for the true values under the non-procrastinating policy (black line) or the reduced SR-based approximated
values (red line), averaged across simulations. (b) The difference between the approximated values of actions “GO” and “STAY” at the time when the agent initially
entered each state in the first episode in the vacation period. The error bars at S2–S4 indicate the average ± standard deviation (SD) across simulations [the value at
S1 indicates the value at the beginning of the first episode in the vacation period, which is the same as the one shown in (a)]. (B,C) The across-simulation mean (B)
and distribution (C) of the number of times for the agent to choose “STAY” at each state at the first episode in the vacation period.

at S1 has finally become a choice of a higher-(estimated)-true-
value option under the procrastinating policy that the agent was
actually taking. Notably, however, the optimal policy for the
agent, in terms of the RL theory, is the non-procrastinating policy
(choosing “GO” only) as mentioned in section “Methods,” and
the true action value of “GO” under the optimal policy (i.e., the
optimal action value of “GO”) was higher than that of “STAY,” as
shown in the black line in Figure 3A and the leftmost point of the
black line in Figure 5A, regardless of the policy that the agent was
actually taking.

Dependence of the Procrastination
Behavior on the Cost of “GO” Action
So far, we assumed that the amount of cost imposed on each “GO”
action was 0.1, which was one tenth of the amount of reward
obtained at the goal. Next, we varied the amount of cost while
the amount of reward was fixed and observed how the agent’s
behavior changed. Figure 6A shows how the mean number
of times for the agent to choose “STAY” at each state at the
first episode in the vacation period, averaged across simulations,
changed when the amount of cost was varied. Figure 6B shows
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FIGURE 4 | Learning of the reduced SR-based approximated values during the vacation period. The change of the coefficient “w” of the reduced SR-based
approximated state value function during the vacation period is shown in two different ways (A,B). The notations are the same as those in Figure 2.

the results for the 20th episode in the vacation period. As shown
in these figures, the agent’s procrastination behavior deteriorated
as cost became heavier.

Intuitive Mechanism of Procrastination in
the Model and Effects of Parameter
Variations
Here we explain the intuitive mechanism of how procrastination
is generated in the model, and see how changes of parameters
would bring to the model’s behavior by manipulating cost,
time discount factor, learning rate and inverse temperature. For
the true values, taking “GO” action can be said to be more
advantageous than taking “STAY” action for the agent because of
the following two factors: (1) if reaching the next state by taking
“GO,” the reward will be less temporally discounted as the time
needed to reach the goal state will decrease; and (2) if reaching
the next state by taking “GO,” the remaining future costs will also
decrease as the cost associated with that “GO” action will already
have been paid, while “GO” is disadvantageous than “STAY”
because of the associated cost. The approximated values, on the
contrary, fail to incorporate the decrease in the remaining future
costs properly because the approximated state value is a linear
function of the feature of each state, which is discounted reward
value at the goal, and is not directly related to cost amounts
(although costs have indirect effects through the weight w). This
results in that the increase in the approximated state value across
states is less steep than that in the true state value (Figure 7A),
and therefore the agent using the approximated values for action
selection could underestimate the “GO” value, and thereby make
procrastination depending on parameter values.

When the cost is small (0.05) as compared with its original
amount (0.1), even for the approximated values based on the
reduced SR, choosing “GO” would become more advantageous
than “STAY” and would induce little procrastination behavior
(Figure 7B). However, whether the cost is large or small needs
to be considered relative to reward size and the rate of temporal

discounting (i.e., increment of reward value from one state to
next due to decrement of discounting). When the discount
rate was changed to a milder level (Figure 7C, discount factor
changed from the original value 0.85 to 0.95 and the cost
remained 0.05 as in Figure 7B), there should be less difference
in discounted reward values across states, and thereby even the
small cost (0.05) made action “STAY” more advantageous than
“GO” in terms of approximated values, which in turn made the
agent procrastinate.

We also examined the effects of changes in the learning rate or
the inverse temperature. The learning rate was originally assumed
to be initially high and gradually decreasing across episodes at
both school and vacation periods. When set as constant values
at 0.2 or 0.4, the overall patterns of the approximated and
true values were not drastically changed from the original ones
(Figures 8A,B, respectively), even though the weight w continued
to vary largely across states in the case where the learning rate
was 0.4 (Figure 8C). Therefore, the assumption that learning
rate decreases across episodes would not be crucial for the
current model to generate procrastination behavior. Regarding
the inverse temperature, when set to a smaller value (10) than the
original value (20), the overall patterns of the approximated and
true values were not drastically changed (Figure 8D). When set
to a larger value (30) (Figure 8E), the number of times of “STAY”
increased, as expected from the increased degree of exploitation,
and the values in the 20th episode in the vacation look affected.

Modifications to the Model
We also conducted separate sets of simulations, in which a
“penalty” for “STAY” choice depending on the elapsed time, or
an unpredictable “regret” for “STAY” choice, was added to the
original model. The “penalty” was added to the approximated
value of “STAY” used for action selection and the true value
of “STAY,” as well as the TD RPEs upon “STAY” choice. In
contrast, the unpredictable “regret” was added only to the true
value of “STAY” and the TD RPEs upon “STAY” choice but not
to the approximated value of “STAY” used for action selection,
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FIGURE 5 | Changes in the procrastination behavior during the vacation period. (A) The over-episode changes of the difference between the values of actions “GO”
and “STAY,” for the estimated true values under the policy that the agent was taking (black lines) and the reduced SR-based approximated values (red lines) (only the
action values when the agent initially entered each state at each episode were used for calculation), except that the leftmost points of the black lines and of the red
line for S1 indicate the values under the non-procrastinating policy. The error bars indicate the mean ± SD across simulations. (B) The difference between the values
of actions “GO” and “STAY” at the time when the agent initially entered each state in the 20th episode in the vacation period, for the estimated true values (black line)
or the reduced SR-based approximated values (red line). The error bars indicate the mean ± SD across simulations. (C) The over-episode changes of the mean
number of times for the agent to choose “STAY” at each state. (D,E) The across-simulation mean (D) and distribution (E) of the number of times for the agent to
choose “STAY” at each state at the 20th episode in the vacation period.

assuming that the agent could not foresee the regret before
actually taking “STAY” and thus could not incorporate it into
the approximated value of “STAY.” Figure 9A shows the results
when adding the “penalty” for “STAY” choice, which appeared

after 150 time-steps (since the beginning of the vacation period)
and thereafter linearly increased. For all states, the number
of times of “STAY” (i.e., procrastinating) initially increased,
but then decreased, and the approximated values of “GO”
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exceeded “STAY” at the 20th episode. These results suggested that
adding the “penalty” to “STAY” choice would be able to reduce
procrastination. Figure 9B shows the results when adding the
“regret” for “STAY” choice. The results suggested that contrary to
the “penalty,” the “regret” after choosing “STAY” did not improve
procrastination but even worsened the situation.

We further simulated the case where the reduced SR was
slowly updated, through TD learning using the TD error of the
feature variable, depending on the policy that the agent was
actually taking during the vacation period. Figure 9C shows
the results. Across episodes, the number of times of “STAY” at
states except for S4 initially increased, but eventually became
decreasing at all the states, and the approximated value of “GO”
at S4 eventually exceeded the value of “STAY” at the 20th episode.
These results indicated that such an update of the reduced SR
could reduce procrastination.

DISCUSSION

This study sets out to investigate procrastination behavior from
the perspective of value learning and value-based decision
making. We assumed the goal-based reduced SR for state
representation and modeled a series of actions and choices
of a “student” during “school term” and “vacation” with cost
for forward state transition and reward for reaching the goal
state. The results suggested that the student, who firstly learned
and updated the state value under the non-procrastinating
policy during school term, soon started to procrastinate when
choices can be freely made. This procrastination behavior was
reduced as the student approached the goal state within the
episode, but generally worsened across the episodes and with the
increase of cost.

Implications of the Present Model and
the Simulation Results
Humans may make non-optimal choices due to inaccurate
valuation. In the case of procrastination, procrastinators may

weigh in favor of the proximal but non-optimal rewards, and
against the optimal but distant reward, and this inaccurate
valuation could result from cognitive limitations (Lieder and
Griffiths, 2016; Lieder et al., 2019). However, exactly what sort of
limitations would cause such inaccurate valuation, which further
leads to procrastination, has remained elusive. In the current
study, we assumed that this inaccuracy in valuation resulted from
a form of state representation, which was the goal-based reduced
SR. With the cost ahead and the reward in relatively distant
future, the inaccurate value approximation based on the reduced
SR drove the agent to procrastinate, which in turn made the
reward even more distant. The estimated true value under the
policy that the agent was taking, on the other hand, suggested
that it was better to choose “GO” action over “STAY” action most
of the times (for S1, the “STAY” value became on average slightly
larger than the “GO” value as shown in Figure 5A). Although
the agent first experienced episodes under the optimal policy (i.e.,
the non-procrastinating policy), the learned approximated values
of states based on the reduced SR were already inaccurate. The
inaccurate approximation of state values caused the discrepancy
between the true and approximated action values and hindered
the agent from making optimal decisions. Our results indicated
that the reduced SR that is rigid (i.e., not easily updated) could be
one of the mechanisms to explain procrastination.

As described in section “Methods,” we conducted estimation
of true state values under the policy that the agent was taking
during vacation through TD learning, along with TD learning of
the approximated values. We considered that human brain could
potentially make such an estimation of true policy-dependent
state values, or even also an estimation of the true optimal action
values as mentioned in section “Methods.” Possibly, such an
estimation of true values could be one of the forms of value
predictions in non-procrastinators. That is, it seems possible that
people who can make such an estimation of true values may
procrastinate less, while people who cannot might procrastinate
more. Another possibility would be that human (brain) can have
these different values at the same time, but the reduced SR-
based approximated values can take dominance in controlling
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FIGURE 7 | Intuitive mechanism of procrastination in the model and effects of parameter variations. (A) The black line indicates the true state value under the
non-procrastinating policy. The red line indicates the approximated state value, which is a linear function of the feature variable of each state (magenta dashed line)
based on the reduced SR, under the non-procrastinating policy. (B) Results of simulations where the cost was changed from the original value (0.1) to 0.05. Left and
middle panels: The difference between the values of actions “GO” and “STAY” at the time when the agent initially entered each state in the 1st (left panel) and 20th
(middle panel) episode in the vacation period, for the estimated true values (black line) or the reduced SR-based approximated values (red line). The error bars
indicate the mean ± SD across simulations. Right panel: The over-episode changes of the mean number of times for the agent to choose “STAY” at each state.
(C) Results of simulations where the cost c and the time discount factor γ were changed from their original values 0.1 and 0.85 to 0.05 and 0.95, respectively.
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choice behavior, depending on individuals and/or conditions,
or at least have some effects on choice (unless there is specific
mechanism to inhibit their effects). This possibility seems to
be in line with the suggestion that most procrastinators wish
to reduce procrastination [mentioned in Steel (2007) by citing
(O’Brien, 2002)]. It could be due to the different valuation
systems in human brain yielding contradictory results, and one
prevailing over the other.

Apart from the goal-based reduced-SR that we assumed,
there could be other forms of state representation which
can also account for cognitive limitation that leads to
inaccurate valuation. In particular, state representation by
low-dimensional features generally has a risk of inadequacy
and thereby inaccurate valuation. Further research would
be needed to test possible relations of various forms of state
representation to procrastination. On the other hand, inadequate
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state representation and inaccurate valuation due to low-
dimensional state representation can be a potential mechanism
for problematic behavior, or even psychiatric disorders, other
than procrastination. Recent work (Shimomura et al., 2021)
proposed that rigid goal-based reduced SR can contribute to the
difficulty in cessation of habitual (addictive) reward obtaining.
Meanwhile, there have been reports of possible relations
between behavioral addiction and procrastination (e.g., Li et al.,

2020; Yang et al., 2020). Future study is desired to examine if
inadequate state representation underlies the coexistence of
procrastination and addiction.

Relations to Other Studies
Previous psychological models, including the Temporal
Motivation Theory (Steel and König, 2006) and the temporal
decision model (Zhang et al., 2019b), have incorporated the
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hyperbolic type of temporal discounting in the formulation.
In particular, the time inconsistency or “myopic preference
reversal” (Kirby and Herrnstein, 1995), occurring in hyperbolic
or quasi-exponential discounting, has been proposed to be a
cause of procrastination (O’Donoghue and Rabin, 1999; Steel
and König, 2006), as well as of other impulsive or unhealthy
behavior (reviewed in Story et al., 2014 with a critical view). The
current framework based on RL, however, showed that even
only incorporating the assumed exponential discounting could
generate procrastination behavior. Although it has been indicated
that temporal discounting of humans and animals generally has
resemblance to hyperbolic discounting (Myerson and Green,
1995; Mazur, 2001), while very hyperbolic discounting (i.e.,
severe discounting for a short delay) may be seen in some people
and/or conditions, less hyperbolic and more exponential-like
discounting could possibly be observed in others. Our model
could provide a mechanistic explanation of procrastination in
the latter cases.

Procrastination has been shown to be negatively correlated
with scales related to self-control or planning (Steel, 2007). In our
model, inaccurate value approximation caused by the reduced
dimension of state features could lead to non-optimal action
choices, and this could be framed as non-optimal planning. Also,
it was reported (Taylor et al., 1998) that mental simulation of the
process of goal reaching including detailed steps, named process
simulation, facilitated performance whereas mental simulation
of goal outcome, named outcome simulation, did not. Another
study (Oettingen, 2012) also implicated that fantasizing or
daydreaming about the desired future (i.e., the goal) could hinder
the pursuit of the goal. Focusing just on the goal outcome, paying
little attention to the intermediate steps, could potentially lead
to a formation of, and/or reliance on, state representation based
particularly on the goal state. In our model, value approximation
based on the goal-based reduced SR has an inability to properly
incorporate step-by-step decrement of remaining future cost,
and it leads to procrastination as explained in the Results. In
this regard, it is tempting to speculate that the abovementioned
behavioral results for better performance with process simulation
but not with outcome simulation could potentially be because
the different ways of mental simulations led to different ways of
state representation.

In our model, procrastination behavior was generally
worsened across episodes, unless the “penalty” was added or the
reduced SR was updated. In the literature, a study that objectively
measured academic procrastination by examining homework
initiation (Schiming, 2012) reported that generally students
procrastinated more along with the progress of the academic
term. However, that study examined homework during the term
rather than in the vacation, and it is not sure if there are any
potential links between their results and ours. Also, in our model,
whereas the unpredictable “regret” coming after procrastinating
did not really help with reducing procrastination, the “penalty” of
procrastinating, which could potentially represent the pressure of
deadline, did reduce procrastination. The latter could be regarded
as an implementation of the suggested effectiveness of deadlines
(Ariely and Wertenbroch, 2002), although if so, where such
penalty comes from remains to be addressed.

There has not been direct evidence to support that the
reduced SR is actually implemented in human brain, but there
are some indirect implications. SR has been proposed to be
hosted in the hippocampus and the prefrontal cortex (Russek
et al., 2017; Stachenfeld et al., 2017). The possibility that the
goal-based reduced SR, in addition to or instead of the genuine
SR, is hosted in these regions seems in line with the observed
negative correlation between the ventromedial prefrontal cortical
and hippocampal blood-oxygen(oxygenation)-level-dependent
(BOLD) signals and the distance to the goal (i.e., signals
increase as the goal becomes closer, as in the feature
variable in the goal-based reduced SR) (Balaguer et al.,
2016). A resting-state functional magnetic resonance imaging
(fMRI) study (Zhang et al., 2016) found positive correlation
between behavioral procrastination and the regional activity of
parahippocampal cortex, an area neighboring the hippocampus.
Moreover, an event-related fMRI study (Zhang et al., 2019a)
has shown that a decreasing coupling of hippocampus-
striatum mediated the promoting effect of insufficient association
between task and outcome on procrastination. These findings
appear to support, to some degree, the rationale of modeling
procrastination behavior under the reduced SR-based model in
the present study.

Limitations, Predictions, and
Perspectives
The present study is a theoretical proposal of a hypothetical
mechanism of procrastination, and its clear limitation is the
absence of experiments. Further studies with human subjects will
need to be undertaken to validate the model. Whether, or to
what degree, humans adopt the reduced SR based on the goal
state, which can be generalized to the states with immediate
reward or punishment, can be tested by behavioral experiments
to examine if they can adapt to changes in reward sizes more
easily than to changes in reward locations (as proposed in
Shimomura et al., 2021). Then, our present model predicts that
the degree of adoption of the goal-based reduced SR is correlated
with the degree of procrastination, especially in people whose
temporal discounting is less hyperbolic (more exponential).
Also, as explained in the Results, in our model, what causes
procrastination (i.e., choice of action “STAY”) is that one of
the benefits of taking the action “GO” (i.e., “decrement of
remaining future cost”) cannot be properly taken into account if
the agent resorts to approximated values based on the reduced SR.
Therefore, it is expected that explicitly informing the subject of
such an information (e.g., by showing remaining future cost, and
its decrement by “GO” choice, by a bar indicator) would promote
the “GO” choice. Our model predicts that procrastination can
be mitigated by this way especially in procrastinators whose
temporal discounting is not very hyperbolic.

There are also limitations of our work in terms of modeling.
We assumed that the agent had acquired the reduced SR, and
based on it, the approximated values were learned, but how the
reduced SR itself had been acquired was not addressed. Moreover,
our model assumes the school term-vacation setting, which could
potentially be applied to in-class and out-of-class settings to
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some extents, but there should be situations that cannot be
well captured by our model. Furthermore, the model does not
include things that can be related to procrastination, such as
alternative rewards or deadlines (although we did examine the
effects of elapsed time-dependent penalty for “STAY” choice).
Constructing models that can address these issues is an important
future direction. Also, our model is based on the TD RL theory
and the suggested representation of TD RPE by phasic dopamine
signals, but it has been suggested that tonic or slowly changing
dopamine signals or baseline dopamine levels may represent
or relate to something different from TD RPE, in particular,
action vigor or motivation (Niv et al., 2007; Howe et al., 2013;
Collins and Frank, 2014; Hamid et al., 2016; Möller and Bogacz,
2019; but see also Kato and Morita, 2016; Kim et al., 2020).
Also, distributional RL theory, which concerns not only the
expected value but also the variance (uncertainty) or distribution
of rewards, has been developed (Morimura et al., 2010; Bellemare
et al., 2017; Dabney et al., 2018), and how reward uncertainty
or distribution can be encoded in the basal ganglia and/or
dopamine systems has been suggested (Mikhael and Bogacz,
2016; Dabney et al., 2020). It is also an interesting direction to
model procrastination behavior taking these concepts beyond the
conventional dopamine TD RPE hypothesis into account.

Notwithstanding the limitations, we would like to emphasize
the strengths of this study. As mentioned in the Introduction,
procrastination can be considered to be a form of value-
based decision making, which has been extensively studied
by combining behavioral, physiological, or neuroimaging
experiments and RL models, leading to proposals of concrete
mechanisms of how specific brain regions or neural populations
encode specific variables or parameters. The present study
tries to connect procrastination to the rich literature of
value-based decision making, and thereby could help further
our understanding of procrastination behaviors. In addition,
laboratory study of procrastination can be challenging for
task design, as the time for experiments is usually limited
and not long enough for the participants to procrastinate.

Looking from the value-based decision-making perspective,
however, could potentially bring different possibilities for
future practice.
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