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SUMMARY

Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC 

generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, 

RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia 

(ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10

target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. 

Together, these approaches identify temporal waves of RHOX10 direct targets, as well as 

RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with 

known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 

promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the 

key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell 

development and provides a blueprint for how to define TF cascades.
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In brief

Using a battery of genome-wide approaches, Tan et al. identify genes regulated by the RHOX10 

transcription factor in mouse pro-spermatogonia. Temporal waves of RHOX10 targets, including 

both direct and indirect targets, are defined. Among these genes are those that participate in a 

conserved transcription factor signaling cascade driving pro-spermatogonia differentiation.

INTRODUCTION

The propagation of the male germline depends on a specialized cell type called the 

spermatogonial stem cell (SSC). Like all stem cells, SSCs have the capacity to both self

renew and differentiate (Kubota and Brinster, 2018; Tan and Wilkinson, 2019). Indeed, SSCs 

have unlimited self-renewal capacity and thus are essential to maintain spermatogenesis 

into late adulthood. When induced to differentiate, SSCs give rise to a series of germ cell 

stages that ultimately generate sperm. There is considerable interest in SSCs as a system to 

understand stem cell biology and as a therapeutic target to cure male infertility (Kubota and 

Brinster, 2018; Tan and Wilkinson, 2020).

SSCs are derived from precursor germ cells called pro-spermatogonia (ProSG; otherwise 

known as “gonocytes”). Mouse ProSG are composed of at least three stages, based on 

morphology and proliferative status: multiplying (M)-ProSG, primary transitional (T1)

ProSG, and secondary transitional (T2)-ProSG (Culty, 2013; McCarrey, 2013). M-ProSG 

are proliferative cells that form from primordial germ cells (PGCs) in fetal mice. M-ProSG 
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give rise to mitotically quiescent T1-ProSG, which undergo genome-wide de novo DNA 

methylation to replace the DNA methylation marks erased at the PGC stage (Yamanaka 

et al., 2019). This epigenomic reprogramming continues after T1-ProSG convert into T2

ProSG at ~postnatal day-2 (P2). T2-ProSG re-initiate proliferation and are regarded as 

the direct precursors of SSCs (Culty, 2013; McCarrey, 2013). Single-cell RNA sequencing 

(scRNA-seq) analysis has provided new insights into the ProSG-to-SSC transition. For 

example, Law et al. used scRNA-seq analysis to identify a cell cluster that likely correspond 

to the T2-ProSG subset that give rise to SSCs (Law et al., 2019). Using germ-cell 

transplantation analysis, they obtained evidence that ProSG are fated to become SSCs at the 

fetal stage (Law et al., 2019). Tan et al. used scRNA-seq analysis to identify discrete ProSG 

cell clusters from embryonic day (E) 18.5 and P2 testes that largely correspond to the T1- 

and T2-ProSG, respectively (Tan et al., 2020c). This study also identified gene and protein 

markers for ProSG subsets and emergent SSCs that are potentially valuable resources for the 

field.

The molecular mechanisms by which ProSG transition to form SSCs is largely unknown. 

While several proteins have been shown to play roles in SSC establishment, their exact 

roles have remained unclear (Fok et al., 2017; Kang et al., 2016; Xu et al., 2015). We 

previously reported that a member of the X-linked Rhox homeobox gene cluster drives 

mouse SSC establishment (Song et al., 2016). Loss of Rhox10 causes progressive loss 

of spermatogenesis, leading to aberrant germ cell populations in seminiferous tubules, 

including tubules completely devoid of germ cells, a defect phenocopied by mice lacking the 

entire Rhox cluster (Song et al., 2016). Using a battery of approaches, including scRNA-seq 

and germ-cell transplantation analyses, it was found that Rhox10-null mice abnormally 

accumulate ProSG and generate few SSCs during the perinatal stage when these stem cells 

initially form. These data suggest that Rhox10 acts in ProSG to promote their differentiation 

into SSCs.

In this communication, we report molecular mechanisms by which RHOX10 acts in mouse 

germ cells. Using both in vivo and in vitro genome-wide assays, we identify genes regulated 

and targeted by RHOX10 in ProSG. We define temporal waves of genes responding 

to RHOX10. Using rescue and mimic experiments, we identify a TF cascade that acts 

downstream of RHOX10 to drive ProSG differentiation and SSC establishment.

RESULTS

Identification of RHOX10-regulated genes in the male germline in vivo

As a first step toward identifying RHOX10-regulated genes potentially important for ProSG 

differentiation and SSC generation, we performed RNA sequencing (RNA-seq) analysis on 

Rhox10-null versus control germ cells. Given that germ cells from P1 mice are largely pure 

ProSG, we used P1 Oct4-eGFP+ germ cells purified by fluorescence-activated cell sorting 

(FACS) for RNA-seq analysis. Principal component analysis (PCA) showed that the four 

Rhox10-null ProSG samples clustered together, as did the four control samples, indicative 

of reproducible results from a given genotype (Figure 1A). In contrast, the four Rhox10-null 

and four control samples plotted distant from each other (Figure 1A), indicating that loss 

of Rhox10 causes a major alteration in the ProSG transcriptome. Indeed, 1,013 genes were 
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downregulated and 794 genes were upregulated in Rhox10-null germ cells as compared 

with control germ cells (q < 0.01, ∣log 2 FoldChange∣ >0.5; Figure 1B; Table S1). Among 

these differentially expressed genes (DEGs) are 93 TF genes (of 813 TF genes expressed 

in P1 germ cells [11%]; Figure S1A; Kanamori et al., 2004; Zhou et al., 2017). This raises 

the possibility that RHOX10 controls TF networks driving ProSG-to-SSC differentiation, a 

possibility we address below. Among these Rhox10-regulated TF genes are several known 

to play roles in SSCs (including Bcl6b, Dmrt1, Egr4, Etv4, Lhx1, Pou3f1, Sall4, T, and 

Usf1), embryonic stem cells (Taf5l, Klf2, Satb2, and Hes1), hematopoietic stem cells (Cbx2, 

Dnmt1, Hhex, Irf2, Gata2, Meis1, Nfkb2, and Mybl2), and other stem cells (Plagl1, Notch3, 

Gli2, Nr2f2, Sox11, Hic1, Tcf4, and Lhx2). Many non-TFs genes regulated by Rhox10 are 

also known to have functions in SSCs or serve as SSC markers (Figure 1C). Gene Ontology 

(GO) analysis showed that genes negatively regulated by Rhox10 are enriched for functions 

associated with nucleic acid metabolism and transcriptional regulation (Figure 1B), which 

underscores the potential role of Rhox10 in TF networks. Rhox10 positively regulated genes 

are enriched for developmental functions (Figure 1B), consistent with the evidence that 

Rhox10 drives ProSG differentiation (Song et al., 2016).

To further assess the nature of these Rhox10-regulated genes, we evaluated their expression 

pattern in germ cells present during the approximate time period when Rhox10 acts in vivo 
(Song et al., 2016). To achieve this, we examined the expression pattern of these genes in 

germ cell subsets defined by scRNA-seq analysis independently performed on dissociated 

cells from freshly isolated whole testes obtained from embryonic day (E) 18.5, P2, and 

P7 mice (Tan et al., 2020c). Using Monocle pseudotime analysis, we aligned perinatal 

testicular cells according to stages (Tan et al., 2020c) and observed a clear ProSG-to-SSC 

trajectory (Figure S1B). We then identified groups of genes that exhibited similar temporal 

expression patterns along this trajectory (Figure S1C). This revealed that most differentially 

expressed genes fell into 3 groups: those with peak expression in ProSG (group 1), emergent 

SSCs (group 3), or at an intermediate stage (group 2) (Figure S1C). Comparison with 

Rhox10-regulated genes revealed that genes downregulated by Rhox10 overlapped most 

with group 1 genes, while genes upregulated by Rhox10 overlapped most with group 3 

genes (Figure 1D). These data suggested that Rhox10 primarily promotes the expression of 

SSC genes and mainly inhibits the expression of ProSG genes. This regulatory pattern is 

consistent with RHOX10 promoting ProSG differentiation and SSC generation.

Among the group 1 genes positively regulated by Rhox10 (downregulated in Rhox10-null 

cells) are genes with well-established functions in SSCs that initiate their expression late 

during ProSG development and sustain their expression in SSCs; e.g., Egr4, Etv4, Etv5, 

Gfra1, Id4, and Ret (Figure 1E). The finding that these pro-SSC genes depend on Rhox10 
for maximal expression in the late ProSG-to-SSC stage is intriguing, as it raises the 

possibility that RHOX10 acts as a central TF controlling many genes for this key stage 

of germ cell development.

Identification of genome-wide RHOX10-occupancy sites

To identify candidate RHOX10-direct targets, we used a highly sensitive method that was 

recently developed to identify TF occupancy sites: cleavage under targets and tagmentation 

Tan et al. Page 4

Cell Rep. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(CUT&Tag) analysis (Kaya-Okur et al., 2019). We performed CUT&Tag analysis on 

germline stem (GS) cells infected with a lentiviral vector expressing HA-tagged Rhox10 
at a level similar to endogenous Rhox10 (Figure S2A). To avoid the confounding effects 

of endogenous Rhox10, we knocked it down ~85% by transducing a Rhox10 small 

hairpin RNA (shRNA) lentivirus (Figure S2A) and engineered HA-tagged Rhox10 to be 

insensitive to this shRNA. Reporter analysis with RHOX10 target genes demonstrated that 

the introduction of the HA tag at the C terminus of RHOX10 does not interfere with 

RHOX10’s TF function (Figure S2B).

We performed three RHOX10 CUT&Tag replicates (Figure 2A). Analysis of the three 

replicates revealed 5,147 annotated peaks (RHOX10-occupancy sites) that were statistically 

enriched (Table S1). A large proportion of RHOX10-occupancy sites (61.2%) are located 

in the promoter region, including some occupancy sites very near the transcription start 

site (TSS) (Figures 2B and S2C). This remarkable enrichment strongly suggests that a 

major function of RHOX10 is to regulate the expression of protein-coding genes. The most 

statistically enriched sequence motifs in RHOX10-occupany sites are listed in Figure 2C. 

These putative RHOX10-binding sites are similar with those of other TFs, including KLF5, 

BCL6B, ASCL2, NFYA, ETV5, and ETV6 (Figure S2D), all of which are known to have 

roles in SSCs and other stem cells (Bungartz et al., 2012; Parisi et al., 2008; Song and 

Wilkinson, 2014; van der Flier et al., 2009). This suggests that RHOX10 has the potential 

to regulate some of the same downstream genes as these other TFs, albeit in different 

biological contexts.

To identify candidate RHOX10-target genes, we examined the overlap of RHOX10 

CUT&Tag peaks (Table S1) with Rhox10-null regulated genes defined by RNA-seq analysis 

(Figure 1B; Table S1). This revealed 410 genes that are both regulated and occupied by 

RHOX10, with 157 and 253 genes up- and downregulated, respectively, in Rhox10-null 

germ cells (Figure 2D). GO analysis showed that the upregulated genes are associated with 

several functions, including “metabolism” and “gene expression,” while the downregulated 

genes are mainly associated with “development” (Figure 2D). Among these candidate 

RHOX10-direct target genes are Ddx4, Dmrt1, Etv5, Gfrα1, Fosl2, and Ncam1, all of 

which are known to have roles in germ cells or stem cells (Figure 2E). Interestingly, 31 

of these candidate RHOX10-direct target genes encode TFs (Table S1). 18 of these TFs 

are downregulated after Rhox10 depletion and thus are presumably positively regulated by 

Rhox10. Among them, Bcl6b, Dmrt1, Egr4, Pou3f1, Sall4, and T have been reported to have 

roles in SSCs (Hobbs et al., 2012; Hogarth et al., 2010; Oatley et al., 2006; Wu et al., 2010, 

2011; Zhang et al., 2016). Among the 13 TFs upregulated by Rhox10 loss are Irf2, Plagl1, 

and Gli2, all of which have been reported to have roles in other stem cells (Minamide et al., 

2020; Schmidt-Edelkraut et al., 2013; Zhao et al., 2017). The finding that RHOX10 is likely 

to directly regulate many TFs involved in stem cells raises the possibility that RHOX10 

drives SSC establishment via a TF cascade, which we test below.

Identification of RHOX10-induced gene waves

TF occupancy within or near a gene promoter or enhancer region is often assumed to be 

sufficient evidence for the gene to be classified as a direct TF target (MacQuarrie et al., 
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2011). This is not valid, as TFs residing within a gene promoter or enhancer will not 

necessarily regulate the transcription of the associated gene. Thus, TF occupancy assays 

(e.g., chromatin immunoprecipitation sequencing [ChIP-seq] or, in our case, CUT&Tag) are 

not sufficient to define function. To more reliably identify direct TF targets, we designed a 

rapid induction assay–inducible-thiol(SH)-linked alkylation for the metabolic sequencing of 

RNA (iSLAMseq)–which detects newly synthesized transcripts–genome-wide–in response 

to a TF. In this assay, transcription is measured using an orthogonal chemistry approach 

that measures the nucleotide analog, 4-thiouridine (s4U), by reverse-transcription-dependent 

thymine-to-cytosine (T > C) conversions by high-throughput sequencing (Herzog et al., 

2017). For precise temporal analysis, the TF of interest is modified so it can be activated in 

an expeditious manner (Figure 3A).

We performed iSLAMseq analysis in GS cells derived from neonatal (P0-P2) male testes 

(Kanatsu-Shinohara et al., 2005), a developmental window just before the conversion of 

ProSG to SSCs (see Introduction). To rapidly induce RHOX10, we chose to employ the 

estrogen receptor T2 (ERT2) system, which drives swift translocation of the TF of interest 

to the nucleus in response to 4-hydroxytamoxifen (4OH-TAM) (Matsuda and Cepko, 2007). 

Thus, we generated a construct encoding a RHOX10-ERT2 fusion protein (Figure S3A) and 

transduced it, along with a Rhox10-shRNA lentiviral construct to knockdown endogenous 

RHOX10, into GS cells. As a negative control, we transduced GS cells with both a 

Rhox10-shRNA lentiviral construct and an empty ERT2 construct. As per the standard 

SLAMseq protocol (Herzog et al., 2017), the labeled RNAs was alkylated via iodoacetamide 

(IAA) treatment, which converts thymine (T) to cytosine (C). As expected, we found the 

main conversion is T to C (Figure S3B). Comparison with the negative control (–IAA) 

revealed that s4U is efficiently incorporated into the samples (~1.5%–3.5% versus <0.15% 

background incorporation; Figure S3B). PCA showed that the 2 replicates for each time 

point (0, 0.5, 1, 2, 4, and 8 h) were closely aligned, while samples from different time 

points were well separated (Figure 3B), indicating that the transcriptional profile changed 

significantly at the different time points tested.

Analysis of the iSLAMseq datasets revealed many genes exhibiting shifts in transcriptional 

activity at different time points after RHOX10 activation (Table S2). Figure 3C shows 

genes exhibiting statistically significant transcription rate changes between time points, 

while Figure 3D shows genes undergoing statistically significant transcription rate changes 

compared to the 0 h time point. Among these genes with different kinetics of their 

transcriptional responsiveness to RHOX10 are a large number of genes encoding TFs and 

DNA-binding proteins (Twist2, Bcl6b, Dot1l, Egr2, Nr4a2, Cebpd, Egr3, Stat1, Sox9, Klf4, 

Egr1, Junb, Ddit3, Jun, Fus, Fhl2, Mllt6, and Nr4a1) (Figure 3E). Some of these TFs, 

including Bcl6b, Sox9, and Junb, have been reported to play roles in SSCs, although 

their roles in ProSG differentiation are unknown. Bcl6b and Ddit3 are downregulated and 

upregulated, respectively, in Rhox10-null P1 germ cells, as shown by RNA-seq (Table 

S1), while Twist2, Bcl6b, Nr4a2, Stat1, Sox9, Klf4, Ddit3, Fhl2, Mllt6, and Nr4a1 are 

bound by RHOX10, as detected by CUT&Tag (Table S1). This raises the possibility that 

RHOX10 regulates many genes via these TFs, a notion further supported by the finding 

that “transcription” is an enriched GO category of genes transcriptionally regulated by 

RHOX10 (Table S2). RHOX10 also transcriptionally regulates many genes known to play 
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important roles in germ cell development (e.g., Sox9, Bcl6b, Junb, Kdm6b, and Inhba), 

and those with known roles in SSCs and other stem cells (e.g., Pim1, Id1, Egr1, Dot1l, 
Cdkn1a, Klf9, and Klf4). GO analysis revealed that iSLAM-seq-defined RHOX10-regulated 

genes are associated with functions including “regulation of cell proliferation,” “response 

to mechanical stimulus,” and “negative regulation of apoptosis” (Table S2). KEGG pathway 

analysis showed that these RHOX10-regulated genes are enriched for proteins involved in 

“TNF signaling,” “p53 signaling,” “oxytocin signaling,” “thyroid hormone signaling,” and 

“FoxO signaling” (Table S2).

Cross-analysis with the CUT&Tag dataset indicated that approximately 1/3 to 1/2 of 

RHOX10-regulated genes at each time point contained statistically significant RHOX10 

occupancy peaks (Table S2; 44%, 31%, 36%, 42%, and 40% of the RHOX10-regulated 

genes exhibiting statistically significant altered transcription rates at 0.5, 1, 2, 4, and 8 h, 

respectively, were detectably occupied by RHOX10). This suggests that a relatively high 

proportion of RHOX10-regulated genes, even those with delayed kinetics, are direct targets.

We classified RHOX10-regulated genes as “immediate-early RHOX10-direct targets” if 

they (1) were bound by RHOX10 (as determined by CUT&Tag) and (2) exhibited 

significantly altered transcription rates after only 0.5 h and/or 1 h exposure to RHOX10

ERT2 and 4OH-TAM (Figures 3E and 3F). This class includes genes encoding the TF 

NR4A1 and RNA-binding proteins involved in RNA splicing (HNRNPF) or translation 

(PAIP2). Interestingly, some of the immediate-early direct targets exhibit transient regulation 

(Figures 3E and 3F). For example, Hnrnpf is transcriptionally induced and then rapidly 

transcriptionally extinguished within 1 h of 4OH-TAM treatment (Figure 3G). Some exhibit 

rapid transcriptional shut-off, e.g., Klf9 and Dusp1 (Figure 3G). A second subclass of these 

immediate early targets exhibit sustained transcriptional alterations in response to RHOX10, 

e.g., Nr4a1 and Lrrc17 (Figures 3E and 3F).

We classified RHOX10-regulated genes as “delayed RHOX10-direct targets” if they (1) 

were bound by RHOX10 (as determined by CUT&Tag) and (2) required at least 2 h 

exposure to RHOX10-ERT2 and 4OH-TAM to exhibit altered transcription rates (Figures 

3E-3G). A plethora of these delayed-target genes encode TFs (Sox9, Bcl6b, Ddit3, Klf4, 

Lhx2, Nr4a1, Nr4a2, Stat1, Stat3, Twist2, and Bach2) and thus could participate in networks 

that regulates batteries of downstream genes. Other classes of delayed-target genes included 

those encoding factors critical for events in ProSG, including signaling factors (Klf9, 

Nfkbiz, Mcl1, Sox9, Txnip, Hmox1, Stat1, Stat3, Klf4, Ddit3, Tgif1, and Ptpn1), adhesion 

proteins (Ank3, Farp2, Jak1, Lpp, and Alcam), and pro-migration proteins (Nr4a2, Nr4a1, 

Twist2, Hmox1, and Zswim6). Many of these genes exhibit sustained altered transcription 

for many hours after RHOX10 induction; e.g., Serpine1, Mat2a, Trib1, Nfkbiz, Chd3, Btg2, 

Sox9, and Klf9.

We classified RHOX10-regulated genes as “secondary RHOX10-response genes” if they (1) 

were not measurably bound by RHOX10 (as determined by CUT&Tag) and (2) required 

at least 2 h exposure to RHOX10-ERT2 and 4OH-TAM to exhibit altered transcription 

rates (Table S2). Many of these secondary-response genes encode TFs (Dot1l, Egr1, Egr2, 

Egr3, Jun, Junb, Lhx1, Nab2, Ssbp3, Tead1, Cebpd, and Sall3) and RNA-binding proteins 
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(Cavin1, Chtop, Fus, Junb, Ncl, and Pim1) that could serve as regulatory factors influencing 

ProSG differentiation. Other secondary RHOX10-response genes that could serve in this 

capacity include those encoding signaling factors (Abca1, Cdkn1a, Ddit4, Egr1, Inhba, 

Klf6, Mt1, Mt2, Nfkbia, and Rcan1), adhesion proteins (Ext1, Tnc, and Ccl2), and pro

migration proteins (Actg1, F2r, Egr1, Egr3, Glul, and Lmna). Secondary-response genes are 

commonly thought to be regulated by intermediary transcriptional regulators that are directly 

regulated by the TF of interest (Tullai et al., 2007). In support, we obtained evidence that at 

least one of the secondary RHOX10-response genes, Zbtb16, is regulated by this mechanism 

(see below).

RHOX10 regulates the transcription of key SSC genes

Our RNA-seq, CUT&Tag, and iSLAM-seq datasets revealed many interesting genes 

regulated by RHOX10, as described above. We selected five of these genes—Gfrα1, Dmrt1, 

Etv5, Hnrnpf, and Klf9—for further analysis (Figures 2E and 3G). These 5 genes have all 

been previously shown to function in SSCs or other stem cells, and thus we considered 

them good candidates to have a role in SSC generation. Dmrt1 encodes a TF essential for 

the migration of ProSG to the periphery of the seminiferous tubule (Kim et al., 2007), 

a developmental process that occurs at approximately the same time as ProSG-to-SSC 

conversion and brings ProSG into the SSC “niche” (Culty, 2013; McCarrey, 2013). Etv5 
encodes a TF with roles in SSC self-renewal and maintenance; its loss causes progressive 

germ-cell depletion and Sertoli-cell-only syndrome in mice (Chen et al., 2005). Gfrα1 
encodes a receptor for glial cell-derived neurotrophic factor (GDNF), which is indispensable 

for SSC self-renewal and maintenance (Meng et al., 2000; Naughton et al., 2006). Hnrnpf 
encodes a RNA-binding protein essential for ESC pluripotency (Yamazaki et al., 2018). 

Klf9 is an oxidative stress-inducible gene that encodes a TF expressed in stem cells that 

regulates the differentiation of many cell types (Ying et al., 2011). The TSS-proximal 

promoter region of all 5 of these genes is occupied by RHOX10 in germ cells (Figures 2E 

and 3G). To determine whether RHOX10 is sufficient to regulate the transcription of these 

genes through their promoters, we cloned their promoters into the pGL3 Luciferase reporter 

vector. Transfection analysis in the GC1 germ cell line (which largely lacks endogenous 

RHOX10 [Figure S4A]) showed that forced expression of RHOX10 significantly increased 

luciferase activity driven by the Dmrt1, Etv5, and Gfrα1 promoters (Figure 4A). This is 

consistent with the downregulation of endogenous Dmrt1, Etv5, and Gfrα1 in Rhox10-null 

germ cells in vivo (Figure 1C). The Hnrnpf promoter also showed a trend toward driving 

increased luciferase expression in response to RHOX10 (Figure 4A). In contrast, the Klf9 
promoter showed a trend toward being downregulated by RHOX10 (Figure 4A), consistent 

with the downregulation of endogenous Klf9 in response to RHOX10 in GS cells (Figure 

3G). However, neither Hnrnpf nor Klf9 promoter regulation was statistically significant. To 

examine generality, we forced expressed RHOX10 in mouse pluripotent P19 cells and found 

this significantly increased luciferase activity driven by the Dmrt1, Etv5, Gfrα1, and Hnrnpf 
promoters (Figure S4B). We conclude that the promoter regions of Dmrt1, Etv5, Gfrα1, and 

Hnrnpf are sufficient to confer a transcriptional induction response to RHOX10. Since only 

Dmrt1, Etv5, and Gfrα1 were significantly induced by RHOX10 in germ cells, we chose to 

study these 3 genes in more detail.
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RHOX10 drives ProSG differentiation in vitro and in vivo

To probe whether the RHOX10-direct target genes, Dmrt1, Etv5, and Gfrα1, have a 

physiological role downstream of RHOX10, it was critical to examine these genes in the 

context of ProSG differentiation. ProSG differentiation has traditionally been challenging to 

study, as, until recently, only one ProSG marker, nuclear FOXO1, was known (Goertz et 

al., 2011), and there were no known stage-specific ProSG markers (Culty, 2013; McCarrey, 

2013). Through scRNA-seq analysis, we recently identified a ProSG-specific protein marker, 

DNMT3L, whose expression progressively declines as ProSG differentiate, such that few 

DNMT3LBright cells remain by the ProSG-to-SSC transition period (Tan et al., 2020c). We 

confirmed this using immunofluorescence (IF) analysis: testes from wild-type (WT) P3 

mice have only ~16% DNMT3LBright germ cells remaining; most of the germ cells have 

become DNMT3L− (41%) and the rest are in transition (33% DNMT3LDim) (Figure 4B). In 

contrast, Rhox10-null P3 testes contain 52% DNMT3LBright, 23% DNMT3LDim, and 25% 

DNMT3L− germ cells (Figure 4B), indicating an accumulation of immature germ cells. This 

confirms our previous finding—using scRNA-seq analysis—that Rhox10-null mice have a 

defect in ProSG differentiation (Song et al., 2016). To further test this, we performed IF 

analysis with ETV4, which we recently showed initiates its expression in late T1-ProSG 

and maintains expression in T2-ProSG and emergent SSCs (Tan et al., 2020c). Consistent 

with loss of Rhox10 reducing SSC formation by ~7-fold (Song et al., 2016), Rhox10-null P3 

testes have ~6-fold lower numbers of ETV4+ germ cells than control P3 testes (Figure 4C). 

Together, these data verify that Rhox10-null mice have a defect in ProSG differentiation and 

SSC formation, thereby demonstrating the utility of the mouse ProSG and SSC markers we 

identified (Tan et al., 2020c).

In order to define genes that act downstream of RHOX10 to drive ProSG differentiation, 

it was essential to have an in vitro model system. Toward this end, we elected to use P0 

testes as a source of germ cells, as this time point is composed of only ProSG (Culty, 2013; 

McCarrey, 2013), the stage of germ cell that fails to efficiently progress in Rhox10-null 

mice (Song et al., 2016). We isolated testicular cells from P0 testes from both Rhox10-null 

and littermate control mice and cultured them in a previously developed culture medium 

(Kanatsu-Shinohara et al., 2005). However, the growth factor, GDNF, was omitted to avoid 

possible confounding effects arising from the fact that the gene encoding its receptor, Gfrα1, 

is one of the genes we planned to functionally test by virtue of it being upregulated by 

RHOX10 (Figures 1C, 2E, and 4A). For these short-term primary culture experiments, we 

elected to culture all testicular cells, not just germ cells, as somatic cells in the testes are 

known to exert essential roles in germ cell development (Oatley and Brinster, 2012; Tan and 

Wilkinson, 2020).

At the initiation of culture, ~100% of the germ cells were DNMT3LBright (Figures 4D and 

S4C; germ cells were marked with GCNA1 [also known as TRA98]), as expected, given 

that all germ cells from P0 mice are known to be ProSG (Culty, 2013; McCarrey, 2013). 

Consistent with the timing of the T1- to T2-ProSG conversion event in vivo, which occurs 

at ~P2 (Culty, 2013; McCarrey, 2013), the proportion of DNMT3LBright germ cells in these 

P0 testicular cell cultures declined to 54% at day 2 and only 6% at day 3 (Figures 4D and 

S4C). This in vitro temporal expression pattern of DNMT3L mimics that which occurs in 
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vivo (Figure 4B). In marked contrast, the Rhox10-null cultures failed to show this dramatic 

reduction of DNMT3LBright cells, with almost no reduction at day 2 (Figures 4D and S4C). 

Even by day 3, most of the Rhox10-null germ cells remained DNMT3LBright (51%); some 

were DNMT3LDim (34%) and only 15% had become DNMT3L− cells (Figures 4D and 

S4C). These in vitro results recapitulate the effect of Rhox10 knockout in vivo (Figure 4B), 

thereby validating our in vitro system.

RHOX10 acts through DMRT1 to drive ProSG differentiation

With the in vitro culture system we developed above, coupled with the ProSG and SSC 

markers we identified, we were in a position to ask whether Dmrt1, Gfrα1, or Etv5 act 

downstream of RHOX10 to drive ProSG differentiation. To address this question, we first 

performed a rescue experiment in which we force expressed Dmrt1, Gfrα1, or Etv5 in 

Rhox10-null primary cells. The rationale was that if any of these 3 genes requires being 

transcriptionally activated by RHOX10 to drive ProSG differentiation, then rescue of their 

expression in Rhox10-null cells should also rescue ProSG differentiation. Figure 5A shows 

that forced expression of Dmrt1 did indeed rescue ProSG differentiation, leading to almost 

complete loss of DNMT3LBright cells (ProSG) in Rhox10-null testicular cultures by day 3, 

analogous to WT cells (Figure 5A). Forced expression of the other two genes we tested, 

Gfrα1 and Etv5, also led to some rescue of ProSG differentiation, but this was only evident 

in certain cell populations and time points, e.g., DNMT3LDim at day 2 (Figure 5A). In 

contrast, Dmrt1 had statistically significant robust effects in most subsets at both time points 

(Figure 5A), and thus we elected to only pursue investigating Dmrt1 as a downstream 

mediator of RHOX10.

To further test whether Dmrt1 rescues the ProSG differentiation defect caused by loss of 

RHOX10, we performed qPCR analysis on germ cells purified from the testicular cultures 

using EpCAM, an early germ cell marker (Inoue et al., 2017; Watanabe et al., 2018). We 

tested two classes of markers: those that go up during the ProSG-to-SSC transition in vivo 
(Etv4 and Lhx1) and those that go down during this transition (Ank2 and Cln3) (Tan et al., 

2020c). These 4 markers responded as expected in Rhox10-null germ cells: Etv4 and Lhx1 
were reduced relative to control germ cells, indicative of perturbed progression to SSCs, 

while Ank2 and Cln3 were elevated, indicative of accumulation of ProSG (Figure 5B). 

Forced expression of Dmrt1 in Rhox10-null testicular cells rescued the expression of all 4 

of these markers, such that their levels were not statistically different from WT (Figure 5B), 

thereby verifying that Rhox10 drives ProSG differentiation through transcriptional activation 

of Dmrt1.

While the above collective results suggest that RHOX10 drives the ProSG-to-SSC transition 

by directly transcriptionally activating Dmrt1 (Figures 1C, 2E, and 4A), we sought to 

solidify this finding by testing whether RHOX10 binds to Dmrt1 promoter DNA sequences 

(the CUT&Tag technique we used in Figure 2 measures TF occupancy in chromatin, not 

direct DNA binding). To this end, we elected to use the electrophoretic mobility shift assay 

(EMSA) (Garner and Revzin, 1981). EMSA showed that an oligonucleotide corresponding 

to the region of Dmrt1 with high RHOX10 occupancy as defined by CUT&Tag (Figure 

2E) exhibited retarded mobility in response to HA-tagged RHOX10 (Figure 5C, lane 5). As 
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confirmation, cold competitor oligonucleotide greatly reduced the signal (Figure 5C, lane 

6) and addition of anti-HA antibody elicited a supershift (Figure 5C, lane 4). The predicted 

RHOX10-binding sequence in this Dmrt1 promoter region is CCAAT (reverse complement 

of #2 predicted RHOX10-binding motif in Figure 2C). To test its role, we deleted this 

sequence from the oligonucleotide and found this prevented RHOX10 binding (Figure 5C, 

lane 7; Figure 5D).

To test whether RHOX10 requires this CCATT motif to elicit transcription induction of 

Dmrt1, we removed this motif from the Dmrt1 promoter-luciferase reporter we used for 

Figure 4A. Transfection analysis showed that this mutated reporter had a greatly blunted 

response to RHOX10 (Figure 5E). Together, these results demonstrated that RHOX10 

directly binds to a CCAAT motif in the Dmrt1 promoter region and that this binding confers 

Dmrt1 transcriptional induction in response to RHOX10.

Dmrt1 is a highly conserved gene in vertebrates (Raymond et al., 2000). Thus, we elected 

to examine whether the ability of RHOX TFs to regulate Dmrt1 extends to humans. The 

human genome contains three RHOX genes—RHOXF1, RHOXF2, and RHOXF2B (Niu 

et al., 2011)—the latter two are likely to be functionally equivalent, as they are 99.8% 

identical in sequence in their exons and introns (Wayne et al., 2002). Both RHOXF1 

and RHOXF2 are exclusively expressed in germ cells in humans (Song et al., 2013). In 

particular, both are expressed in ProSG in human fetal testes (Song et al., 2013) and thus 

have the potential to regulate human DMRT1 in the context of ProSG differentiation. To 

address whether human RHOX TFs regulate human DMRT1, we cloned the human DMRT1 
promoter region into the pGL3 Luciferase reporter vector and transfected this into the 

human TCam-2 germ cell line. This revealed that forced expression of either RHOXF1 
and RHOXF2 significantly increased luciferase activity driven by the DMRT1 promoter 

(Figure 5F). RHOXF1 exerted a stronger effect than RHOXF2. Conversely, RNAi-mediated 

RHOXF1 knockdown significantly decreased luciferase activity driven by the DMRT1 
promoter (Figure 5F). RHOXF2 knockdown elicited a trend toward decreased luciferase 

activity but it was not statistically significant (Figure 5G). To examine cell-type specificity, 

we forced expressed RHOXF1 and RHOXF2 in HEK293T cells and found that the former, 

but not the latter, significantly increased luciferase activity driven by the DMRT1 promoter 

(Figure S4D). We conclude that the ability of RHOX TFs to transcriptionally activate 

Dmrt1/DMRT1 is a conserved response.

A RHOX10-DMRT1-ZBTB16 regulatory circuit drives ProSG differentiation and SSC 
generation

The experiments delineated above provided many lines of evidence that a RHOX10-DMRT1 

TF regulatory circuit promotes ProSG differentiation. We considered the possibility that 

other TFs may also participate in this circuit. One promising candidate was ZBTB16, a 

zinc-finger TF also known as PLZF that has been shown to be positively regulated by 

DMRT1 in mouse male germ cells in vivo (Zhang et al., 2016). Given this regulatory 

relationship between DMRT1 and ZBTB16, we hypothesized that RHOX10 drives 

ProSG differentiation and SSC formation via a regulatory circuit in which RHOX10 

activates Dmrt1 transcription, generating DMRT1 protein, which, in turn, activates Zbtb16 

Tan et al. Page 11

Cell Rep. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcription, thereby generating ZBTB16 protein, which drives ProSG differentiation 

(Figure 6A). Several lines of evidence supported this hypothesis: first, inspection of our 

RNA-seq data revealed that Zbtb16 is positively regulated by RHOX10 (Table S1), which 

we validated by qPCR (Figure 6B). Second, Zbtb16 does not have a detectable RHOX10 

occupancy site (Table S1), suggesting it is indirectly regulated by RHOX10. Third, forced 

expression of Dmrt1 in Rhox10-null germ cells upregulated Zbtb16 expression (Figure 6B). 

Fourth, forced expression of Zbtb16 in Rhox10-null testicular cell cultures rescued the 

ability of these knockout cells to undergo ProSG differentiation (Figure 6C). Finally, Zbtb16 
knockdown in Dmrt1-overexpressing Rhox10-null testicular cell cultures prevented ProSG 

differentiation (Figure 6D). Together, these experiments provide several lines of molecular 

and functional lines of evidence for a RHOX10-DMRT1-ZBTB16 TF regulatory circuit that 

drives SSC establishment (Figure 6A).

DISCUSSION

Homeobox genes were originally discovered in flies as key developmental regulators whose 

loss causes conversion of one body part into another (homeosis), as well as other striking 

developmental abnormalities (Garber et al., 1983). All homeobox proteins harbor a triple 

α-helical 60 amino-acid DNA-binding domain referred to as a homeodomain. The Hox 
subfamily of homeobox genes was the first to be discovered and have since been shown 

to encode TFs that control several discrete steps in embryonic development across the 

phylogenetic scale (Heffer et al., 2013). However, many other homeobox gene subfamilies 

exist; indeed, mammalian species have over 200 homeobox genes, many of which are not 

well understood, including the subject of this report: the members of the X-linked Rhox 
cluster. Indeed, the biological roles of Rhox genes are largely unknown. While some of the 

33 mouse Rhox genes have been knocked out or depleted, most of the resulting phenotypes 

are subtle or undetectable (Brown et al., 2013; Busada et al., 2016; Hu et al., 2010; Maclean 

et al., 2005, 2013; Takasaki et al., 2001). Furthermore, to date, only one RHOX protein—

RHOX5—has been demonstrated to be a TF; albeit only one direct target was defined 

(MacLean et al., 2013). In this communication, we focus on Rhox10, the only Rhox gene 

whose loss causes major spermatogenic defects, including inefficient SSC generation and 

progressive loss of spermatogenesis (Song et al., 2016). We show here that Rhox10 encodes 

a TF that regulates an intriguing array of targets, including many genes previously known 

to function in SSCs. Using a battery of genome-wide approaches, we identify both direct 

and likely secondary targets of RHOX10 in germ cells. We also modified a genome-wide 

metabolic labeling approach to permit temporal analysis of TF targets, which allowed us to 

define waves of RHOX10 target genes, including both immediate early and delayed targets 

encoding scores of other TFs. Finally, using a primary culture system we developed, coupled 

with stage-specific germ-cell markers we identified, we obtained evidence that RHOX10 

participates in a TF cascade driving the ProSG-to-SSC transition.

Our discovery that a RHOX10-DMRT1-ZBTB16 TF cascade participates in SSC 

establishment not only advances our understanding of RHOX10 but also DMRT1 and 

ZBTB16, both of which have been examined in detail in past studies. Most of what is 

known about DMRT1 is its roles in driving the differentiation, survival, and proliferation 

of germ cells at later stages than those studied herein (at P7 and later postnatal time points 
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in mice) (Fahrioglu et al., 2007; Kim et al., 2007; Raymond et al., 2000). DMRT1 has 

also been shown to be involved in the maintenance of SSCs in adult testes (Zhang et al., 

2016). With regard to ProSG, DMRT1 has been shown to be required for the efficient 

migration of these cells from the center of the seminiferous tubule to the stem cell niche at 

the periphery (Kim et al., 2007). This ProSG migration defect phenocopies that observed 

in Rhox10-null mice (Song et al., 2016), supporting our finding that RHOX10 positively 

regulates Dmrt1. ZBTB16 was previously shown to have roles in SSCs, based on analysis 

of Zbtb16 mutant mice (Buaas et al., 2004; Costoya et al., 2004). Consistent with Zbtb16 
acting downstream of Rhox10, the testicular phenotype of Zbtb16 mutant mice is similar in 

many respects with that of Rhox10-null mice, including progressive spermatogenic failure, 

resulting in regions of the seminiferous tubule devoid of early germ cells or all germ cells 

(Buaas et al., 2004; Costoya et al., 2004). While this was ascribed to be the result of 

a failure in SSC maintenance, a notion supported by more recent work (Sharma et al., 

2019), the spermatogenic abnormalities in Zbtb16 mutant mice may also result from a 

failure to generate a normal pool of SSCs. Consistent with this, Zbtb16-mutant mice exhibit 

inefficient expansion of the germ cell pool during the postnatal period (Costoya et al., 2004). 

Strikingly, Zbtb16 mutant mice have an ~7-fold reduction in Oct4-GFP+ (SSC-enriched) 

cells at P8 (Buaas et al., 2004), analogous with the ~6-fold reduction in SSCs in P7–P8 

Rhox10-null mice, as measured by germ cell transplantation (Song et al., 2016). This raises 

the possibility that, like Rhox10-null mice, Zbtb16 mutant mice have a defect in SSC 

establishment, a notion supported by the fact that ZBTB16 protein is readily detectable 

at the ProSG stage (Costoya et al., 2004) and our finding that ZBTB16 acts downstream 

of RHOX10 and DMRT1 to drive the differentiation of ProSG in vitro. The hierarchical 

regulatory relationship of the RHOX10, DMRT1, and ZBTB16 TF triade, with RHOX10 

most upstream, suggests that RHOX10 has the potential to influence many biological events 

in developing germ cells.

We designed an approach—iSLAMseq—to identify RHOX10-direct targets and to 

determine whether there are temporal waves of genes undergoing alterations in transcription 

rate in response to RHOX10. We suggest this iSLAMseq approach will have broad 

applications for studying other TFs. As a testament to its usefulness, we found that 31%–

44% of iSLAMseq-defined RHOX10-regulated gene had RHOX10 bound (as determined by 

CUT&Tag), which was higher than the proportion of RNA-seq-defined DEGs with RHOX10 

occupancy (23%). Among the RHOX10-regulated genes defined by iSLAMseq are many TF 

genes (see Results), raising the possibility that RHOX10’s reach extends well beyond the 

Dmrt1 and Zbtb16 TF genes.

iSLAMseq coupled with CUT&Tag allowed us to define direct target genes undergoing 

very rapid shifts in transcription rate in response to RHOX10. Among these RHOX10-direct 

target genes was Paip2, which encodes a translational repressor protein (Khaleghpour et al., 

2001), whose loss leads to male infertility (Yanagiya et al., 2010). Other immediate-early 

targets encode proteins with interesting functions in non-germ cell types, including the TF 

NR4A1 and the thioredoxin-binding protein TXNIP, both of which act in the hematopoietic 

system, including hematopoietic stem cells (Freire and Conneely, 2018; Jung et al., 2013), 

and the RNA-binding protein HNRNPF, which modulates telomerase function (Xu et 

al., 2020). iSLAMseq also allowed us to identify genes that respond to RHOX10 with 
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delayed kinetics. We defined those with RHOX10 occupancy as delayed-direct targets, while 

those not significantly occupied by RHOX10 as secondary-response targets. An intriguing 

possibility is that a subset of these secondary-response genes could participate in TF circuits 

analogous to the RHOX10-DMRT1-ZBTB16 TF cascade we showed has a functional role 

in germ-cell differentiation. In support, we found that many RHOX10-direct targets encode 

TFs and thus are logical candidates to be responsible for regulating a subset of the RHOX10 

secondary-response genes. The identification of genes with different temporal kinetics in 

response to RHOX10 in vitro may also reflect what occurs in developing germ cells in vivo. 

For example, delayed RHOX10-mediated regulation would allow turn-on and -off of specific 

functions requiring a temporal delay after RHOX10 induction in vivo.

The number of RHOX10 direct targets we identified using iSLAMseq may be an 

underestimate. Part of this may be due to limited sensitivity given the amount of sample 

we used. Another contributing factor may be that we only classified RHOX10-regulated 

genes as direct targets if they were also bound by RHOX10, as detected by CUT&Tag. Some 

of the genes that scored as “negative” may be sufficiently bound by RHOX10 to trigger a 

transcriptional response. We suspect this is the case, as more than 1/2 of the immediate-early 

RHOX10 direct-target genes (those transcriptionally regulated very rapidly after 4OH-TAM 

treatment (after 0.5 h or 1 h) to induce RHOX nuclear translocation) were not scored 

as having RHOX10 occupancy. We suspect that many of these genes are direct targets, 

which would expand the list of direct target genes, including genes with well-established 

functions, e.g., Ubc, Egr1, Eef1a1, Brd2, Ptgs2, Cdkn1a, Phlda1, Actg1, Ssbp3, Cxcl1, 

Actb, and Rpl41 (Table S2). For the same reason, we cannot distinguish—with certainty

—which RHOX10-regulated genes are delayed direct targets versus secondary-response 

targets. Those with RHOX10 occupancy are likely direct targets and those not detectably 

bound by RHOX10 will often be secondary response genes, but proof would require detailed 

further investigation on a gene-by-gene basis. Nonetheless, our analysis identified many 

high-confidence TF-direct targets—in a rare cell population in vivo—that displayed either 

immediate or delayed responsiveness. All of these high-confidence RHOX10 target genes 

are detectably expressed in purified P1 germ cells (Table S1).

An important future question is to determine whether RHOX TFs have a conserved role 

in human SSC establishment. In support of this possibility, both human RHOXF1 and 

RHOXF2 protein are expressed in germ cells in human fetal and adult testes (Song et al., 

2013). Furthermore, we showed here that both human RHOXF1 and RHOXF2 can induce 

DMRT1 in human germ cells. However, to definitively address this question, it is necessary 

to first determine when SSCs first form in humans. While human SSC-like cells have 

been detected by scRNA-seq analysis at birth (Sohni et al., 2019) and postnatally (Guo et 

al., 2020), precisely when functional self-renewing human SSCs are first generated is not 

known. Understanding how human SSCs first form may provide important insights into how 

to culture and expand human SSC for clinical applications in treating infertility (Tan and 

Wilkinson, 2020). In this light, it will be intriguing to determine whether genes induced by 

the RHOX10-DMRT1-ZBTB16 TF cascade participate in signaling pathways that permit the 

culture and expansion of SSCs in vitro.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Miles F. Wilkinson 

(mfwilkinson@health.ucsd.edu).

Materials availability—This study did not generate new unique reagents. All the materials 

used in this study are preserved by Dr. Miles F. Wilkinson’s laboratory and are available 

upon request. Rhox10 null mouse line (B6.129-Rhox10tm1Wilk/J) used in this study has been 

deposited to the Jackson Laboratory (JAX: 035193).

Data and code availability—The RNaseq, CUT&Tag, and iSLAMseq data generated 

in this study have been deposited at the NCBI GEO database and are publicly available 

as of the date of this publication. Accession numbers are listed in the key resources table. 

Microscopy data reported in this paper will be shared by the lead contact upon request.

No unpublished custom code, software or algorithm was used in this study. Freely available 

software and algorithms used for analysis are listed in the Key Resources Table. All original 

code will be shared by the lead contact upon request.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—This study was carried out in strict accordance with the guidelines of the 

Institutional Animal Care and Use Committee (IACUC) at the University of California, 

San Diego. The protocol was approved by the IACUC at the University of California, San 

Diego (permit number: S09160). All mice were housed under a 12 hr light:12 hr dark cycle 

and provided with food and water ad libitum. All mouse strains used for analysis were 

backcrossed to C57BL/6J for at least 8 passages. As described previously (Song et al., 

2016), floxed-Rhox10 mice were mated with Ella-Cre mice to generate global Rhox10-KO 

mice. For mating, males (aged 8-16 weeks) and females (8-16 weeks) were used. Testes 

from P0-P2 male pups were collected for experiments, as described below.

Primary cell cultures and cell lines—GC1 and HEK293T cells were grown in DMEM 

(GIBCO), 10% fetal bovine serum (sigma), and 1× penicillin/streptomycin (GIBCO). P19 

cells were grown in MEMα (GIBCO), 10% fetal calf serum, and 1× penicillin/streptomycin 

(GIBCO). TCam-2 cells (de Jong et al., 2008) were grown in advanced RPMI 1640 

medium (GIBCO), 10% fetal calf serum, 2 mM L-glutamine, and 1× penicillin/streptomycin 

(GIBCO). Mouse GS cells were prepared by dissociating single cell from neonatal (P0-P2) 

testes as previously described (Kanatsu-Shinohara et al., 2003). In brief, testicular cells were 

collected by two-step enzymatic digestion (see details in the Testicular Cell Dissociation 

section, below), plated on 0.1% gelatin-coated plates, and incubated overnight. Germ cells 

were enriched by gelatin selection by collecting non-attached cells by gentle pipetting 

and transferring them to laminin (Corning)-coated plates (8 μg/3.8 cm2), and cultured in 
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IMDM/SFM, as described previously (Kanatsu-Shinohara et al., 2014). The IMDM/SFM 

media composition is: Iscove modified Eagle medium (IMDM) supplemented with 25 μg/ml 

insulin (Sigma), 100 μg/ml apo-Transferrin (sigma), 200 μg/ml sodium pyruvate (Thermo 

Fisher Scientific), 60 μM putrescine (Sigma), 30 nM sodium selenite (Sigma), 6 mg/ml 

D-(+)-glucose (Sigma), 1 μl/ml DL-lactic acid (sigma), 5 mg/ml bovine albumin (Sigma), 2 

mM GlutaMAX supplement (Thermo Fisher Scientific), 50 μM 2-mercaptoethanol (Thermo 

Fisher Scientific), 1× MEM vitamin solution (Thermo Fisher Scientific), 1× non-essential 

amino acids (Thermo Fisher Scientific), 100 μM ascorbic acid (Sigma), 10 μg/ml d-Biotin 

(Sigma), 30 ng/ml β-Estradiol (sigma), 60 ng/ml progesterone (Sigma), 1 mg/ml fetuin 

(Sigma), 10 μl/ml CD Lipid concentrate (Thermo Fisher Scientific), 2 μl/ml cholesterol 

solution (Sigma), and 50 μl/ml knockout serum replacement (Thermo Fisher Scientific), 10 

ng/ml bFGF (Sigma), and 15 ng/ml recombinant human GDNF protein (R&D Systems). All 

cells were cultured in a humidified 5% CO2, 37°C incubator.

METHOD DETAILS

Transfection and viral transduction—For reporter assay, the promoter regions of 

candidates were cloned into pGL3 vector (Promega). The primers for generating these 

reporters are listed in Table S3. The RHOXF1- and RHOXF2-shRNA plasmids were 

generated by inserting ologonucleotides corresponding to siRNA sequences (Table S3) 

into the pLLU2G backbone. HEK293T cells were transfected with the Lipofectamine 

2000 reagent (Invitrogen). GC1 and TCam-2 cells were transfected with the Lipofectamine 

3000 reagent (Invitrogen). GS cells were transfected with the Lipofectamine stem reagent 

(Invitrogen). For transfection experiments, most cells were trypsinized and seeded in 24-well 

plates at a density of ~70,000 cells per well. TCam-2 cells were seeded at 20,000 cells/

well. Transfection was performed following the manufacturer’s instructions. For lentiviral 

transduction, 1 infectious unit (IU) of lentivirus per cell was added with 6 μg/ml polybrene. 

Cells were harvested 1 day post-transfection for luciferase activity analysis. Luminescence 

was measured using the Dual-Luciferase Reporter assay system (Promega) following the 

manufacturer’s instruction. The pRL-cmv (Renilla) vector was co-transfected in these 

experiments as an internal control for normalization. Statistical significance was determined 

using the paired Student’s t-test.

qRT-PCR analysis—Total cellular RNA was isolated using TRIzol (Invitrogen), as 

previously described (Ramaiah et al., 2019). Reverse transcription-PCR analysis was 

performed using 1 μg of total cellular RNA using iScript cDNA synthesis kit (Bio-Rad), 

followed by PCR amplification using SYBR Green (Bio-Rad) (Tan et al., 2016a) and the 

ΔΔCt method (with ribosomal L19 for normalization). The primers are listed in Table S3. 

Statistical significance was determined using the paired Student’s t-test.

Immunofluorescence analysis—As previously described (Tan et al., 2020a; Tan et 

al., 2020c), testes were fixed in Bouin’s fixative for 0.5 h at room temperature, and then 

cleared using multiple changes of 70% ethanol and kept at 4°C. Tissues were dehydrated 

through an ethanol series—30%, 50%, 70%, 95%, 100%, and 100%—for 10 min each at 

room temperature, and cleared with two changes of xylene and embedded in paraffin. Tissue 

blocks were sectioned at 5 μm. Sections were deparaffinized twice in xylene, followed 

Tan et al. Page 16

Cell Rep. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by serial dilutions of ethanol. Unmasking was performed using a steamer (IHC World). 

Blocking was performed by incubating with 5% goat or donkey serum (Sigma), depending 

on the usage of secondary antibodies, for 1 hr at room temperature. The sections were then 

incubated overnight with the primary antibody (listed in Table S3) at 4°C and incubated 

with secondary antisera (listed in Table S3) for 1 hr at room temperature. The nuclei were 

counterstained with DAPI (Vector Laboratories), a coverslip was placed over the sections 

with mounting medium, and the images were viewed using a Leica DMI4000 B fluorescence 

microscope. Statistical significance was determined using the chi-square test.

Testicular cell dissociation—Single testicular cells were isolated from P0 or P2 testes 

using a two-step enzymatic digestion protocol previously described (Tan et al., 2020c), with 

minor modifications. In brief, testicular tissue was mechanically disrupted and enzymatically 

digested with 1 mg ml−1 collagenase type IV (Worthington Biochemical) in Hanks Balanced 

Salt Solution (HBSS; GIBCO) at 37°C. The tubules were sedimented and washed with 

HBSS and digested in 0.25% Trypsin-EDTA (ThermoFisher) and Deoxyribonuclease I 

(Worthington Biochemical). The suspension was triturated vigorously ten times, incubated 

at 37°C for 5 min, followed by repeat trituration and incubation. The digestion was stopped 

by adding the same volume of αMEM + 10% FBS medium and the cells were size-filtered 

through 70 μm strainers (ThermoFisher), and pelleted by centrifugation at 300 g for 5 min.

For in vitro culture, testicular cells were isolated from P0 testes from both Rhox10-null 

and littermate control mice. The total cell suspensions were cultured using a modified 

version of the early postnatal germ-cell culture medium (IMDM/SFM) developed by 

Kanatsu-Shinohara et al. (Kanatsu-Shinohara et al., 2005). The main modification we made 

is to omit GDNF, as described in the Results section.

RNA-seq analysis—To obtain the samples for RNA-seq analysis, wt C57BL/6J mice 

were crossed with Oct4-eGFP mice. After isolating single cells as described above, eGFP+ 

cells were sorted by FACS. For each sample analyzed, testes from 3 individuals were pooled. 

Four replicate samples were analyzed per genotype. RNA-seq was performed as described 

previously (Tan et al., 2020b; Tan et al., 2021). Total RNA was extracted using the RNeasy 

Plus Micro Kit (QIAGEN), following the manufacturer’s protocol. 30 ng of total RNA 

was used to make the library using the NEBNext Ultra II Directional RNA Library Prep 

kit (New England Biolabs), as per manufacturer’s instructions. Libraries were sequenced 

(pair-end reads) with an Illumina HiSeq 4000 platform for 100 cycles at the UCSD 

institute for Genomic Medicine (IGM) core. Reads were filtered for quality and aligned 

with STAR (2.5.2b) (Dobin and Gingeras, 2015) against the Mus musculus, release-96, 

Ensembl genome (GRCm38). Exon counts were aggregated for each gene to build a read 

count table using SubRead function featureCounts (Liao et al., 2013). DEGs were defined 

using DESeq2 (Love et al., 2014) using the following threshold: ∣Log2FC∣ > 0.5, and q-val 

< 0.01. The R package program “pheatmap” was used for clustering and generating heatmap 

plots. The database for annotation, visualization and integrated discovery (DAVID) v6.8 was 

used for signaling pathway analysis (Huang da et al., 2009; Ren et al., 2015; Tan et al., 

2016b).
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CUT&Tag analysis—Endogenous Rhox10 was knocked-down (~85%) in GS cells using 

an shRNA lentivirus and the cells purified on the basis of GFP fluorescence by FACS. The 

Rhox10 shRNA used is specific to Rhox10, as reported previously (Song et al., 2012). The 

shRNA is complementary with sequences encoding a unique N-terminal region only present 

in RHOX10 (upstream of the homeodomain common to all RHOX proteins). The cells 

were then transduced with a mCHERRY reporter lentivirus that also expresses HA-tagged 

RHOX10 from a form of Rhox10 harboringnucleotide substitutions that make it insensitive 

to the Rhox10 shRNA without changing the protein sequence it encodes. CUT&Tag was 

performed as previously described (Kaya-Okur et al., 2019). ~1 million GS cells were used 

per sample and three biological replicates were performed. As a negative control, the lysates 

were instead incubated with IgG sera (Table S3). Samples from Rhox10-kd; HA-tagged 

empty vector GS cells served as another negative control. In brief, GS cells were bound 

to Concanavalin A beads (Bangs Laboratories), permeabilized with 0.05% digitonin (EMD 

Millipore), and incubated with an anti-HA antibody (Table S3) overnight at 4°C on a 

nutator. After washing, the secondary antibody (Guinea Pig anti-Rabbit IgG; Table S3) was 

incubated at room temperature for 1 hr, followed by incubation with Protein A-fused Tn5 

transposase (pA-Tn5; a gift from Dr. Steven Henikoff laboratory) for 1 hour at 37°C. The 

DNA from the cells was extracted and purified. Libraries were dual-indexed and amplified 

with NEBNext HiFi 2× PCR Master mix (New England BioLabs: M0541L). Libraries were 

sequenced (pair-end reads) with an Illumina HiSeq 2500 platform for 50 cycles at the UCSD 

IGM core.

For analysis, reads were filtered for quality and aligned with bowtie2 (v2.2.5) against the 

Mus musculus (mm10) genome, with the following parameters: –local–very-sensitive-local–

no-unal–no-mixed–no-discordant–phred33 -I 10 -X 700, as described previously (Meers et 

al., 2019). Following alignment, multiple-aligned reads were discarded and read duplicates 

were removed by samtools rmdup using default parameters (Li et al., 2009). Normalization 

to GC-content was performed using Homer (Heinz et al., 2010), and peak calling was 

performed using Homer findPeaks function with “-style factor” mode (Heinz et al., 

2010). Motif finding and annotation were performed using Homer findMotifsGenome.pl 
and annotatePeaks.pl functions, respectively (Heinz et al., 2010), applying cumulative 

hypergeometric distribution adjusted for multiple testing with the Benjamini-Hochberg 

method. Track screen shots were produced in IGV (version 2.6.2) (Robinson et al., 2011).

iSLAMseq ANALYSIS—Endogenous Rhox10 in mouse GS was knocked-down (~85%) 

using a shRNA lentivirus (Song et al., 2012) and purified on the basis of GFP fluorescence 

by FACS. Also transduced was a lentivirus expression vector carrying a Rhox10-ERT2

mCherry fusion gene that confers conditional inducible Rhox10 expression in response to 

4OH-TAM.

SLAMseq was performed as previously described (Herzog et al., 2017). Briefly, ~2 millions 

GS cells were incubated with 200 nM 4OH-TAM for different time periods (0 min, 30 mins, 

1 hr, 2 hr, 4 hr, and 8 hr), as indicated in Figure 3A. 4OH-TAM was dissolved in ethanol; 

ethanol only was used for the control group. Before collecting samples, cells were pulse

treated with 500 μM s4U for 15 mins. After extracting total RNA, carboxyamidomethylation 

was performed under standard conditions (~10 μg RNAs, 50% DMSO, 10 mM IAA, 50 mM 
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sodium phosphate buffer pH 8, incubated for 20 min at 50°C). The reaction was quenched 

by addition of 1 μL of 1M DTT. After purifying the RNA, libraries were prepared using the 

Quant-seq mRNA 3′ end library preparation kit (Lexogen) according to the manufacturer’s 

instructions. Sequencing was performed using a Illumina HiSeq 4000 at the UCSD IGM 

core in the SR75 mode.

Reads were filtered for quality and aligned with SLAM-DUNK (v0.4.3) (Neumann et 

al., 2019) against the full Mus musculus reference genome (mm10), reporting up to 100 

alignments for multi-mappers and activating the multi-mapper retention strategy, filtering for 

variants with a variant fraction of 0.2. Gene and 3′ UTR annotations were obtained from the 

UCSC table browser (https://genome.ucsc.edu/cgi-bin/hgTables). T > C conversion rate was 

determined for each position along the custom defined counting windows by normalizing 

to genomic T content and coverage of each position and averaged per UTR. Differential 

gene expression calling was performed on raw read counts with ≥2 T > C conversions using 

limma (v3.42.2) (Ritchie et al., 2015).

EMSA—3′-biotinylated oligonucleotides (listed in Table S3) were labeled using the Pierce 

biotin 3′ end DNA labeling kit (Thermo Fisher Scientific). Nuclear extracts from GC1 cells 

transduced with Rhox10-HA lentivirus were prepared as previously described (Abmayr 

et al., 2006). Competition and supershift assays were performed using the LightShift 

Chemiluminescent EMSA kit (Thermo Fisher Scientific), following the manufacturer’s 

protocol. Briefly, 1X binding buffer, 1 μL of 50% glycerol, 1 μL of 100mM MgCl2,1 μg 

Poly (dl·dC), 1 μL of 1% NP-40, and 1 μL of 50nM biotin-labeled DNA probes were 

incubated with 3 μg nuclear extract in a total volume of 20 μL at room temperature for 

20 mins. Competition assays were performed with unlabeled DNA probes in concentrations 

exceeding the biotin-labeled probe by 200-fold. The DNA-protein complexes were resolved 

on 6% polyacrylamide gels and transferred to a nylon membrane (Invitrogen). Streptavidin

horseradish peroxidase was used to detect the complexes, which were then visualized on 

autoradiographic film (Genesee Scientific).

QUANTIFICATION AND STATISTICAL ANALYSIS

The details of the statistical method used for identifying the differential gene expression 

using both DESeq2 and limma R packages are provided in the detailed methods above. 

Quantification of the immunostainings was performed by counting the positively stained 

cells in different fields of view. Statistical significance was determined using the Chi-square 

test using GraphPad Prism (version 9.0). The number of cells counted is indicated in the 

respective figure or its figure legend. For luciferase activity and qPCR analysis, data are 

represented as mean ± SD. Statistical significance was calculated by two-tailed unpaired 

Student’s t test using GraphPad Prism (version 9.0). The number of biological replications, 

data presentation, and statistical significance were indicated in respective figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• RHOX10 directly targets many other transcription factors (TFs) in male germ 

cells

• Temporally distinct gene waves are regulated by RHOX10

• RHOX10 drives pro-spermatogonial differentiation via the TFs DMRT1 and 

ZBTB16

• The regulation of DMRT1 by RHOX family TFs is a conserved response

Tan et al. Page 25

Cell Rep. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Identification of RHOX10-regulated genes in developing germ cells in vivo
(A) PCA of RNA-seq datasets from purified germ cells from Rhox10-null (Rhox10-KO) and 

control (WT) P1 testes (the 4 biological replicates we generated from each genotype are 

shown).

(B) Left, hierarchical clustering of DEGs defined by RNA-seq analysis from the samples 

shown in (A). Right, representative biological processes enriched in upregulated and 

downregulated DEGs (statistical significance shown).

(C) Representative DEGs shown in (B), with a focus on genes with known male germline 

functions. Left, fold change (Rhox10-null versus control). Blue, downregulated genes; red, 

upregulated genes. Right, false discovery rate (FDR)-adjusted p values determined using 

DESeq2 (−log10-transformed).

(D) DEGs overlapping between the scRNA-seq (Figure S1C) and RNA-seq (B) datasets.

(E) Left, UMAP plot showing the annotated ProSG and emergent SSC populations during 

the perinatal stage, as determined by scRNA-seq analysis of germ cells from E18.5, P2, and 

P7 mouse testes (Tan et al., 2020c). Right, UMAP plots showing expression of the indicated 

marker genes.
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See also Figure S1 and Table S1.
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Figure 2. Identification of RHOX10-occupancy sites
(A) Pearson correlation analysis of the indicated GS cell samples (performed in triplicate; 

both IgG and Ctrl are negative controls, as described in the STAR Methods).

(B) Location of RHOX10-occupancy peaks relative to the nearest annotated gene.

(C) Sequence motifs enriched at RHOX10-occupancy sites, as determined using HOMER.

(D) Left, overlapping genes identified by CUT&Tag and RNA-seq analyses. Right, 

representative biological processes enriched among the overlapping genes.

(E) Integrative genomics viewer images showing tracks of normalized RHOX10-occupancy 

tag counts. Shown are representative overlapping genes identified in (D). Red, Rhox10-null 

downregulated genes bound by RHOX10; green, Rhox10-null upregulated genes bound by 

RHOX10. The arrow denotes the TSS. The 3 biological replicates performed are shown, 

along with the negative control (Ctrl) described in (A).

See also Figure S2 and Table S1.
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Figure 3. Gene waves induced by RHOX10
(A) Schematic illustration of iSLAMseq workflow. Both Rhox10-ERT2 and Control-ERT2 

transduced cells were incubated with 4OH-TAM for 0, 0.5, 1, 2, 4, and 8 h, respectively. 

Before collecting samples, cells were given a pulse of s4U for 15 min.

(B) PCA of iSLAMseq samples.

(C) DEGs between each time point (e.g., 0.5 h compared with 0 h; 1 h compared with 0.5 h).

(D) DEGs at each time point compared with 0 h time point.

(E) RHOX10-regulated genes (as measured using iSLAMseq) bound by RHOX10 (as 

measured by CUT&Tag) exhibiting sustained regulation at multiple time points (as 

determined by the method in either C or D).

(F) Gene classes transcriptionally responding to RHOX10. Immediate and delayed 

primary targets are genes directly regulated by RHOX10, with rapid or slow kinetics, 

respectively. Both positively and negatively regulated genes are shown. Secondary targets 
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are regulated by RHOX10 through an intermediary and thus have delayed kinetics. For 

easier visualization, the different classes of genes are shown with slightly different slopes, 

even though the actual slope will vary depending on the specific gene, not the gene class.

(G) Top left, normalized RPKM reads reflecting relative transcription rates of the genes 

shown after 4OH-TAM treatment. Bottom and top right, integrative genomics viewer images 

showing tracks of normalized tag counts of RHOX10 occupancy, as measured by CUT&Tag. 

The 3 biological replicates performed on GS cells expressing HA-tagged RHOX10 are 

shown. The negative control (Ctrl) is lysates from GS cells transduced with a HA-tagged 

empty vector.

See also Figure S3 and Table S2.
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Figure 4. RHOX10 drives ProSG differentiation in vitro and in vivo
(A) Luciferase analysis of constructs harboring promoters from the indicated genes ligated 

upstream of the Firefly luciferase gene. All promoter constructs contain between 1 to 2 kb 

of sequence upstream of the TSS (see Table S3). These reporter constructs were transiently 

co-transfected with an Rhox10-expression vector into GC1 cells, which only express trace 

levels of endogenous Rhox10. Data are represented as mean ± SD (n = 4). Staistical 

significance was determined using the two-tailed unpaired Student’s t test. *p < 0.05.

(B) Left, IF analysis of testis sections from P3 Rhox10-null (KO) or control (WT) mice 

co-stained with antisera against DNMT3L and GCNA1, which mark T1-ProSG and all 

germ cells, respectively. Cell nuclei were stained with DAPI (blue). Scale bar, 30 μm. 

Right, quantification of the percentage of all germ cells (GCNA1+ cells) that express either 

high (Bright), low (Dim), or no detectable (Neg) DNMT3L. The analysis was done blind 
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to genotype. Statistical significance was determined using the chi-square test. Data are 

represented as mean ± SD (n = 3). *p < 0.05.

(C) Left, IF analysis of testis sections from P3 Rhox10-null (KO) or control (WT) mice 

co-stained with antisera against ETV4 and GCNA1, which stain emergent SSCs and all 

germ cells, respectively. Cell nuclei were stained with DAPI (blue). Scale bar, 30 μm. Right, 

quantification of ETV4-positive germ cells, determined as in (B). Data representation and 

statistical significance (n = 3) as in (B).

(D) Quantification of germ cells with the indicated levels of DNMT3L-signal intensity in 

primary Rhox10-null and control testicular cell cultures, analyzed as in (B), at the indicated 

time points after initiation of culture. Data representation and statistical significance (n = 3) 

as in (B).

See also Figure S4.
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Figure 5. RHOX10 drives ProSG differentiation through transcriptional activation of Dmrt1
(A) Quantification of the percentage of all germ cells (GCNA1+ cells) in Rhox10-null (KO) 

and control (WT) primary testicular cell cultures that express either high (Bright), low (Dim) 

or no detectable (Neg) DNMT3L, performed as in Figures 4B-4D. The analysis was done 

blind to genotype. Data are represented as mean ± SD (n = 3). Statistical significance was 

determined using the chi-square test. *p < 0.05. Dmrt1, Gfrα1, and Etv5 were transduced 

ectopically using lentiviral expression vectors.

(B) qPCR analysis of testicular primary cultures of the indicated genotype transduced with 

or without a Dmrt1-expression vector. Data representation as in (A). Statistical significance 

was determined using the Student’s t test (n = 3).

(C) EMSA showing that RHOX10 binds to the predicted RHOX10-binding site ATTGG 

(reverse complement of CCAAT in Figure 2C) in the Dmrt1 promoter region. The 

competitor is unlabeled Dmrt1 promoter probe (n = 3).
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(D) The Dmrt1 and mutated Dmrt1 probes used for EMSA in (C).

(E) Luciferase analysis of constructs harboring either the Dmrt1 promoter or a mutated 

version of the Dmrt1 promoter lacking the CCAAT motif (Dmrt1_m) ligated upstream of the 

Firefly luciferase gene. These constructs were transiently co-transfected into GC1 cells with 

a Rhox10-expression vector where indicated. Data representation and statistical significance 

(n = 3) as in (B).

(F) Luciferase analysis of a construct harboring the human DMRT1 promoter ligated 

upstream of the Firefly luciferase gene. This construct was transiently co-transfected 

into TCam-2 cells with the RHOXF1- or RHOXF2-expression vectors, as indicated. Data 

representation and statistical significance (n = 3) as in (B).

(G) Luciferase analysis of TCam-2 cells transiently co-transfected with the human 

DMRT1 promoter construct (described in F) with either a RHOXF1- or RHOXF2-shRNA 

vector (RHOXF1-KD and RHOXF2-KD, respectively). Data representation and statistical 

significance (n = 3) as in (B).
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Figure 6. A RHOX10-DMRT1-ZBTB16 circuit driving ProSG differentiation
(A) Model: the RHOX10 TF drives ProSG differentiation and consequent SSC production 

through a TF cascade involving DMRT1 and ZBTB16.

(B) qPCR analysis of Zbtb16 expression in germ cells purified from primary testicular cell 

cultures (described in Figures 4D and 5A) of the indicated genotype, and transduced with 

a Dmrt1-expression vector, where indicated. Data are represented as mean ± SD (n = 3). 

Statistical significance was determined using the Student’s t test. Different letters (a, b, c) 

denote statistically significant differences between different groups (p < 0.05).

(C and D) Quantification of the percentage of all germ cells (GCNA1+ cells) in Rhox10-null 

(KO) and control (WT) primary testicular cell cultures that express either high (Bright), low 

(Dim), or no detectable (Neg) DNMT3L, performed as in Figures 4 and 5. The analysis 

was done blind to genotype. Dmrt1- and Zbtb16-expression vectors were transduced 

where indicated. Zbtb16 was knocked down by transduction of a Zbtb16 shRNA construct 

(Zbtb16-KD). Statistical significance was determined using the chi-square test. Data are 

represented as mean ± SD (n = 3). Different letters (a, b, c) denote statistically significant 

differences between different groups (p < 0.05).
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KEY RESOURCES TABLE

Reagent or resource Source Identifier

Antibodies

Rabbit polyclonal anti-HA Novus Biologicals Cat#NB600-363; RRID: AB_10001504

Rabbit polyclonal anti-ETV4 Proteintech Cat#10684-1-AP; RRID: AB_2100984

Rabbit polyclonal anti-DNMT3L Abcam Cat#ab194094; RRID: AB_2783649

Rabbit polyclonal anti-DNMT3L A gift from Dr. Shinya Yamanaka 
(Kyoto University, Japan)

N/A

Rat monoclonal anti-GCNA1 (TRA98) B-Bridge International Cat# 73-003; RRID: AB_1056334

Guinea Pig polyclonal anti-IgG Antibodies-Online Cat# ABIN101961; RRID: AB_10775589

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed 
Secondary Antibody, Alexa Fluor 488

Thermo Fisher Scientific Cat# A-11008; RRID: AB_143165

Goat anti-Rat IgG (H+L) Secondary Antibody, 
Alexa Fluor® 555 conjugate

Thermo Fisher Scientific Cat# A-21434; RRID: AB_141733

Donkey anti-Rabbit IgG (H+L) Highly Cross
Adsorbed Secondary Antibody, Alexa Fluor 647

Thermo Fisher Scientific Cat# A-31573; RRID: AB_2536183

Donkey anti-Rat IgG (H+L) Highly Cross
Adsorbed Secondary Antibody, Alexa Fluor 594

Thermo Fisher Scientific Cat# A-21209; RRID: AB_2535795

Bacterial and virus strains

pGL3 vector Promega Cat# E1771

pRL-cmv vector Promega Cat# E2261

pLLU2G vector Addgene Cat#21620; RRID:Addgene_21620

pCAG-ERT2CreERT2 Addgene Cat#13777; RRID:Addgene_13777

Biological samples

Testis blocks Mouse testes N/A

Postnatal day (P) 0 – P2 testes Mouse testes N/A

Chemicals, peptides, and recombinant proteins

Human, FGF-Basic, recombinant Sigma-Aldrich Cat# F0291-25UG

Collagenase type IV Worthington Biochemical Cat# LS004212

Deoxyribonuclease I Worthington Biochemical Cat# LS006355

(Z)-4-Hydroxytamoxifen Sigma-Aldrich Cat# H7904

4-Thiouridine Millipore Sigma Cat# T4509

Protein A-Tn5 transposase fusion protein A gift from Dr. Steven Henikoff (Fred 
Hutchinson Cancer Research Center)

N/A

Critical commercial assays

iScript cDNA synthesis Kit BioRad Cat# 170-8891

SsoAdvanceD Universal SYBR Green Supermix BioRad Cat# 172-5274

Dual Luciferase assay kit Promega Cat# E1960

QuantSeq 3′ mRNA-Seq Library Prep Kit Lexogen Cat# 015.24

NEBNext Ultra II Directional RNA Library Prep 
kit

New England Biolabs Cat# E7765S

Deposited data

RNaseq raw and analyzed data Generated in this study GEO: GSE165372

CUT&Tag raw and analyzed data Generated in this study GEO: GSE165372
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Reagent or resource Source Identifier

iSLAMseq raw and analyzed data Generated in this study GEO: GSE165372

Mus musculus, release-96, Ensembl genome 
(GRCm38)

Ensembl genome http://ftp.ensembl.org/pub/release-96/

Mus musculus (mm10) genome UCSC https://hgdownload.soe.ucsc.edu/
downloads.html#mouse

Experimental models: Cell lines

Mouse: GC1 cells ATCC CRL-2053

Human: HEK293T ATCC CRL-3216

Human: TCam-2 cells de Jong et al., 2008 RRID: CVCL_T012

Experimental models: Organisms/strains

Mouse: C57BL/6J The Jackson Laboratory JAX:000664

Mouse: B6.129-Rhox10tm1Wilk/J The Jackson Laboratory JAX: 035193

Mouse: B6;CBA-Tg(Pou5f1-EGFP)2Mnn/J The Jackson Laboratory JAX:004654

Oligonucleotides

Oligonucleotides designed in this study See Table S3 for oligonucleotide 
information

N/A

Software and algorithms

Bowtie2 (v2.2.5) Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

Samtools Li et al., 2009 http://samtools.sourceforge.net/

Homer Heinz et al., 2010 http://homer.ucsd.edu/homer/

IGV (version 2.6.2) Robinson et al., 2011 https://software.broadinstitute.org/software/igv/

STAR (2.5.2b) Dobin and Gingeras, 2015 https://github.com/alexdobin/STAR

SubRead Liao et al., 2013 http://subread.sourceforge.net/

SLAM-DUNK (v0.4.3) Neumann et al., 2019 https://github.com/t-neumann/slamdunk

R Version 4.0.0 https://www.r-project.org N/A

DESeq2 Love et al., 2014 N/A

limma (v3.42.2) Ritchie et al., 2015 N/A

GraphPad Prism (v9.0) N/A https://www.graphpad.com/scientific-software/
prism/

The database for annotation, visualization and 
integrated discovery (DAVID) v6.8

Huang et al., 2009 https://david.ncifcrf.gov/
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