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Simple Summary: The Barki sheep is one of the three main breeds in Egypt, which is spread mainly
throughout the northwestern coastal zone, which has harsh conditions. Considering the harsh,
semi-arid habitat of this breed, milk performance traits such as milk yield and milk composition have
a very important role in the feeding of newborn lambs and affect their growth during the early stage
of life. In this study, rare milk performance data and genomic information of Barki sheep were used to
uncover diversified genomic regions that could explain the variability of milk yield and milk quality
traits in the studied population of Barki ewes. Genome-wide analysis identified genomic regions
harboring interesting candidate genes such as SLC5A8, NUB1, TBC1D1, KLF3 and ABHD5 for milk
yield and PPARA and FBLN1 genes for milk quality traits. The findings offer valuable information
for obtaining a better understanding of the genetics of milk performance traits and contribute to the
genetic improvement of these traits in Barki sheep.

Abstract: Sheep milk yield and milk composition traits play an important role in supplying newborn
lambs with essential components such as amino acids, energy, vitamins and immune antibodies
and are also of interest in terms of the nutritional value of the milk for human consumption. The
aim of this study was to identify genomic regions and candidate genes for milk yield and milk
composition traits through genome-wide SNP analyses between high and low performing ewes of
the Egyptian Barki sheep breed, which is well adapted to the harsh conditions of North-East Africa.
Therefore, out of a herd of 111 ewes of the Egyptian Barki sheep breed (IBD = 0.08), ewes representing
extremes in milk yield and milk quality traits (n = 25 for each group of animals) were genotyped
using the Illumina OvineSNP50 V2 BeadChip. The fixation index (FST) for each SNP was calculated
between the diversified groups. FST values were Z-transformed and used to identify putative SNPs
for further analysis (Z(FST) > 10). Genome-wide SNP analysis revealed genomic regions covering
promising candidate genes related to milk performance traits such as SLC5A8, NUB1, TBC1D1, KLF3
and ABHD5 for milk yield and PPARA and FBLN1 genes for milk quality trait. The results of this
study may contribute to the genetic improvement of milk performance traits in Barki sheep breed and
to the general understanding of the genetic contribution to variability in milk yield and quality traits.

Keywords: Barki sheep; milk performance; genome wide SNPs; genomic regions; candidate genes

1. Introduction

Sheep have been raised for milk production for thousands of years, before most
other mammalian species [1]. In many countries around the world, especially in the
Mediterranean region, sheep milk and its products are widely consumed by humans
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and are considered an important food resource. Sheep contribute about 5% of the total
annual milk production in Egypt, whereas cows and buffaloes are the major suppliers of
milk. This is a reflection of the management system of sheep milk production, which is
characterized by subsistence and smallholder farming systems [2]. Sheep milk is highly
similar to human milk in fatty acids composition, which makes it a suitable raw material
for infant formula production [3]. Moreover, milk is the most important feed resource
for newborn lambs during the early stage of their lifetime, from birth to weaning age
(90 days), providing energy and proteins for growth and antibodies against infections and
diseases [4]. Milk components such as fat, protein and lactose are important indicators of
milk quality, which affects the growth and healthy feeding of the newborn lambs. Sheep
milk production and composition are influenced by genetic and environmental factors.
Estimates of heritability for milk yield, fat content and protein content in some sheep
breeds such as Churra ewes were 0.32, 0.29 and 0.41, respectively [5,6]. The Barki sheep
is one of the three most important breeds in Egypt, as it has adapted well to the harsh
environmental conditions of Egypt’s northwestern coastal zone, where it is raised for
meat, as its main product, and milk, as its by-product. The total population of Barki
sheep is about 470,000 heads, which are owned by small holders [7]. The current Barki
sheep breeding is characterized by a phenotypic selection approach considering mainly the
number of offspring and the growth performance of lambs. In addition, the general health
status is included, which enables ewes and lambs to cope with the harsh environmental
conditions. Neither a structured breeding program nor a genetic selection program is
applied. The amount of milk produced by Barki sheep in particular is low compared
to the other native Egyptian breeds or worldwide breeds, possibly due to the absence
of any attempts to perform phenotypic or genomic selection of milk performance traits
in this breed. This low production affects lambs’ growth and viability and increases the
percentage of the lambs lost due to inanition. It is also noticeable that the production of milk
and its composition varies greatly between individuals in the Barki sheep breed, which is
attributed to both genetic and environmental factors [8]. Therefore, it is feasible to study the
differences between high and low productive individuals. The development of high-density
SNP arrays and bioinformatics tools enables researchers to detect genomic regions that
contribute to phenotypic variation in different livestock species, using different approaches
based on linkage disequilibrium, allele frequency or haplotype characteristics [9]. To gain
further knowledge about the genetic architecture, the fixation index (FST) approach of
Weir and Cockerham is a suitable method, also for small data sets, to uncover genomic
differences between experimental populations or groups and detect genomic regions with
divergent allelic frequencies indicating putative candidate genes [10,11]. In this context,
several studies were performed using genome-wide SNP data and revealed some candidate
genes for milk traits in dairy cattle [12–14], sheep [15,16] and goats [17,18]. Previously, FST
approach was conducted to detect some candidate genes for productive and reproductive
traits such as fertility in Egyptian native Rahmani sheep breed [19]. The aim of the current
study is to explore genomic differences of Barki ewes divergent in milk performance
traits, thereby identifying genomic regions and candidate genes related to milk yield and
milk composition.

2. Materials and Methods
2.1. Animals and Phenotypes

The experiment was conducted in accordance with all ethical and animal welfare stan-
dards of the Desert Research Center, taking into account all regulations in compliance with
the European Union Directive for the Protection of Experimental Animals (2010/63/EU). A
population of 111 Egyptian Barki ewes aged between 4 and 5 years was kept in the farms
of Desert Research Centre, Ministry of Agriculture, Egypt under an intensive system and
housed in semi-open yards for one breeding season. All ewes in the study were sired by
10 rams. Throughout the experimental period, ewes were fed daily on a feed concentrate
(0.75 kg per head) and clover hay (0.5 kg per head). Fresh water was available to sheep
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ad libitum. Ewes were in the same parity and lactation period. Milk yield was recorded
from parturition for a period of 3 months by hand milking in the morning and evening.
Daily milk yield was measured by summation of the morning and evening milking. Total
milk yield was calculated by summation of the daily milk yields for 90 days. Milk was
sampled and stored at −20 ◦C. Milk from mixed samples of morning and afternoon milk
were analyzed for percentages of fat, protein, lactose, and total solids using milko-scan (130
A/SN Foss Electric, Hillerod, Denmark). For genetic analysis of milk traits, both milk yield
and milk composition served as selection criteria. For milk yield, in total 50 ewes were
selected from the two tails of the phenotypic distribution and divided into two subgroups
(high milk yield—HMY represent top 25 animals and low milk yield—LMY represent
bottom 25 animals), each representing the extreme phenotypes for the milk yield trait. For
milk composition, the measured values for fat, protein, lactose and total solids were used
for a principal component analysis to calculate animal-individual eigenvalues. Therefore,
the phenotypic correlation matrix was used to compute principal components using R
statistical software [20]. The first and second principal components explained about 59.7%
and 19.3% of the phenotypic variance of the traits. The first principal component was
considered for grouping of animals according to milk quality (Supplementary Figure S1).
Ewes having extreme negative loadings on PC1 were considered as high milk quality
(HMQ) animals (n = 25), whereas individuals with extreme positive loading on PC1 were
assigned to the low milk quality (LMQ) group (n = 25). Student’s t-test was used to com-
pute the differences between the group means using SPSS V20 (IBM, New York, NY, USA).
Phenotypic Spearman correlation coefficients among milk performance traits and PC1 were
calculated for all animals (n = 111).

2.2. Genotyping and Quality Control

DNA was extracted from blood samples, collected from the jugular vein of all ewes,
using the G-spin Total DNA Extraction kit (iNtRON Biotechnology, Seoul, Korea) according
to the manufacturer’s instructions. Out of the entire population of 111 animals, 71 ewes
were genotyped using the Illumina OvineSNP50 V2 BeadChip (Illumina, San Diego, CA,
USA). The genetic relatedness of all pairs of ewes was assessed by calculating relative
identity–by-descent (IBD) probabilities, which revealed an average relatedness of 0.08.
The raw signal intensities of the 53,516 SNPs on the chip were imaged using the iScan
Reader (Illumina). The signals were converted into genotype calls using the Genome Studio
software (version 2.0). The SNPs with genotype call rates <90%, minor allele frequencies
(MAF) <0.03 [21] and significant deviation from Hardy–Weinberg equilibrium at p < 10−6

were removed from analysis using JMP Genomics software (version 9). Base pair positions
and names of SNP markers were updated to the latest version of the ovine genome of Texel
breed (Oar_v3.1 accessed on 6 July 2020). SNPs not located on autosomes and lacking rs
identifiers were excluded. After quality control, 49,184 SNPs were used for analyses.

2.3. Genome Wide FST Calculation

SNPRelate R package was used to calculate the FST of Weir and Cockerham for each
SNP between the subgroups (LMY-HMY and LMQ-HMQ) [22]. The resultant distribution of
FST values were Z-transformed and the extreme tail of the distribution was used to identify
putative SNPs for further analysis, using a threshold Z(FST) > 10. In addition, all SNPs that
passed the cutoff threshold at Z(FST) > 5 were listed in Supplementary Tables S1 and S2 [23].
Manhattan plots of the genome-wide Z(FST) values were performed using qqman package
in R software. Genomic regions with the highest Z(FST) values were considered as region of
interest. Genes within 1 megabase (Mb) regions up- and downstream of SNPs with highest
Z(FST) values were scrutinized based on positional and functional evidences according
to the Ensembl database. Genes harboring a highlighted SNP were considered positional
candidate genes. Genes within the 2-Mb window were considered functional candidate
genes, taking into account their functional relationship to phenotypes using available gene
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annotations from the GeneCards (http://www.genecards.org (accessed on: 3 February
2021) and Uniprot (http://www.uniprot.org (accessed on: 3 February 2021) databases.

3. Results
3.1. Phenotypic Data of Milk Performance Traits

Descriptive statistics of milk yield and milk composition, comprising fat, protein,
lactose and total solids percentages and principal component 1 (PC1) for milk quality (MQ),
are shown for the Barki subgroups in Table 1. A high MQ is indicated by negative loadings
on PC1, whereas a low MQ is represented by positive values.

Table 1. Descriptive statistics of milk performance traits.

Trait Group * N Mean SE Min Max p Value **

Milk yield MY (kg) HMY 25 41.97 2.02 31.50 72.00 p < 0.001
LMY 25 17.20 0.71 9.90 23.40

Milk quality (MQ; PC1) HMQ 25 −1.11 0.08 −0.63 −2.21 p < 0.001
LMQ 25 2.05 0.29 4.91 0.14

Milk fat (%)
HMQ 25 6.28 0.26 4.78 9.60 p < 0.001
LMQ 25 2.61 0.13 1.45 3.60

Milk protein (%) HMQ 25 6.85 0.25 5.20 9.20 p < 0.001
LMQ 25 4.09 0.10 2.85 4.60

Milk lactose (%)
HMQ 25 7.99 0.14 7.30 9.90 p < 0.001
LMQ 25 5.14 0.22 1.01 6.10

Total solids (%)
HMQ 25 25.49 0.87 20.00 33.10 p < 0.001
LMQ 25 14.83 0.18 12.68 16.24

* HMY = High milk yield, LMY = Low milk yield, HMQ = High milk quality, LMQ = Low milk quality. ** p value computed using t-test,
SE = Standard error, PC1 = Principal component 1.

Significant correlation coefficients were determined between the milk composition
traits (Table 2). The highest correlation coefficient was obtained for TS and P (0.83), followed
by the coefficients of F and TS (0.47), and TS and L (0.43). There was no considerable
correlation between milk yield and milk composition traits. The correlation coefficients
obtained for PC1 showed that all milk composition traits are correlated to varying degrees
by PC1, with protein and total solids having the highest correlation coefficients.

Table 2. Phenotypic Spearman correlation among milk performance traits.

Trait MY Fat Protein Lactose Total Solids PC1

MY 1
Fat −0.12 1

Protein −0.05 0.38 ** 1
Lactose 0.05 0.26 ** 0.29 ** 1

Total Solids 0.06 0.47 ** 0.83 ** 0.43 ** 1
PC1 −0.06 0.69 ** 0.90 ** 0.61 ** 0.94 ** 1

** Highly significant correlation (p < 0.01) using t-test for the significance. PC1 = Principal component 1.

3.2. Detection of Genomic Regions and Candidate Genes

The animals were divided into two subgroups representing extreme phenotypes for
milk yield (HMY and LMY) and milk composition (HMQ and LMQ). Z(FST) values were
calculated to investigate the genomic differences between the groups using a genome-wide
SNP panel. For milk yield, a number of genomic regions and SNPs were indicated to
differentiate between the groups (Z(FST) > 10, Figure 1). These regions and SNPs were
distributed on the chromosomes 1, 3, 4, 6, 12, 18 and 19 (Table 3). Within these genomic
regions, OR6C75, ANO4, MCTP2 and SNRK were identified as positional candidate genes.
Moreover, SLC5A8, NUB1, TBC1D1, KLF3 and ABHD5 were proposed as functional can-

http://www.genecards.org
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didate genes, which are known to affect lactation, mammary gland development and
secretion and fatty acids’ synthesis and lipids’ metabolism.

Figure 1. Manhattan plot of Z(FST) values at each SNP for milk yield. The red dots represent the SNPs that passed the
cut-off threshold at Z(FST) = 10 and are labelled with candidate genes within a 2 Mb window.

Table 3. Genomic positions and putative candidate genes derived from SNPs differentiating between ewes divergent in
milk yield and milk quality (Z(FST) > 10).

Trait Rs Name Chr Position MAF FST Z(FST) Candidate Genes *

Milk yield

rs412092721 1 158753375 0.477 0.263 10.68 ENSOARG00000017360
rs428217479 3 164177406 0.429 0.278 11.32 OR6C76, OR6C1, OR6C75
rs430736025 3 169823214 0.374 0.270 10.99 GAS2L3, SLC5A8, ANO4
rs420351948 4 109338529 0.332 0.319 13.07 ENSOARG00000001351
rs399050266 4 113362135 0.350 0.254 10.30 NUB1, RHEB
rs418394216 6 57451934 0.201 0.255 10.34 TBC1D1, KLF3

rs427343726 12 15424350 0.228 0.287 11.70 ENSOARG00000025431,
ENSOARG00000025432

rs412626910 12 79966574 0.421 0.247 10.04 CRB1, DENND1B
rs430297634 18 11841541 0.433 0.259 10.53 MCTP2
rs423654488 19 15202234 0.352 0.281 11.48 GASK1A, ANO10, SNRK-ABHD5

Milk
quality

rs408700818 3 220103217 0.370 0.300 10.14 ATXN10, FBLN1, PPARA
rs414244120 3 220048441 0.485 0.299 10.09 FBLN1, ATXN10, PPARA

* Gene names in bold = functional candidate genes; underlined = positional candidate genes; only italic = closest up- and downstream
located genes within 1 Mb window; Chr = Chromosome, MAF = Minor allele frequency.

Figure 2 shows the Manhattan plot representation of SNP-specific Z(FST) values for
milk quality. A genomic region and corresponding SNPs located on chromosome 3 are
highlighted to be linked to this trait in the Barki sheep population (Table 3). Positional and
functional candidate genes derived by the selected SNPs are indicated in Table 3. Within the
genomic region on chromosome 3, ATXN10 gene was identified as a positional candidate
gene. Moreover, FBLN1 and PPARA genes were designated as functional candidate genes
in the identified genomic region.
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Figure 2. Manhattan plot of Z(FST) values at each SNP comparing LMQ and HMQ Barki ewes. The red dots represent the
SNPs that passed the cut-off threshold at Z(FST) = 10 and are labelled with candidate genes within a 2 Mb window.

4. Discussion

The averages of milk yield and milk composition traits (fat, protein, lactose and total
solids percentages) in this study were similar to the previously recorded values of Barki
ewes with 44.7 kg, 4.17%, 3.34%, 5.01% and 15.88%, respectively [24]. The results of the
correlation analysis between the recorded milk traits confirmed the positive correlation
among milk composition traits [25]. In contrast to other studies in sheep and cattle,
there was no considerable negative correlation between milk yield and milk composition
traits, possibly due to the overall low milk production of Barki sheep and the limited
breeding efforts on these traits. Furthermore, a positive correlation was revealed between
PC1 and milk composition traits as shown in Table 2. For comparison, the average milk
yield of the Rahmani breed (70.75 kg), which is another important indigenous Egyptian
sheep breed, was reported to be significantly higher [26]. The correlation results among
milk yield and milk components were in agreement with those of ewes from the ancient
Iberian Churra breed, which also have low average milk performance [6]. The ewes
in this study were considered not substantially related according to genetic relatedness
(IBD = 0.08) and were suitable for the application of the FST approach [27]. For milk
yield, a total of seven genomic regions were identified to differentiate comparing HMY
and LMY animals as shown in Table 3. Scrutiny of the genes in the identified genomic
regions revealed functional candidates on chromosomes 3, 4, 6, 18 and 19. Several QTL
for milk yield on these chromosomes in different genomic regions in the Sheep Genome
were reported previously in various sheep breeds [8,28–33]. The same genomic region on
chromosome 18 was detected to be associated with milk yield in East Friesian and Dorset
sheep breeds [32]. In the genomic region on chromosome 3 at 169.8 Mb, Solute Carrier
Family 5 (Sodium/Monocarboxylate Cotransporter) Member 8 (SLC5A8) was previously
reported to be associated with milk yield in Italian Holstein dairy cows [34]. The genomic
region on chromosome 4 harbors the Negative Regulator of Ubiquitin-Like Proteins 1
(NUB1) gene as one of the proposed genes affecting milk yield and contributing to the
proteasomal degradation pathway. NUB1 was previously proposed as a strong candidate
gene explaining the variation in milk yield in Gir × Holstein (Girolando) crossbreed
animals [35]. The QTL on chromosome 6 at 57 Mb includes TBC1 Domain Family Member
1 (TBC1D1) and Kruppel-Like Factor 3 (KLF3). Selection signatures study in dairy and beef
cattle revealed TBC1D1 as candidate for milk production [36]. In Holstein cows, a scan
for polymorphisms in TBCID1 yielded two SNPs associated with milk protein yield [37]
and another SNP associated with fat and protein percentages [38]. The importance of
KLF3 was suggested in Chinese Holstein cows based on its physiological and biochemical



Animals 2021, 11, 1671 7 of 9

functions in many processes such as cell proliferation, differentiation, homeostasis and
apoptosis [39,40]. Moreover, a SNP in KLF3 was significantly associated with milk yield
and protein yield also in Chinese Holstein [41]. The Abhydrolase Domain Containing
5 (ABHD5) gene, which resides on chromosome 19 at 15.5 Mb, represents a prospective
functional candidate, based on its important role in lipid metabolism, the energy balance
signaling pathway and triglyceride metabolism in dairy cows and Qinchuan cattle [42,43].

For milk quality, a genomic region on chromosome 3 was shown to be differentiated
between HMQ and LMQ ewes, confirming previously reported QTL for milk fat percent-
age [30,33], protein percentage [44,45] and lactose percentage [46]. Within this genomic
region on chromosome 3, PPARA and FBLN1 genes were proposed as candidates. The
Peroxisome Proliferator Activated Receptor Alpha (PPARA) gene located at 220.6 Mb is a
member of the PPARs family, which has a critical role in the regulation of milk fat synthesis
in lactating ruminants [47]. PPARA is one of the genes involved in lipid metabolism in
mammary gland in dairy cows [48]. In Charolais × German Holstein cross-breed dairy
cows, PPARA was associated with milk yield and protein synthesis [49]. In line with the
results of the Barki study, Fibulin 1 (FBLN1) located on chromosome 3 at 220 Mb was
reported to be associated with milk protein yield and protein percentage in dairy cattle [25].
In addition, FBLN1 was reported to play a critical role in the development and cell differ-
entiation of the mammary gland [50]. However, due to the limited sample size available
for Barki sheep in the current study, the results deserve further investigation involving a
larger number of animals and other indigenous sheep breeds.

5. Conclusions

The results of the genome-wide analysis uncovered some genomic regions contribut-
ing to variability in milk performance traits such as milk yield and milk quality in Bakri
sheep. These regions harbor some interesting functional candidate genes such as SLC5A8,
NUB1, TBC1D1, KLF3 and ABHD5 for milk yield, and PPARA and FBLN1 for milk quality
traits. These genes deserve further investigation to analyze the association between genetic
variations of these genes and their respective milk phenotypes. Given the current absence
of structured genetic improvement programs in Barki sheep, the current analysis provides
insights into genomic regions that are critical for milk quantity and quality in ruminants.
Our findings offer valuable information for the future improvement of milk performance
traits and the associated assurance of offspring supply in the Barki sheep breed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11061671/s1. Table S1: Genomic positions derived from SNPs differentiating between ewes
divergent in milk yield (Z(FST) > 5), Table S2: Genomic positions derived from SNPs differentiating
between ewes divergent in milk quality (Z(FST) > 5), Figure S1: Eigenvalues from the principle
component analysis for milk quality traits. Animals have been assigned to low (red) and high (blue)
milk quality.
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