
RESEARCH ARTICLE

Adaptation and spectral enhancement at

auditory temporal perceptual boundaries -

Measurements via temporal precision of

auditory brainstem responses

Diana B. Geissler☯, Elke Weiler¤☯, Günter EhretID*

Institute of Neurobiology, University of Ulm, Ulm, Germany

☯ These authors contributed equally to this work.

¤ Current address: Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
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Abstract

In human and animal auditory perception the perceived quality of sound streams changes

depending on the duration of inter-sound intervals (ISIs). Here, we studied whether adapta-

tion and the precision of temporal coding in the auditory periphery reproduce general per-

ceptual boundaries in the time domain near 20, 100, and 400 ms ISIs, the physiological

origin of which are unknown. In four experiments, we recorded auditory brainstem res-

ponses with five wave peaks (P1 –P5) in response to acoustic models of communication

calls of house mice, who perceived these calls with the mentioned boundaries. The newly

introduced measure of average standard deviations of wave latencies of individual animals

indicate the waves’ temporal precision (latency jitter) mostly in the range of 30–100 μs, very

similar to latency jitter of single neurons. Adaptation effects of response latencies and

latency jitter were measured for ISIs of 10–1000 ms. Adaptation decreased with increasing

ISI duration following exponential or linear (on a logarithmic scale) functions in the range of

up to about 200 ms ISIs. Adaptation effects were specific for each processing level in the

auditory system. The perceptual boundaries near 20–30 and 100 ms ISIs were reflected in

significant adaptation of latencies together with increases of latency jitter at P2-P5 for ISIs <
~30 ms and at P5 for ISIs < ~100 ms, respectively. Adaptation effects occurred when fre-

quencies in a sound stream were within the same critical band. Ongoing low-frequency com-

ponents/formants in a sound enhanced (decrease of latencies) coding of high-frequency

components/formants when the frequencies concerned different critical bands. The results

are discussed in the context of coding multi-harmonic sounds and stop-consonants-vowel

pairs in the auditory brainstem. Furthermore, latency data at P1 (cochlea level) offer a rea-

sonable value for the base-to-apex cochlear travel time in the mouse (0.342 ms) that has

not been determined experimentally.
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Introduction

Animal vocalizations and human speech are often emitted in series of sounds. Basic perceptual

distinctions in the time domain are made at boundaries near 20–30 ms, 100 ms, and 400 ms

inter-sound intervals (ISIs) and/or sound durations. Examples for boundaries near 20–30 ms

and 100 ms are given by the transitions from hearing the pitch of a sound series (ISIs shorter

than about 20 ms) to hearing rough sounds (ISIs between about 20–100 ms) to hearing a

sound rhythm (ISIs longer than about 100 ms) [1–4]. The 20–30 ms boundary has also been

found in the discrimination of stop consonants via voice-onset-time [5–7], for the perception

of temporal order [8], gaps in sounds [9,10], categorization of mouse pup ultrasounds by their

mothers [11], and for spectral integration of frequency components starting and ending

together within 20–30 ms to be perceived as a single stream of auditory objects by humans

[12,13] and mice [14]. The 100 ms boundary has also been found in the perception of acoustic

streams in humans [15] and in wriggling call perception in mice [16]. Reports about the 400

ms boundary are found in loudness summation and forward masking in humans [17–19] and

wriggling call perception in mice [16]. Neural correlates of these perceptual boundaries in the

time domain are unknown because they have not systematically been studied or not been stud-

ied at all [2,20,21]. Interestingly, however, hearing the differences in the sound quality at these

perceptual boundaries does not require explicit learning and seems to be a rather general abil-

ity of mammals. Therefore, our hypothesis is that these boundaries may be based on features

of sound processing in the auditory periphery up to the midbrain inferior colliculus (IC). In

order to test this hypothesis in the mouse, we used the same sounds as stimuli for the auditory

system as in the tests for perception of communication calls. As method of testing, we used the

auditory brainstem response (ABR) which allows to record information from the whole audi-

tory periphery in one approach.

ABRs have widely been used as research tool to study auditory brainstem functions in

humans and animals, including mice [22–31]. Auditory-evoked potential recordings in anesthe-

tized mice usually consist of several waves (Fig 1) of which the first five peaks refer to the ABR.

Each wave is thought to represent the sum of highly synchronous sound onset responses from

cell populations in auditory brainstem centers. In the mouse, peak 1 (P1) seems to emanate from

the cochlea (CO), i.e. from cochlear hair cells and the auditory nerve, peaks 2, 3, 4, 5 (P2, P3, P4,

P5) mainly from cell groups in the cochlear nucleus (CN) ipsilateral to the stimulated ear, in the

Fig 1. Example of an evoked-potential recording to 50 kHz tones. Only the first 20 ms after tone onset are shown.

Five peaks (positive deflections, P1-P5) in the latency range of 1–6 ms define the mouse auditory brainstem response

(ABR).

https://doi.org/10.1371/journal.pone.0208935.g001
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contralateral superior olivary complex (SOC), in the contralateral lateral lemniscus (LL) and in

the IC, respectively [28,32–34]. Major topics of ABR studies in mice included development,

aging, genetics, and pathologies of hearing simple sounds such as clicks, noise and tone bursts

[28,31,35–45]. With the exception of speech in tests with humans [46–48], we are not aware of

ABR studies using perceptually relevant communication sounds of animals or humans as sti-

muli. Since our primary focus was on perceptual boundaries in the time domain, we analyzed

latencies and the precision of timing of ABR waves at the μs-level introducing a new measuring

parameter for latency jitter. Main results concern the development of precision of temporal cod-

ing from the auditory periphery to the midbrain, correlates of the perceptual boundaries near

20–30 ms and 100 ms in adaptation at earlier and later ABR waves, respectively, and the

enhancement of processing higher harmonics by low-frequency harmonics of sounds.

Materials and methods

Animals

Virgin female house mice (Mus musculus, outbred strain NMRI, 8–12 weeks old, 25 animals)

from the breeding facilities of the Institute were used. After weaning, the animals were housed in

female sibling groups. Food and water were available ad libitum. The experiments were carried

out in accordance with the European Communities Council Directive (2010/63EU) and were

approved by the appropriate authority (Regierungspräsidium Tübingen, Germany; number 1050).

Experimental design and acoustic stimulation

Series of 50 kHz tones of 30 ms or longer duration and repetition rates 3-5/s effectively mimic

mouse pup ultrasounds and release maternal behavior [11,49]. The 6 animals of experiment A

were stimulated with 50 kHz tone bursts of the durations 150, 100, 50, 30, 20, 10 ms (1 ms rise

and fall times included). Inter-stimulus intervals (ISIs) in series of four tone bursts were always

200 ms (Fig 2A).

When mouse pup ultrasounds are emitted, many of them are preceded by a short, soft (less

than 70 dB) noise burst or click [50,51]. The 7 animals of experiment B were stimulated with

50 kHz tone bursts (50 ms duration, 1 ms rise and fall times included) preceded by bursts of

white noise (7 ms duration, 1 ms rise and fall times included). The ISIs between the bursts of

noise and ultrasound were 100, 32, 20, 8, 4 or 2 ms (Fig 2B). The stimuli consisting of noise

burst + temporal gap + ultrasonic formant can be regarded as analogs of pairs of stop conso-

nants and vowels of human speech.

Mouse pup wriggling calls consist of harmonically related main frequency components

(formants) near 4, 8, and 12 kHz [52,53]. Behavioral tests with wriggling call models have

shown the important features for the perception as relevant calls and for the release of mater-

nal behavior [16,54]. These are three formants of 100 ms duration in series with ISIs of 100–

400 ms duration [16]. The 7 animals of experiment C were stimulated with wriggling call mod-

els (100 ms duration, 2 ms rise and fall times included) consisting of 3.8, 7.6 and 11.4 kHz

tones starting and ending simultaneously. In series of four call models, ISIs had durations of

1000, 200, 100, 80, 50, 30, 20 or 10 ms (Fig 2C).

In order to be perceived as relevant auditory objects for the release of maternal behavior,

the three formants of wriggling call models have to start simultaneously within a time window

of about 30 ms [14]. In group D (8 animals), the start of the fundamental frequency of 3.8 kHz

was varied with regard to the onset of 7.6 + 11.4 kHz. Either 3.8 kHz started simultaneously

with the two higher harmonics or earlier (+10, +20, +30, +50 ms) or later (-10, -20, -30, -50

ms). The three harmonics always ended simultaneously. The ISIs in a series of four call models

had always durations of 200 ms relative to the 7.6 and 11.4 kHz harmonics (Fig 2D).
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Tones and white noise were digitally generated with Signaltronic V 1.0 hard- and software

(Albotronic, Oberkochen, Germany) in combination with a PC. Tones were initiated at zero

phase. Ultrasounds (50 kHz tones) and the noise ran through an attenuator (RA 920A, Ken-

wood, Japan), filter (bandpass 1–100 kHz, 48 dB/octave; Kemo VBF8, Dartford, UK), 20 dB

voltage amplifier (University of Ulm electronics) to an electrostatic speaker [55] with power

supply (University of Konstanz electronics). The wriggling call models ran through the attenu-

ator, filter, and a power amplifier (Denon PMA-1060, Nippon Columbia, Tokyo, Japan) to a

dynamic speaker (Dynaudio D28, Dynaudio, Bensenville, USA). Sound pressure levels (re.

20 μPa) were measured (Bruel & Kjaer microphone 4135 with preamplifier 2633 plus measur-

ing amplifier 2636; Bruel & Kjaer Instruments, Marlborough, MA) and adjusted to 80 dB for

the ultrasound, 60 dB for the noise and 60.5 dB for each harmonic of the wriggling call models

(70 dB total sound pressure level of the wriggling call models) at the right ear of the animal.

On the basis of ABR threshold measurements in NMRI, C3H, and CBA mice [38,44,56] and

very similar behavioral thresholds of NMRI and C3H mice [57], we assume that the above

mentioned SPLs were about 10–20 dB above the ABR threshold of the NMRI mice at the fre-

quencies used (3.8, 7.6, 11.4, 50 kHz). The perpendicular distance between loudspeakers and

the ear entrance was 20 +/- 0.2 cm. This uncertainty of +/- 0.2 cm in the distance between ear

and loudspeaker may have contributed +/- 6 μs to the measured latency variation between

animals.

ABR recording and data analysis

ABR recording took place in an anechoic and electrically shielded chamber. Animals were

anesthetized by an intraperitoneal injection of an initial dose of 120 mg/kg ketamine (Ketavet,

Bayer, Leverkusen, Germany) and 5 mg/kg xylazine (Rompun, Bayer, Leverkusen, Germany).

Supplemental dosages of 25 mg/kg ketamine and 1 mg/kg xylazine were given as needed to

maintain a motionless and pain-reflexless state of anesthesia. The body temperature of the

mice was kept at 37˚C by a feedback-controlled heating pad (Harvard, Holliston, MA, USA).

Recording sessions lasted as long as the animals were in stable physiological conditions best

visible in stable amplitudes of the ABR responses. Thus, the animals took part in one or two (3

animals) experiments run in one recording session. At the end of the recording session, each

experimental animal, still anesthetized, died by another initial dose of anesthetic.

The ABR recordings were obtained with subdermal silver wire electrodes (diameter 0.25

mm) placed over the left-side IC (active), ventrolateral to the right ear (reference), and dorso-

sacrum at the back of the mouse (ground). Electric potentials were amplified 10,000 times and

300 Hz– 3 kHz bandpass filtered (DAM 50; World Precision Instruments, Sarasota, USA),

sent to a filter (Kemo VBF8, Dartford, UK) for another amplification (10 times) and filtering

(1–3 kHz bandpass), fed in a CED 1401 Plus Interface (Cambridge Electronic Design, Cam-

bridge, UK) controlled by a PC, and finally stored for averaging and analysis (Spike 2 soft-

ware). Together with the ABR signals, trigger pulses marking the beginnings of the sound

bursts and the sound signals themselves were also recorded in different channels via the CED

1401 Plus (sampling rate 125 kHz per channel) and stored in the computer. In addition, the

ABR recordings and the sound signals and trigger pulses were monitored by an oscilloscope

Fig 2. Schemes of the acoustic properties of the sounds used in the four experiments (A-D). In all experiments, the

timing is varied as indicated: In (A), the tone duration in the series of four 50 kHz tones (models of mouse pup

ultrasounds); in (B), the inter-stimulus interval (ISI) between the noise burst and the 50 kHz ultrasound; in (C), the ISI

between the series of four models of mouse pup wriggling calls, each composed of three harmonics; in (D), series of

four models of mouse pup wriggling calls with either simultaneous start of the three harmonics, or advanced or

delayed start (with the indicated times) of the first harmonic (3.8 kHz).

https://doi.org/10.1371/journal.pone.0208935.g002
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(type 2216, Tektronix, Wilmington, USA). Series of four sound bursts (experiments A, C, D)

or pairs of sounds (experiment B) were repeated 500 times with 1 s pauses between the repeti-

tions for averaging the responses.

From the ABR waveforms (Fig 1), we determined the peaks (P1, P2, P3, P4, P5) and mea-

sured their latencies with regard to sound onset. Peak latencies were calculated without the

average runtime of 0.6 ms of the sound signals from the loudspeakers to the right ear of the

animal. ABR waves of the shown quality (see related figures) were regularly obtained, so that

the latencies of the wave peaks could usually be determined without doubt. In some record-

ings, two peaks became visible at the latency of an expected peak. In such cases, we took the

peak with the higher amplitude as the relevant one. In cases, in which peak amplitudes were

too small to be addressed or even absent, no latency value was taken. The accuracy with which

latency measurement were obtained, was estimated by analyzing blind a second time 8 samples

of ABR responses taken randomly from the recordings of experiments A-D. The latencies of

the wave peaks P1-P5 were determined and compared with the results from the previous anal-

yses of the same recordings. The 40 controls of latency measurements (8 samples x 5 peaks) led

to differences of 0–16 μs (average 5 μs) compared with the previous data. Thus, we are confi-

dent that the data analysis did not produce errors larger than about +/- 8 μs. This variation

equals the resolution of 16 μs to be expected by the 125 kHz sampling rate of the data.

Statistical data analyses

Before statistical tests for possible differences between data sets were applied, the sets were

checked for outliers [58,59] with α = 0.05. Identified outliers were not considered in the fur-

ther statistical data evaluation. For comparing several groups of data with regard to possible

differences in one parameter, one-way ANOVA or ANOVA on ranks (if data were not nor-

mally distributed and/or without equal variance) were applied. If the ANOVA indicated statis-

tically significant differences, the final differences between the test groups as indicated in the

text and figures were established by the paired t-test (concerning possible differences between

responses to immediately following stimuli such as the four sound bursts in experiments A, C,

D, or noise and ultrasound pairs in experiment B) or by the t-test or the U-test (Mann-Whit-

ney rank sum test, when the data were not normally distributed). For other comparisons

between two sets of data (means of latencies or SDs), t-tests or U-tests were used. If a data set

was used in more than one statistical test, p-values were corrected according to Bonferroni

[59]. SigmaPlot (11.0 software) was used for the statistical tests and regression analyses. All

tests, including the significance of correlation coefficients, were two-tailed with significance

level set at α = 0.05. Resulting p-values are indicated by stars in the figures as � p< 0.05, ��

p< 0.01, ��� p< 0.001.

Results

Experiment A: Exploration of the quality of ABR recording and analysis

with acoustic models of mouse pup ultrasounds

Fig 3A shows an ABR example to the series of 4 tone bursts of 50 ms duration each. All five

peaks of the ABR waves (P1-P5) are clearly visible, and the ABR patterns to each tone burst are

very similar. The ABR analyses of 6 animals resulted in the average latencies and the standard

deviations (SDs) of the means for P1-P5 as shown in Fig 3B. Since neither the mean latencies

to the 4 tone bursts of a given duration nor the mean latencies to the tone bursts of any of the 6

tested durations (Fig 2A) showed significant differences for any of the peaks (ANOVA; p>

0.2; see S1 Fig), latencies at a given peak were averaged across bursts and tone durations for
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each animal. These average values from the 6 animals were averaged to the grand average

latency plotted in Fig 3C with the respective SDs for each peak (filled circles with SDs). Thus,

the average peak latencies of Fig 3C (values are in Table 1) characterize population means

together with their variation (SDs) among the animals. The mean latencies increased from P1

to P2 (0.777 ms), P2 to P3 (1.014 ms), P3 to P4 (0.811 ms), and P4 to P5 (1.104 ms) resulting in

a total latency increase of 3.706 ms from P1 to P5 (see Table 1). The absolute SD values of the

population means increased with increasing peak latencies (P1-P5) from about 200 to 500 μs

(Fig 3C, filled triangles). The relative SDs of the peak latencies decreased from 16% (P1) to

11% (P2) and remained rather constant between 10% and 14% at the later peaks (Fig 3C).

Table 1 shows means of response latencies at the 5 wave peaks (P1-P5), differences of laten-

cies between the peaks indicated (P2-1, P3-2, P4-3, P5-4, P5-1), differences between the values

from experiment A 50 kHz and D 3.8 kHz (ΔD–A in italics), and differences between the peak

difference values of ‘C, D no adaptation’ and ‘C adaptation’ (Δ in italics). The values of the row

‘C, D no adaptation’ are the means from experiment C to 1000, 200, 100 ms ISI, and from

experiment D with synchronous start of the three harmonics and advanced start of the two

higher harmonics. ‘C adaptation’ shows the values from the adapted responses in experiment

C. ‘D enhanced’ shows the means from the cases of two higher harmonics with preceding 3.8

kHz. Results of statistical comparisons of mean latencies between the experiments are also

shown with the respective p-values; ns = non significant (further explanation, see text).

The above mentioned averaging of latencies across the responses to the four tone bursts

and all tone durations provided not only the individual means but also SDs for each individual

animal. From these individual SDs, we calculated the average individual SDs at the wave peaks

across the animals and plotted the average values also in Fig 3C (open triangles). The average

individual SDs were very small i.e. 40 μs at P1, 35 μs at P2, 42 μs at P3, 71 μs at P4, and 72 μs at

P5 (see Table 2). There were no significant differences of SDs between the peaks (ANOVA;

p> 0.05).

Table 2 shows the means of standard deviations of latencies of the individuals (SD individu-

als) from the same experiments as mentioned in Table 1 for the mean latencies. Results of sta-

tistical comparisons of mean SDs of individuals between the peaks in experiments A and D

and mean SDs of individuals between the experiments are also shown with the respective p-

values; ns = non significant (further explanation, see text).

Fig 3. Experiment A, example ABR recording. (A) Each of the four 50 kHz tone bursts had a duration of 50 ms with

200 ms inter-stimulus-intervals (grey vertical bars). Wave peaks P1-P5 are indicated. (B) Average latencies with SDs to

the four 50 kHz tone bursts (each of 50 ms duration) at the five wave peaks, P1-P5. (C) Grand average latencies

(explanation, see text) with SDs to the stimuli of experiment A (filled circles) at the five peaks (P1-P5). The SDs of the

means are also shown as values, relative values (%) and as filled triangles on the SD scale (right y-axis). The average

SDs of the individual animals at the wave peaks are indicated by open triangles.

https://doi.org/10.1371/journal.pone.0208935.g003

Table 1. Summary of average wave latencies and latency differences between the peaks from the experiments A-D, and of statistical comparisons between data

from the indicated experiments (C, D).

latencies [ms] P1 P2 P3 P4 P5 P2-1 P3-2 P4-3 P5-4 P5-1

A 50kHz 1.233 2.009 3.023 3.834 4.938 0.777 1.014 0.811 1.104 3.706

D 3.8kHz 1.575 2.408 3.175 4.161 5.360 0.834 0.766 0.987 1.199 3.785

Δ D—A 0.342 0.399 0.152 0.327 0.422
C, D no adaptation 1.544 2.394 3.207 4.151 5.304 0.850 0.813 0.944 1.153 3.760

C adaptation 1.549 2.561 3.422 4.491 5.563 1.012 0.861 1.069 1.072 4.014

D enhanced 1.422 2.285 3.140 4.005 5.306 0.863 0.855 0.865 1.301 3.884

C, D no adaptation vs. C adaptation ns p<0.02 p<0.01 p<0.001 ns Δ 0.162 0.048 0.125 -0.081 0.254
C, D no adaptation vs. D enhanced p<0.001 p<0.01 ns p<0.01 ns

https://doi.org/10.1371/journal.pone.0208935.t001
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In summary, the average peak latencies were independent of sound duration and increased

by about 1 ms with increasing ordinal peak number. Relative SDs of the means were largest at

P1. The individual variation of onset responding expressed as average individual SDs was

between 5–10 times smaller than the SDs of the mean peak latencies, reached values as small as

35 μs, and was rather independent of the level of processing from the CO to the IC.

Experiment B: Mimicking VOT processing with pairs of noise bursts and

ultrasounds

Example ABR recordings to noise-ultrasound pairs with ISIs of 100, 20, 8, and 2 ms duration

are shown in the S2 Fig. The results of the quantitative analyses of P1-P5 latencies of ABRs to

noise and ultrasounds with ISIs of 2–100 ms as parameter are shown in Fig 4. In Fig 4A the

peak latencies averaged from the ABRs of 7 animals are plotted together with the SDs of the

means. For all noise-ultrasound pairs mean response latencies were independent of the ISIs at

each wave peak (ANOVA; p> 0.2). In addition, mean latencies of noise responses did not dif-

fer from the means of ultrasound responses for any ISI and peak (paired t-test; p> 0.1). The

SDs of the means of the noise responses were, however, significantly smaller than the SDs of

the means of the ultrasound responses at all ISIs at all peaks (ANOVA on ranks followed by U-

tests; p< 0.001 at P1-P4; p< 0.01 at P5; see Fig 4A).

Because ABR latencies to noise and ultrasounds were independent of the ISIs, latencies were

averaged across all ISIs separately for each animal leading to individual means in response to

noise and ultrasounds and individual SDs for each of the 5 peaks. The means of the 7 animals

were then averaged separately for each peak and the grand average values with their SDs plotted

in Fig 4B (filled circles with SDs). Mean latencies increased through the sequence of peaks from

P1 to P5 resulting in a total latency increase of 4.074 ms and 4.105 ms for noise and ultrasound,

respectively. There were no significant differences between the population means in response to

noise and ultrasounds at any peak (U-test; p> 0.3). Absolute and relative values of the SDs of

the population means are also given in Fig 4B. Absolute values increased from 76 μs at P1 to

378 μs at P5 (filled triangles with regard to noise) while relative SDs remained rather constant

(about 6%). For ultrasound responses, absolute SD values did not increase systematically with

the peak number (Fig 4B, filled triangles with regard to US) and varied between 486 and 571 μs.

Relative SDs of the ultrasound means decreased from 32% at P1 to 10% at P5.

The average individual SDs of response latencies at P1-P5 are also shown in Fig 4B (open

triangles). As in experiment A, average individual SDs were much smaller than the SDs of the

group means (filled triangles). The absolute values were at P1 29 and 59 μs, at P2 24 and 83 μs,

at P3 67 and 105 μs, at P4 61 and 107 μs, at P5 197 and 213 μs for noise and ultrasound

Table 2. Summary of average standard deviations of the individuals from the experiments A-D, and of statistical comparisons between data from the indicated

experiments (A, C, D).

SD individuals [ms] P1 P2 P3 P4 P5

A 50kHz 0.040 0.035 0.042 0.071 0.072 ns

D 3.8kHz 0.067 0.042 0.052 0.056 0.070 ns

C, D no adaptation 0.054 0.036 0.037 0.064 0.080 P4 > P1, P2, P3: p<0.05; P1 > P2: <0.05

P5 > P1, P2, P3: p<0.01

C adaptation 0.090 0.048 0.043 0.109 0.079 P1, P4 > P2, P3: p<0.05

D enhanced 0.043 0.030 0.037 0.064 0.082 P4, P5 > P1, P2, P3: p<0.01;

P1 > P2: p<0.01

C, D no adaptation

vs. C adaptation

p<0.01 p<0.05 ns p<0.01 ns

https://doi.org/10.1371/journal.pone.0208935.t002
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responses, respectively. The values at P5 were significantly larger than the values at P1 and P2

for both noise and ultrasound responses (ANOVA on ranks followed by U-test; p< 0.01

noise, p< 0.05 ultrasound).

In summary, preceding noise at any ISI of 2–100 ms did not significantly change the ABR

response latencies to the following 50 kHz ultrasounds at any peak (P1-P5). In addition, the

grand average peak latencies in response to the ultrasounds in experiment B did not signifi-

cantly differ from the grand average peak latencies in experiment A at any peak (t-test or U-

test; p> 0.05). Preceding noise led, however, to general and significant increases of the varia-

tion of the mean latencies among the animals for all peaks (SDs of the means from experiment

A vs. SDs of the means from experiment B ultrasound: t-test; p< 0.001 for P1, P2, P3; p< 0.05

for P4, P5). The average variation of latencies within the individual animals (SD individuals)

Fig 4. Experiment B, data evaluation. (A) Average latencies with SDs at the five wave peaks (P1-P5) in response to noise-ultrasound pairs color-coded for the tested

ISIs. (B) Grand average latencies (explanation, see text) with SDs to the noise and ultrasound stimuli (filled circles) at the five peaks (P1-P5). The SDs of the means are

also shown as values, relative values (%) and as filled triangles on the SD scale (right y-axis). The average SDs of the individual animals at the wave peaks are indicated by

open triangles. The asterisks mark significantly larger values at P5 compared to those at P1 and P2.

https://doi.org/10.1371/journal.pone.0208935.g004
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was not generally increased in experiment B (ultrasound responses) compared to experiment

A. Mean individual SDs in experiment B were significantly larger than those in experiment A

at P2 (U-test; p< 0.05), P3 (t-test; p< 0.001), and P5 (U-test; p< 0.05).

Experiment C: Testing perceptually relevant ISIs of mouse pup wriggling calls

Example ABR recordings to series of four bursts of wriggling call models with ISIs of 200 and

20 ms duration are shown in the S3 Fig. The results of the quantitative analyses of response

latencies are shown in Fig 5. Latency means with SDs of the means, averaged across 7 animals,

are shown in Fig 5A for P1-P5 separately for the 4 sound bursts used as stimuli at the indicated

ISIs (10–1000 ms). For ISIs of 1000, 200, and 100 ms, latency means to the 4 sounds bursts did

not differ at any wave peak (ANOVA, p> 0.2). At ISIs of 80 and 50 ms, the means of the burst

latencies at P5 were significantly longer in response to burst 2 compared to burst 1 (paired t-

test; p< 0.05) as indicated in the figure. At 10, 20, and 30 ms ISIs, significant differences

between the mean latencies of responses to bursts 1 and 2 occurred at all peaks (P2, P3, P4, P5;

paired t-test, p< 0.01 or p< 0.05; see Fig 5A) except P1 (ANOVA, p> 0.2). In summary,

except in the CO, short ISIs of 10, 20, and 30 ms led to significantly longer latencies to the sec-

ond compared to the first sound in a series.

Fig 5A shows that average response latencies to the four sound bursts may differ at certain

ISIs and peaks. Whether latency differences in the responses to the sound bursts varied system-

atically with ISI duration is shown in Fig 6A. Latency differences of responses to bursts 1 and 2

(burst 2–1), bursts 2 and 3 (burst 3–2), and bursts 3 and 4 (burst 4–3) from the 7 animals were

averaged and plotted as function of the ISIs, separately for each peak (P1-P5). At all five peaks,

burst 2–1 latency differences had positive values for short ISIs which decreased, on average,

towards zero for longer ISIs. The decrease of the burst 2–1 values with increasing ISIs was sta-

tistically significant (nonlinear regression, y = b e-ax) at all peaks with p-values between 0.0383

and 0.0017 (compare Table 3). At short ISIs, Fig 6A shows an increase of the burst 2–1 latency

difference from P1 to P5, i.e. with 10 ms ISIs, the burst 2–1 latency difference was about 0.13

ms at P1, 0.23 ms at P2, 0.32 ms at P3, 0.40 ms at P4, and 0.50 ms at P5. In contrast, burst 3–2

and burst 4–3 latency differences were very variable at all peaks and without significant rela-

tionships to ISIs (Fig 6A). This result adds to the presentation of the data in Fig 5A showing

significant latency increases with shortening of the ISIs which were specific at each level of pro-

cessing from the auditory periphery to the midbrain and the larger the higher the level of pro-

cessing was. These significant latency increases concerned, however, only the response to the

second relative to the first sound burst in a series.

All functions express the decrease of adaptation effect with increasing ISI duration. r, corre-

lation coefficient; DF, degrees of freedom; p, level of statistical significance of r.

As in experiment A, latencies across the four bursts with ISIs without significant latency

shifts at any peak (ISIs of 1000, 200, 100 ms; Fig 5A) were averaged for each animal. The

means from the 7 animals were averaged to the grand average latency plotted in Fig 5B with

Fig 5. Experiment C, data evaluation. (A) Average latencies with SDs at the five wave peaks (P1-P5) in response to the series of four wriggling call models (bursts 1–4)

with ISIs of 10–1000 ms between the sound bursts as indicated in each panel. Asterisks show significant differences of average latencies between bursts 1 and 2. (B)

Grand average latencies (explanation, see text) with SDs to the wriggling call series with ISIs of 100, 200, 1000 ms (filled circles) at the five peaks (P1-P5). The SDs of the

means are also shown as values, relative values (%) and as filled triangles on the SD scale (right y-axis). The average SDs of the individual animals at the wave peaks are

indicated by open triangles. The asterisks mark significantly larger value at P1 compared to that at P2. (C) Grand average latencies (explanation, see text) with SDs to the

wriggling call series with ISIs of 10–80 ms (filled circles) at the five peaks (P1-P5). Latencies of responses without significant latency increase (e.g. responses to all bursts

at P1 and to burst 1 at other peaks; compare panel A and text) were averaged to the values shown in dark green, latencies of responses with significant latency increase

were average to the values shown in light green. Asterisks indicate significant differences between dark and light green latency values. The SDs of the means are also

shown as values, relative values (%) and as filled triangles on the SD scale (right y-axis). The average SDs of the individual animals at the wave peaks are indicated by

open triangles. The asterisks mark significantly larger SD values at P1 and P4 compared to those at P2 and P3.

https://doi.org/10.1371/journal.pone.0208935.g005
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the respective SDs of the means for each peak (filled circles with SDs). The means significantly

increased through the sequential peaks from P1 to P5 resulting in a total latency increase of

3.705 ms. Absolute values of SDs increased with peak number from 149 μs at P1 to 382 μs at

P5 (filled triangles, Fig 5B). The relative SD value of 10% at P1 decreased to 5–7% at the other

peaks. Averaging latencies across the responses to the four sound bursts and ISIs of 1000, 200,

Fig 6. Experiment C, ISI dependence of latencies and latency variation. (A) Differences between average latencies to the sound bursts (burst 2–1, burst 3–2, burst

4–3) are plotted as function of the ISIs. The significant increases of the latency difference between bursts 1 and 2 with decreasing ISI is modelled by exponential decay

functions (red curves) the parameters of which are given in Table 3. (B) SDs of averaged latencies to the four sound bursts are plotted as function of the ISIs with wave

peaks as parameter. Systematic relations were not present. (C) Average individual SDs of response latencies to the four sound bursts are plotted as function of the ISIs

with wave peaks as parameter. The significant decreases of the SDs with increasing ISIs are modelled by decay functions the parameters of which are given in Table 3.

https://doi.org/10.1371/journal.pone.0208935.g006
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and 100 ms provided also SDs for each individual animal. These individual SDs were averaged

separately for each peak across the animals and the values plotted in Fig 5B (open triangles).

Average individual SDs were again much smaller than the SDs of the means (open vs. closed

triangles in Fig 5B). The average individual SD at P1 (90 μs) was significantly larger (p< 0.01)

than that at P2 (46 μs) but did not differ from those at P3 (54 μs), P4 (77 μs), and P5 (86 μs)

(ANOVA followed by t-tests).

Sound burst series with ISIs of 80 ms and shorter showed for some peaks significant latency

increases in responses to the second compared to the first burst in a series (Fig 5A). These dif-

ferences led to further analyses of ABRs in response to sound series with these ISIs. Since laten-

cies at P1 did not significantly increase to the second, third and forth sound burst in the series

(Fig 5A), P1 latencies were averaged across the four bursts and the responses to the ISIs of 10–

80 ms for each animal and then these average values from the 7 animals were averaged to the

grand average latency at P1 plotted with the SD of the mean value in Fig 5C. At P2, P3, and P4,

latencies to the first bursts were averaged across the responses to the ISIs of 10, 20, and 30 ms

for each animal and the grand average values for the 7 animals plotted with the SDs of the

means in Fig 5C (filled circles with SDs in dark green related to P2, P3, P4). At P2, P3, and P4,

latencies to the second, third, and forth bursts were also averaged for each animal across the

bursts and the ISIs of 10, 20, and 30 ms and the grand average values for the 7 animals plotted

with the SDs of the means in Fig 5C (filled circles with SDs in light green related to P2, P3, P4).

The means are also given in Table 1 (‘C adaptation’). At P5, the same procedure as at P2-P4

was applied with the inclusion of the recordings at 50 and 80 ms ISIs (Fig 5C, filled circles with

SDs in light green related to P5; value in Table 1, ‘C adaptation’ at P5). Fig 5C shows that mean

latencies in response to the first sound burst in a series were significantly shorter than the

latencies to the following bursts at P2-P5 (t-test; p< 0.01 or p< 0.05 as indicated). Absolute

values of the SDs of the means increased from P2 (82 μs) to P5 (318 μs; filled triangles in dark

green, Fig 5C). Absolute values of the SDs of the means from the responses to the second, third

and forth bursts also increased from P2 (133 μs) to P5 (241 μs; filled triangles in light green,

Fig 5C). Relative SDs of all means varied between 3% and 6%. The individual SDs of the ani-

mals related to the latency means at P1 and, at the other peaks, to the means obtained for the

second, third and forth bursts in the sound series were used to calculate the average individual

SDs. The values are also shown in Fig 5C (open green triangles) and in Table 2 (‘C adapta-

tion’). The average individual SDs at P1 and P4 were significantly larger than those at P2 and

P3 (ANOVA on ranks followed by U-Test; p< 0.05).

Table 3. Regression functions of the ISI dependences at the wave peaks P1-P5 shown for average differences of response latencies between bursts 2–1 in Fig 6A and

for SDs of individuals in Fig 6C.

‘ ISI dependence of latency differences,

burst 2–1 [ms] (Fig 6A)

ISI dependence of SD individuals [ms]

(Fig 6C)

peak ISI (x), difference (y), regression r (DF) p ISI (x), SD (y), regression r (DF) p

P1 y = 0.1769 e -0.0283x 0.9012 (6) < 0.01 y = 0.0758 + 0.2709 e -0.1297x

y = 0.246–0.105 log x

0.8162(6)

0.975 (2)

= 0.1114

< 0.05

P2 y = 0.3067 e -0.0264x 0.8941 (6) < 0.01 y = 0.0407 + 0.1676 e -0.0388x

y = 0.289–0.133 log x

0.9626(6)

0.955 (2)

< 0.001

< 0.05

P3 y = 0.3915 e -0.0200x 0.8766 (6) < 0.01 y = 0.0503 + 0.1676 e -0.0394x

y = 0.389–0.126 log x

0.9760 6)

0.966 (2)

< 0.001

< 0.05

P4 y = 0.4836 e -0.0184x 0.7336 (6) < 0.05 y = 0.0695 + 0.2689 e -0.0244x

y = 0.485–0.198 log x

0.9953 6)

0.995 (3)

< 0.001

< 0.001

P5 y = 0.7465 e -0.0395x 0.9092 (6) < 0.01 y = 0.1047 + 0.6416 e -0.0857x

y = 0.435–0.145 log x

0.9511(6)

0.869 (5)

< 0.001

< 0.05

https://doi.org/10.1371/journal.pone.0208935.t003
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Fig 6A shows latency changes at the wave peaks P1-P5 as function of the duration of the

ISIs between the four sound bursts. Whether changes also existed for the standard deviations

of the latencies is shown in Fig 6B and 6C. In Fig 6B, the SDs of the mean latencies to the four

sound bursts averaged across the responses of the seven animals are shown separately for all

wave peaks as a function of the ISI duration. Although SDs of the means were quite variable,

especially at P5, general trends (increases or decreases) with changing ISIs did not occur. The

average individual SDs of the seven animals, however, decreased at each peak with increasing

duration of the ISIs (Fig 6C). At P1 the average SDs at 10 ms and 1000 ms ISI differed by 0.041

ms, at P2 by 0.098 ms, at P3 by 0.109 ms, at P4 by 0.207 ms, and at P5 by 0.324 ms. The func-

tions were modeled by the nonlinear regression y = y0 + b e-ax. Excluding the values at 30 ms

ISI, which were at P1, P2, and P4 at odds with the general trend, the equations listed in Table 3

were obtained. Except at P1, the regressions were statistically significant with p< 0.05 to

p< 0.001 (Table 3). The decreasing part of the exponential function can also be described by a

linear regression of the form y = y0 –a log x. Excluding again the values at 30 ms ISI, the

decreasing part of the exponential function comprised ISIs of 10–80 ms at P1, P2 and P3, of

10–100 ms at P4, and of 10–1000 ms at P5. All regressions with the equations listed in Table 3

were statistically significant with p< 0.05 or p< 0.001. Inserting the y0-values of the exponen-

tial decrease functions for each peak (Table 3) as y in the respective linear regression functions,

the x-values could be obtained at which the exponential decrease reached the constant y0 level.

The resulting ISI values were 42 ms for P1, 74 ms for P2, 78 ms for P3, 125 ms for P4, and 190

ms for P5.

In summary, the length of ISIs between identical sounds (wriggling call models) systemati-

cally influenced both the latency of sound onset responses and the precision of timing of the

responses (latency jitter expressed by SDs of individuals) at all levels of the auditory pathway

represented by the ABR waves in very similar ways. This newly found correspondence of

response latency and latency variation in the context of adaptation (see Discussion) shows sig-

nificant latency adaptation for ISIs shorter than about 30 ms in the auditory periphery, shorter

than 50 ms in brainstem centers, and shorter than 100 ms at the suggested IC level. Adaptation

of the latency jitter covered slightly longer ISIs than the latencies themselves, namely about

42–190 ms. The largest loss of precision was observed for the shortest tested ISI of 10 ms at P4

and P5, the smallest at P1.

Experiment D: Testing properties of time-critical spectral integration in

wriggling call perception

Example ABR recordings to series of four bursts of wriggling call models with ISIs of 200 ms

duration and non-simultaneous onsets of the harmonics are shown in the S4 Fig. The results

of the quantitative data evaluation are shown in Fig 7. Latency means with SDs of the means,

averaged across 8 animals, are shown in Fig 7A for P1-P5 separately for the 4 cases of responses

to simultaneous onset of the three harmonics (black), responses to the higher harmonics (7.6

+ 11.4 kHz) with delayed 3.8 kHz onset (orange-red), responses to 3.8 kHz preceding the onset

of the higher harmonics (green), and responses to the higher harmonics when their onset was

preceded by the 3.8 kHz onset (blue). The average latencies include all cases of delayed (-10,

-20, -30, -50 ms) and preceding (+10, +20, +30, +50 ms) onsets of 3.8 kHz relative to the higher

harmonics because there were no differences (ANOVA, p> 0.05) of average latencies between

all these cases at any peak (see S5 Fig). Therefore at a given peak, latencies were averaged across

delay/advance times separately for each of the four sound bursts for each animal. These aver-

age values from the 8 animals were then averaged to the average latencies plotted in Fig 7A

with the respective SDs for each burst. Fig 7A shows clearly that, at a given peak, mean

Auditory adaptation and spectral enhancement at temporal perceptual boundaries

PLOS ONE | https://doi.org/10.1371/journal.pone.0208935 December 20, 2018 15 / 26

https://doi.org/10.1371/journal.pone.0208935


latencies and SDs of the means were very similar among the responses to the four sound bursts

and were also rather similar with regard to the four different stimulus situations.

Since mean latencies in response to each of the four sound bursts did not differ in any of

the four stimulus situations (ANOVA, p> 0.2), we averaged the average response latencies

across delay/advance times and the four sound bursts for each animal, averaged the values of

the animals and plotted the grand average latencies with the SDs of the means for all peaks and

stimulus situations in Fig 7B (filled circles with SDs). The mean latencies increased through

the sequential peaks from P1 to P5 resulting in a total latency increase of 3.729 ms (simulta-

neous onset of the three harmonics, black), 3.831 ms (higher harmonics 7.6 + 11.4 kHz with

delayed onset of 3.8 kHz, red), 3.785 ms (3.8 kHz preceding the onset of the higher harmonics,

green), and 3.884 ms (higher harmonics when their onset was preceded by the onset of 3.8

kHz, blue). The values of the absolute and relative SDs are noted above the means. As indicated

Fig 7. Experiment D, data evaluation. (A) Average latencies with SDs to the four sound bursts at the five wave peaks (P1-P5) when the three harmonics of the

wriggling call models started simultaneously (black symbols), responses to the higher harmonics (7.6 + 11.4 kHz) with delayed onset of 3.8 kHz (orange-red), responses

to 3.8 kHz preceding the onset of the higher harmonics (green), and responses to the higher harmonics when their onset was preceded by the onset of 3.8 kHz (blue).

The shown average latencies include all cases of delayed onsets of 3.8 kHz (-10, -20, -30, -50 ms) and all cases of preceding onsets of 3.8 kHz (+10, +20, +30, +50 ms)

relative to the higher harmonics. (B) Grand average latencies (explanation, see text) with SDs to the stimuli color-coded as in panel A (filled circles) at the five peaks

(P1-P5). Asterisks indicate significant latency differences between responses to the blue stimulus and the other stimuli. The SDs of the means are also shown as values,

relative values (%) and as filled triangles on the SD scale (right y-axis). The average SDs of the individual animals at the wave peaks are indicated by open triangles. The

asterisks mark significantly larger values at P4 and P5 compared to those at P1, P2 and P3 and at P1 compared to P2 (see also Table 2).

https://doi.org/10.1371/journal.pone.0208935.g007
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in Fig 7B, there were statistically significant differences between the mean latencies from the

four stimulus situations at P1, P2, P3, and P4 (ANOVA on ranks followed by U-test). The

mean latencies of the responses to the two higher harmonics with preceding 3.8 kHz (blue)

were shorter (p < 0.01) than the latencies to the two higher harmonics with delayed 3.8 kHz

(red), shorter (p< 0.001) than the latencies to 3.8 kHz when the higher harmonics were

delayed (green) and, only at P1, also shorter (p< 0.01) than the latency to the simultaneous

onset of the three harmonics (black). For all four stimulus situations, the absolute SDs of the

means were similar at P1-P4 but increased at P5 (filled triangles). The relative SDs of the

means varied between 2% and 7%.

The mean SDs averaged from the individual SDs of the 8 animals are also shown in Fig 7B

(open triangles). As in experiments A-C, individual SDs were generally smaller than the SDs of

the means. The values of the average individual SDs (all peaks, all stimulus situations) ranged

between 28 and 80 μs. The values at P4 and P5 were significantly larger than those at P1, P2,

and P3 (ANOVA or ANOVA on ranks followed by t-test or U-test) for the stimulus situations

of simultaneous onset of the harmonics (black), higher harmonics with delayed onset of 3.8

kHz (red), and higher harmonics with preceding onset of 3.8 kHz (blue). In the latter case, also

average individual SDs at P1 were significantly larger than at P2. The respective levels of signif-

icance are indicated by the number of stars on the open triangles at P1, P4 and P5 in Fig 7B.

In summary, the main effect of non-simultaneous onsets of the harmonics of wriggling call

models was the shortened latencies at P1-P4 of responses to the higher harmonics with preced-

ing first harmonic (3.8 kHz) when compared with the responses to the other stimulus situa-

tions. Interestingly, the amount of the advanced 3.8 kHz onset in the tested range of 10–50 ms

did not influence the amount of shortening the latencies of the responses to the delayed higher

harmonics.

Discussion

Significance of ABR latency variability

Mouse ABR references from young, normal hearing mice using clicks, bursts of noise or tones

of at least 50 dB SPL [32,33,35,36,40,42–44,60,61] indicate that our latency data (Table 1) and

SDs of the means (see Figs 3B and 3C, 5, 7) were in the expected range of 1–2 ms latency for

P1 increasing to 4.5–6.2 ms for P5 with SDs of the means generally increasing with ordinal

numbers of peaks from 40–200 μs at P1 to more than 200 μs at P5. Standard deviations of ABR

response latencies on the level of individual animals seem not to be available in the literature.

SDs of the individual animals were mostly smaller than 100 μs and not generally increasing

with increasing peak number (Table 2). SDs of individuals can be expected to be much smaller

than SDs of population means since the latter reflect differences between the individuals con-

cerning factors such as the physiological condition of the animals, placement and contact of

electrodes, depth of anesthesia, and signal-to-noise ratio of the recording.

Remarkably, the SDs of the individuals expressing 30–90 μs latency jitter at the wave peaks

(Table 2) reproduce the jitter in single neuron latency measurements from electrical stimula-

tion of brain slices of the mouse. This jitter was 27 μs for excitatory postsynaptic potentials of

CN octopus cells [62], 70 μs for first spikes of neurons in the medial nucleus of the trapezoid

body [63], and about 100 μs for first spikes of rat IC cells (neurons with the least jitter) stimu-

lated via a CN implant [64]. In addition, the decrease of the values of the SDs of the individuals

from P1 to P2 (Table 2) may reflect the decrease of jitter of action potential timing of the neu-

rons represented by P2 in the CN compared to the AN. Expressed by a synchronization index,

neurons in the CN synchronized their action potentials 20–40% more precisely than AN fibers

to the phase of low-frequency tones or to the amplitude modulation of sounds [65,66]. In
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correlation with this improvement of action potential synchronization, values of individual

SDs at P2 were 30–40% smaller than the values at P1 (Table 2; SD individuals at 3,8 kHz, ‘C, D

no adaptation’, ‘D enhanced’).

In conclusion, latency jitter of individual animals at the ABR peaks seems to reproduce the

precision of response timing including adaptation (see below) of groups of neurons in the

cochlea and auditory brain centers responsible for the generation the ABR waves. Thus, the

evaluation of SDs of ABR latencies of individual subjects may open a wide new field for ABR

studies by offering a simple method for detecting subtle changes in the precision of response

timing at the neuronal level related to influences such as physiological condition, attention,

behavioral and acoustic context, drugs, and genetic variation.

Significance of ABR latency differences

Besides the expected latency differences of about 1 ms between the wave peaks (Table 1), which

relate to synaptic levels in the ascending auditory pathway [28,29,32,34], we found an average

latency difference of 0.342 ms related to P1 when generated by high (50 kHz) vs. low (3.8 kHz)

tone stimulation (Table 1, ΔD-A). The frequency of 3.8 kHz is at the low end, 50 kHz at the

high end of characteristic frequencies of AN fibers and IC neurons in NMRI mice [67,68] and

other mouse strains [69–71]. Average first-spike latencies of AN fibers of very low and high

characteristic frequencies differ by 1.03 ms (CBA/CaJ mouse [72] with citation of MC Liber-

man, personal communication) or 1.34 ms (NMRI mouse) [67]. Synaptic and neural processes

in the cochlea take about 1 ms regardless of the characteristic frequency [73]. The front of the

traveling wave induced by a tone takes about 0.3–0.4 ms to reach a place 6.8 mm from the

cochlear base in direction towards the apex on the 20 mm long chinchilla basilar membrane

[73–75]. The basilar membrane length of the NMRI mouse is 6.8 mm [76]. Therefore, the chin-

chilla data suggest that the ABR latency difference of 0.342 ms at P1 in the NMRI mouse may

just reproduce the 0.34 ms latency difference between high- and low-frequency AN fibers [67]

in this mouse strain after the 1 ms for synaptic and neural processes in the cochlea have been

subtracted from the AN fibers latency difference. Thus, our data offer a reasonable value for the

cochlear travel time in the mouse that has not yet been determined experimentally.

Significance of ABR latency adaptation

Neural adaptation to series of sounds and recovery from adaptation have been investigated via

several neuronal response parameters such as latencies, amplitudes, rates, and thresholds. We

are not aware of data on adaptation of latency jitter as expressed by SDs of latencies of individ-

ual animals (Fig 6C). In general, adaptation effects such as those found in experiment C (Figs 5

and 6) increase with decreasing ISI duration and increasing level of processing in the auditory

system [21,26,38,77–82]. As we show in Figs 5A and 6A, the most prominent adaptation effect

is seen in the response to the second sound in a series of identical sounds [83–86]. In the audi-

tory brainstem, the amount of adaptation as a function of the ISI duration follows exponential

decreases or linear decreases on a logarithmic scale in the range of up to about 200 ms ISIs

[85,87–89] as shown in Fig 6A and 6B and Table 3 for all peaks of the mouse ABR. We found

longer latencies from adapted compared with non-adapted responses in experiments C and D

for P2-P5, statistically significant for P2-P4 (Table 1). One may argue that, at each center of the

auditory pathway represented by the ABR peaks, adaptation could add similar amounts of

latency to the sound onset responses conveyed centripetally. Interestingly, however, this is not

the case. The centers of the auditory pathway generating the ABR wave peaks (P1-P5) did not

contribute equally to the total adaptation effect of 0.254 ms latency increase measured over the

peaks in the adapted versus the non-adapted cases (see Table 1, Δ value at P5-1 for ‘C, D no
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adaptation’ vs. ‘C adaptation’). The transition from P1 (cochlea) to P2 (groups of neurons in

the CN) contributed about 2/3 (0.162 ms, see Δ value at P2-1 in Table 1) to the total adapta-

tion-related latency increase over the peaks, while other transitions contributed less or noth-

ing. That is, ABR latency differences express adaptation effects specific for the transition from

one to another processing center responsible for the given ABR peaks.

One initial question of this study concerned possible relationships between changes of ABR

latencies/latency precision and boundaries in the time domain near 20–30 ms, 100 ms, and

400 ms known from sound perception in humans, mice, and other animals [3]. The results of

our study showed:

1. The perceptual boundary near 20–30 ms depending on the duration of sounds or sound
components [11,14,49] (experiments A, D) had no counterpart in our results.

2. The perceptual boundary near 20–30 ms depending on the duration of inter-sound intervals
[1–4,8–10] was reflected in the significant adaptation of latencies and the amount of latency

jitter at P2-P5 for ISIs < ~30 ms (experiment C, Figs 5A, 6A and 6C, Table 3). Our experi-

ment B showed that relatively soft noise bursts (60 dB total SPL or 43.6 dB in the critical

band of 23 kHz around 50 kHz [90]) did not significantly adapt onset responses to subse-

quent 50 kHz tones at any of the ISIs (2–100 ms) tested. Transferred to coding of human

speech sounds, the noise bursts due to consonants such as b, d, g, k, p, t, are not expected to

have adaptation effects in the brainstem on the coding of vowels vocalized at the end of

VOTs. Experiments with chinchillas support this hypothesis. Chinchilla AN fibers [91,92]

and part of the neurons in the IC [93] reliably encoded with their onset-response latencies

synthetized vowels after VOTs of 20 ms and longer especially when the neurons responded

preferentially to the lowest formant frequency of the vowel.

3. The perceptual boundary near 100 ms depending on the duration of inter-sound intervals
[15,16] was reflected in the beginning of significant adaptation of latencies and the increase of

latency jitter at P5 for ISIs< ~100 ms (experiment C, Figs 5A, 6A and 6C). Thus, we can state

that optimal perception of wriggling call series in one acoustic stream with ISIs> 100 ms hap-

pens when the sound onset responses at P5, most probably representing IC-responses in the

mouse [32–34], are largely free from adaptation and able to follow with full temporal precision

the sound onsets. Likewise in human perception, series of two tones with frequencies within

one critical band are integrated in one perceptual stream, if the ISIs are longer than about 100

ms [15]. In this case, adaptation and loss of temporal precision of sound onset coding in critical

frequency bands related to the IC, which was found to be the first level in the auditory pathway

with neural correlates of critical band properties [94,95], may have prevented the two frequen-

cies be integrated in one perceptual stream when ISIs were shorter than about 100 ms.

4. The 400 ms boundary in perception did not occur in our ABR latency data. We did not find

adaptation effects for ISIs longer than about 200 ms in any of the auditory centers examined

(Figs 5A, 6A and 6C). In addition, in the auditory cortex enhanced responding is seen to a

sound which is preceded by another sound with ISIs of 400 ms or less [96–98]. If such an

enhancement were already established in brainstem centers, we might have recorded ABR

responses with increased amplitude and shortened latency to the onset of the second, third,

and forth compared to the first wriggling call models in series with 100 ms or 200 ms ISIs in

experiment C. This was, however, not the case. Therefore, our guess is that the 400 ms ISI

boundary is established in higher auditory centers above the auditory midbrain.

In conclusion, adaptation of ABR latencies means a loss in the precision of coding sound

onsets. The amounts of latency adaptation and loss of coding precision increase nonlinearly
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with shortening of intervals between sounds in a series and nonlinearly with increasing pro-

cessing levels in the auditory pathways. At the levels of the auditory brainstem and of the audi-

tory midbrain, latency adaptation with loss of coding precision for sound onsets reflects the

ISI boundaries in the perception of sound streams near 20–30 ms and 100 ms, respectively.

Significance of ABR latency enhancement

The 10–50 ms earlier onset of 3.8 kHz relative to the higher harmonics (7.6 + 11.4 kHz) of the

wriggling call models in experiment D had no adaptation effects on the responses to 7.6 + 11.4

kHz. To the contrary, the mean onset response latencies decreased by about 0.1 ms at each

peak compared to those of the other stimulus cases shown in Fig 7 (blue data compared to

green, red and black data). This significantly enhanced state of the response to the higher har-

monics is also shown in Table 1, where response latencies without adaptation (‘C, D no adap-

tation’) were compared with those of the enhanced responses (‘D enhanced’). Our approach to

explain these data of experiment D has to consider processes starting in the cochlea because

the shortening of response latencies started with P1 and was carried on to the next peaks.

As mentioned above, adaptation effects on the perception of auditory streams [15] seem to

concern only frequencies within one given critical band. Since the higher harmonics of wrig-

gling calls were outside the critical band determined by 3.8 kHz [54,90] adaptation of

responses to the higher harmonics by 3.8 kHz was not expected. The enhancement of

responses to the higher harmonics may have been caused due to the excitation patterns of the

cochlea [99,100] because the 3.8 kHz tone of 60 dB SPL stimulated the cochlear locations

where the responses to 7.6 + 11.4 kHz were generated according to the tonotopic gradient

[71,101]. Masking experiments with auditory nerve fibers have shown that such stimulation by

low-frequency and low-level tones or noise adds excitation to the tonotopically proper stimu-

lus of higher frequencies leading to increased response rates [67,102,103]. Considering the

general relationship between increased response rates and shortening of onset response laten-

cies at moderate sound intensities for neurons in the AN and auditory brainstem [64,104–

107], we have the explanation for the enhanced response to the higher harmonics at P1 when

3.8 kHz was preceding their onset by any of the tested advanced onset times. This enhance-

ment was then continued as significant latency decrease up to P4 and faded away at P5, where

the latency variation was increased (Fig 7). With regard to wriggling call perception, the pres-

ence of 3.8 kHz in combination with one or both higher harmonics in the sound stimulus sig-

nificantly enhanced call perception compared with stimuli containing only higher harmonics

[54]. Similarly, in human vowel perception low-frequency formants below the best hearing

range of about 2–5 kHz [108] have been shown to be most important [109,110].

In summary, the latency results from our experiments C and D indicate adaptation effects

when the frequencies in a stream of sounds of short ISIs were within the same critical band,

and enhancement effects of low-frequency on high-frequency sound components when the

frequencies concerned different critical bands. This enhancement may be important for per-

ception of multi-harmonic communication sounds such as vowels in human speech.

Supporting information

S1 Fig. Experiment A, average peak latencies as function of ultrasound duration. Latencies

with standard deviations averaged from the responses to the four 50 kHz bursts of the 6 experi-

mental animals are plotted at the wave peaks P1–P5 separately for all tested durations of the 50

kHz ultrasound bursts. Significant differences between latencies at the sound durations did

not occur at any peak.
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S2 Fig. Experiment B, example ABR recording to noise-ultrasound pairs with ISIs of 100,

20, 8, and 2 ms duration. The ISIs are indicated by grey vertical bars. The onset of the ultra-

sound after the ISIs is shown by an arrow followed by a hatched bar marking the first millisec-

ond on the ultrasound scale. Absolute amplitudes of ABRs to noise were about twice as large

as those to ultrasounds and relative amplitudes of the 5 waves, i.e. waveforms, differed between

responses to noise and ultrasounds.

(DOCX)

S3 Fig. Experiment C, example ABR recording to series of four wriggling call models. The

ISIs between the sound bursts were either 200 ms or 20 ms (grey vertical bars). Wave peaks

P1-P5 are indicated. In the responses to burst 1 (200 ms ISI) and bursts 3 and 4 (20 ms ISI), P5

could not be addressed and no latency measurements were taken.

(DOCX)

S4 Fig. Experiment D, example ABR recording to series of four sound bursts mimicking

wriggling call models with non-simultaneous onsets of the harmonics. (A) Responses to the

7.6 + 11.4 kHz harmonics when the onset of 3.8 kHz was delayed by 50 ms. (B) Responses to

3.8 kHz when the onset of 3.8 kHz preceded the onset of the higher harmonics by 50 ms. (C)

Responses to the 7.6 + 11.4 kHz harmonics when 3.8 kHz started 50 ms in advance. The ampli-

tudes of the ABR to the 3.8 kHz harmonic, when it was delayed with regard to the higher har-

monics (panel A), were rather small so that latencies could not reliably be measured.

(DOCX)

S5 Fig. Experiment D, average peak latencies for the responses to 7.6+11.4 kHz (circles) or

3.8 kHz (triangles) at the indicated delayed or preceding onset times of 3.8 kHz relative to

the onsets of 7.6+11.4 kHz. Latencies with standard deviations averaged from the responses

to the four sound bursts of the 8 experimental animals are plotted at the wave peaks P1–P5 sep-

arately for all tested delayed and preceding onset times of 3.8 kHz. Significant differences

between latencies of the responses to 7.6+11.4 kHz did not occur at any peak when the onset

of 3.8 kHz was delayed or preceding for the indicated times. Also, significant differences

between latencies of the responses to 3.8 kHz did not occur at any peak when the onset of 3.8

kHz was preceding for the indicated times.

(DOCX)
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21. Pérez-González D, Malmierca MS. Adaptation in the auditory system: an overview. Front Integrat

Neurosci. 2014; 8: 19. https://doi.org/10.3389/fnint.2014.00019 PMID: 24600361

22. Huang CM. A comparative study of the brainstem auditory response in mammals. Brain Res. 1980;

184: 215–219. PMID: 7357420

23. Kraus N, Smith DJ, Reed NL, Willott JF, Erwin J. Auditory brainstem and middle latency responses in

non-human primates. Hear Res. 1985; 17: 219–226. PMID: 4019328

Auditory adaptation and spectral enhancement at temporal perceptual boundaries

PLOS ONE | https://doi.org/10.1371/journal.pone.0208935 December 20, 2018 22 / 26

http://www.ncbi.nlm.nih.gov/pubmed/11470183
http://www.ncbi.nlm.nih.gov/pubmed/4170865
http://www.ncbi.nlm.nih.gov/pubmed/4821837
http://www.ncbi.nlm.nih.gov/pubmed/670558
http://www.ncbi.nlm.nih.gov/pubmed/4819867
http://www.ncbi.nlm.nih.gov/pubmed/881488
https://doi.org/10.1073/pnas.122606499
http://www.ncbi.nlm.nih.gov/pubmed/12070345
https://doi.org/10.1016/j.cub.2008.06.053
http://www.ncbi.nlm.nih.gov/pubmed/18656355
https://doi.org/10.3389/fnint.2014.00019
http://www.ncbi.nlm.nih.gov/pubmed/24600361
http://www.ncbi.nlm.nih.gov/pubmed/7357420
http://www.ncbi.nlm.nih.gov/pubmed/4019328
https://doi.org/10.1371/journal.pone.0208935


24. Fullerton BC, Levine RA, Hosford-Dunn HL, Kiang NYS. Comparison of cat and human brain-stem

auditory evoked potentials. Electroencephal clin Neurophysiol. 1987; 66: 547–570.

25. Shaw NA. The auditory evoked potential in the rat–a review. Prog Neurobiol. 1988; 31: 19–45. PMID:

3287454

26. Burkard R, Voigt HF. Stimulus dependencies of the gerbil brain-stem auditory-evoked response

(BAER). I. Effects of click level, rate and polarity. J Acoust Soc Am. 1989; 85: 2514–2525. PMID:

2745876

27. Melcher JR, Knudson LM, Fullerton BC, Guinan JJ, Norris BE, Kiang NY. Generators of the brainstem

auditory evoked potential in cat. I. An experimental approach to their identification. Hear Res. 1996;

93: 1–27. PMID: 8735066

28. Parham K, Sun XM, Kim DO. Noninvasive assessment of auditory function in mice: Auditory brainstem

response and distortion product otoacoustic emissions. In: Willott JF, editor. Handbook of mouse audi-

tory research. Boca Raton: CRC Press; 2001. pp. 37–58.

29. Burkard RF, Eggermont JJ, Manuel D. Auditory evoked potentials: basic principles and clinical applica-

tion. Philadelphia: Lippincott Williams & Wilkins; 2007.

30. Lina IA, Lauer AM. Rapid measurement of auditory filter shape in mice using the auditory brainstem

response and notched noise. Hear Res. 2013; 298: 73–79. https://doi.org/10.1016/j.heares.2013.01.

002 PMID: 23347916

31. Mehraei G, Hickox AE, Bharadwaj HM, Goldberg H, Verhulst S, Liberman MC, et al. Auditory brain-

stem response latency in noise as a marker of cochlear synaptopathy. J Neurosci. 2016; 36: 3755–

3764. https://doi.org/10.1523/JNEUROSCI.4460-15.2016 PMID: 27030760

32. Henry KR. Auditory brainstem volume-conducted responses: origins in the laboratory mouse. J Amer

Audit Soc. 1979; 4: 173–178.

33. Henry KR. Auditory nerve and brain stem volume-conducted potentials evoked by pure-tone pips in

the CBA/J laboratory mouse. Audiology 1979; 18: 93–108. PMID: 435177

34. Land R, Burghard A, Kral A. The contribution of inferior colliculus activity to the auditory brainstem

response (ABR) in mice. Hear Res. 2016; 341: 109–118. https://doi.org/10.1016/j.heares.2016.08.

008 PMID: 27562195

35. Henry KR, Haythorn MM. Effects of age and stimulus intensity of the far field auditory brain stem

potentials in the laboratory mouse. Dev Psychobiol. 1978; 11: 161–168. https://doi.org/10.1002/dev.

420110208 PMID: 640233

36. Hunter KP, Willott JF. Aging and the auditory brainstem response in mice with severe or minimal pres-

bycusis. Hear Res. 1987; 30: 207–218. PMID: 3680066

37. Saitoh Y, Hosokawa M, Shimada A, Watanabe Y, Yasuda N, Takeda T, et al. Age-related hearing

impairment in senescence-accelerated mouse (SAM). Hear Res. 1994; 75: 27–37. PMID: 8071152

38. Walton JP, Frisina RD, Meierhans LR. Sensorineural hearing loss alters recovery from short-term

adaptation in the C57BL/6 mouse. Hear Res. 1995; 88: 19–26. PMID: 8575994

39. Zheng QY, Johnson KR, Erway LC. Assessment of hearing in 80 inbred strains of mice by ABR thresh-

old analyses. Hear Res. 1999; 130: 91–107.

40. Knipper M, Zinn C, Maier H, Praetorius M, Rohbock K, Köpschall I, et al. Thyroid hormone deficiency
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