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Simple Summary: Homeobox (HOX) genes encode homeodomain proteins that regulate a wide
range of molecular pathways. The homeodomain is highly conserved and binds to DNA. One
exception is homeodomain-only protein (HOPX) that lacks DNA-binding capacity. HOPX plays a
crucial role in development and its functional impairment is associated with a variety of diseases,
including cancer. Loss of HOPX function occurs in a wide range of cancer types, where it functions
as a tumor suppressor gene. Understanding the molecular mechanisms by which HOPX regulates
carcinogenesis will likely lead to the development of new therapeutic approaches.

Abstract: Homeobox genes are master regulators of morphogenesis and differentiation by acting at
the top of genetic hierarchies and their deregulation is associated with a variety of human diseases.
They usually contain a highly conserved sequence that codes for the homeodomain of the protein, a
specialized motif with three α helices and an N-terminal arm that aids in DNA binding. However,
one homeodomain protein, HOPX, is unique among its family members in that it lacks the capacity to
bind DNA and instead functions by interacting with transcriptional regulators. HOPX plays crucial
roles in organogenesis and is expressed in both embryonic and adult stem cells. Loss of HOPX
expression is common in cancer, where it functions primarily as a tumor suppressor gene. In this
review, we describe the function of HOPX in development and discuss its role in carcinogenesis.

Keywords: HOPX; tumor suppressor; senescence; squamous differentiation; apoptosis

1. Introduction

Homeobox genes are master regulators of morphogenesis and cell differentiation. All
such genes contain a “homeobox”, which is a DNA sequence of roughly 180 base pairs that
encodes the homeodomain, which comprises three helical regions folded into a tight globu-
lar structure that binds a 5’-TAAT-3’ core motif. The homeodomain is highly conserved and
is identical from flies to humans [1,2] and the 60-amino-acid motif is responsible for binding
to target genes to activate transcription [1,3,4]. As transcription factors, homeodomain
proteins are involved in embryonic patterning and cell differentiation, and many have
been connected to human diseases [5]. Based on the percentage of sequence similarity,
homeobox genes are classified into several families, such as HOX, NKX, PAX, GBX2, and
MSX [6]. Different functional properties amongst families are determined by DNA-binding
specificities, co-factors, and other mechanisms, such as additional domains or motifs found
within homeoprotein families [6].

Homeobox genes are necessary for diverse biological functions as they control the
expression of a wide range of genes that play crucial roles in proliferation, differentiation,
survival, cell cycle, migration, and apoptosis. Consequently, there are many target genes
with a variety of known functions, and these include p53, p21, VEGF, osteopontin, IGFBP1,
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NCAM, keratins, and integrins [1]. The different homeodomain families possess varied
biological functions. For example, MSX genes regulate epithelial to mesenchymal transition
during organogenesis [7], whereas members of NKX, PAX, and DLX are involved in
differentiation in a tissue-specific manner [6]. Homeodomain proteins are not specific to
adult differentiated cells but are also seen in adult stem cells, such as CD34+ hematopoietic
stem cells [8]. In particular, the crosstalk between embryonic- and differentiation-specific
homeodomain proteins provides a link between organogenesis and cancer.

Not surprisingly, the expression of homeobox genes is often altered in human diseases,
with certain homeobox genes being upregulated while others are downregulated. For
example, the homeobox gene Oct-4, which is associated with embryonic stem cells [9], has
been found to be upregulated in prostate cancer whilst the homeobox gene NKX3.1, on
the other hand, has been shown to be downregulated [10]. Collectively, homeobox genes
play critical roles in inducing oncogenic transformation in vitro by modifying a range of
biological processes [8].

Whilst the majority of homeodomain proteins bind DNA and function as transcription
factors, one related protein, HOPX, is unusual in that it lacks DNA-binding capability and
functions only as a transcriptional regulator. Here, we will review our current understand-
ing regarding the function of HOPX in development and its role in carcinogenesis.

2. HOPX Structure

HOPX was initially identified by two independent research groups through the screen-
ing of EST databases for novel homeobox genes expressed in the developing mouse
heart [11,12]. HOPX has also been termed Toto, Cameo, Ob1, SMAP31, NECC1, and
LAGY in the published literature [13–15]. Subsequently, the HOPX gene symbol was given
to homeodomain-only protein (HOP) to differentiate it from other genes such as hopscotch
in Drosophila and hop-sterile in mouse. HOPX belongs to the PRD class of homeodomain
proteins [16,17].

The human HOPX gene, located on chromosome 4q12, encodes a nuclear protein [11,12]
and primary sequence analysis and secondary structural prediction indicates that HOPX is
closely related to members of the homeodomain family and forms three ∝ helices, with a
helix-turn-helix motif characteristic of the homeodomain [12] (Figure 1). HOPX contains the
60-amino-acid homeodomain but has a number of unusual characteristics that distinguish
it from other known homeodomain proteins [11,12] (Figure 1). HOPX forms a classical
homeodomain fold and a single amino acid insertion between helix I and II, but it lacks
DNA-binding capacity due to the absence of several key residues known to mediate critical
contacts with DNA that are conserved among other homeodomain proteins [11,12,18]
(Figure 1). Exons 1, 5, 6, and 7 of the HOPX genes are alternatively spliced to generate five
mRNA transcripts. These transcripts encode three protein isoforms: isoform a (previously
γ) consists of 91 amino acids, isoform b (previously β) contains 73 amino acids, and isoform
c (previously α) is longer with 112 amino acids, giving a different C-terminal sequence [19].
Only the HOPX b (β) promoter harbors CpG islands, which is relevant to the HOPX
silencing observed in cancers discussed later. The precise function of the individual splice
variants and protein isoforms remains to be determined.
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Figure 1. Structure of the HOPX gene and protein: (a) Graphical representation of the human HOPX 
gene containing seven exons (E1-E7) and intronic sequences (depicted as a red thick line) encoding 
for a 73aa protein. (b) Comparison of the amino acid sequences between human HOPX protein 
isoforms a, b, and c. The common sequence in all three isoforms is highlighted in red. The amino 
acids that are only found in isoform c are shown in blue, indicating a distinct C-terminal sequence. 
(c) Comparison of the amino acid sequences between human and mouse HOPX proteins. (d) Graph-
ical representation of the homeodomain that is conserved among homeodomain proteins and its 
respective sequence (adapted from NCBI). (e) The solution structure of HOPX (adapted from RCSB 
PDB). 
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epithelial layer of the highly vascular embryonic placental villi, which invades the uterine 
wall to create nutritional circulation between the embryo and the mother, expresses 
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oblast stem cells into a trophoblastic lineage [21]. HOPX regulates the development of 
endothelial cells, thereby contributing to primitive hematopoiesis by at least partially in-
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Figure 1. Structure of the HOPX gene and protein: (a) Graphical representation of the human HOPX
gene containing seven exons (E1-E7) and intronic sequences (depicted as a red thick line) encoding for
a 73aa protein. (b) Comparison of the amino acid sequences between human HOPX protein isoforms
a, b, and c. The common sequence in all three isoforms is highlighted in red. The amino acids that are
only found in isoform c are shown in blue, indicating a distinct C-terminal sequence. (c) Comparison
of the amino acid sequences between human and mouse HOPX proteins. (d) Graphical representation
of the homeodomain that is conserved among homeodomain proteins and its respective sequence
(adapted from NCBI). (e) The solution structure of HOPX (adapted from RCSB PDB).

3. HOPX in Development and Differentiation

Homeodomain-containing proteins act as transcription factors/regulators to regulate
cell differentiation and developmental processes, and their target genes are diverse and
complex [6]. In this regard, HOPX expression has been detected in both embryonic and
adult stem cells in various tissues to regulate crucial biological processes.

3.1. Embryonic Stem Cells

HOPX is expressed during embryonic development of skeletal muscle, stratified
epithelium (upper digestive tract and skin), epithelium of developing airways, mid-
brain/hindbrain junction, meninges, cartilage, chondrocytes, and lens fiber cells [13,20].
HOPX also has a role in placental development, controlling transcription factors in concert
with other homeobox genes. HOPX expression has been detected in the trophoblast stem
cells of E8.5–E9.5 wild-type mouse placentas [21]. The syncytiotrophoblast of humans, an
epithelial layer of the highly vascular embryonic placental villi, which invades the uterine
wall to create nutritional circulation between the embryo and the mother, expresses HOPX.
In response to differentiation stimuli, HOPX induces the differentiation of trophoblast stem
cells into a trophoblastic lineage [21]. HOPX regulates the development of endothelial
cells, thereby contributing to primitive hematopoiesis by at least partially inhibiting Wnt
signaling [22].

3.2. Adult Stem Cells

HOPX expression has been detected in various adult stem cells such as bone marrow,
intestine, hair follicles, and lung [23–25]. HOPX is crucial for the proper maintenance of
intestinal epithelium. There are two stem cell niches within the intestinal epithelium: one
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at the +4 position that contains slow-cycling and label-retaining cells and the other at the
crypt base with crypt base columnar (CBC) cells. The cells at the +4 position have a unique
transcriptional profile, which includes the expression of HOPX [26,27]. These +4 cells have
previously been described as part of the resting stem cell population, which rebuilds Lgr5+
CBCs upon injury and has been found to be radiation resistant, implying that they can
survive crypt injury and replace their damaged counterparts [28]. Furthermore, HOPX-
positive intestinal stem cells in the +4 locations are resistant to anoikis, a type of apoptosis
caused by aberrant cell matrix connections [29]. HOPX-positive stem cell populations have
also been shown to express CD24 and CD44 [30].

Recently, the epigenetic factor, enhancer of zeste homolog 2 (EZH2), was found to
interact directly with the HOPX promotor regions during bone marrow stromal cell (BMSC)
differentiation to promote osteogenesis [31]. The telogen basal bulge’s resident stem cells
of hair follicles have also been found to express HOPX. These HOPX+ hair follicle cells
perform a function in epidermal wound repair in addition to differentiating into all lineages.
In the lower hair bulb of the anagen phase, an HOPX+/Lgr5+/Shh- progenitor population
was identified; when these cells differentiate into k6-positive inner bulge cells in telogen,
they govern nearby hair follicle stem cells [24].

The type I cells of the mouse lung epithelium, which maintain gas exchange in alveoli,
are HOPX-positive. Despite undergoing proliferation, these HOPX-positive type I cells
give rise to type II cells upon partial pneumonectomy-stimulated alveolar regeneration
in mice [32]. Furthermore, during the differentiation of mouse splenic marginal zone
precursors (MZPs) into marginal zone B (MZB) cells caused by the Notch 2 signaling
cascade, HOPX was found to be downregulated [33]. HOPX is a stem cell marker that is also
associated with stem cell features. Zhou et al. identified a significant association between
HOPX and hematopoietic stem/progenitor cell (HSPC) frequency by using genome-wide
association studies (GWASs) to uncover genetic determinants [34]. In mice, hematopoietic
cell-specific knockout of HOPX causes stemness and quiescence to be disrupted [35].

In adult pancreatic tissues, pan-islet cells are positive for HOPX, and they may play
a possible role in maintaining endocrine cell identity [36]. Several lines of evidence have
suggested that HOPX functions as a negative cell cycle regulator. High levels of HOPX
have been found in the inner trabecular layer of the heart during mouse development,
where cell proliferation is lower than in the outer compact zone, and HOPX appears to be
essential for appropriate cell cycle withdrawal in the perinatal period [11,12]. A number
of genes involved in cell proliferation were found to be elevated in the heart tissues of
HOPX-null mice [12]. HOPX has also been demonstrated to control the balance between
proliferation and differentiation in the growing heart and cells of the central nervous
system [12,37]. HOPX regulates apoptosis of radial astrocytes in the dentate gyrus of
the mouse hippocampus, which are required for the formation of hippocampal granular
neurons throughout life [38].

4. HOPX Regulation of Molecular Signaling Networks

HOPX functions as a mediator of multiple signaling pathways in both normal and
pathological conditions. HOPX has been identified as a direct downstream transcriptional
target of Nkx2.5, a cardiac-specific transcription factor, in a series of in vitro and in vivo
experiments in mice [11,12,39]. During cardiac development, HOPX directly binds with
the serum response factor (SRF) to enhance its detachment from DNA, thereby inhibiting
SRF-mediated transcription. HOPX also interferes with SRF’s cooperation with its coactiva-
tor [11,12] and can inhibit SRF-dependent transcriptional activation by recruiting histone
deacetylases (HDACs) such as HDAC2 [40]. Two distinct regions on the surface of the
HOPX protein are thought to be needed for its capacity to interact with other proteins,
such as SRF and HDAC, to control transcription rather than binding to DNA [18]. More-
over, because it lacks intrinsic DNA-binding capability, HOPX interacts with transcription
activators or repressors [11,12,40]. The association between HOPX and HDAC2 was fur-
ther strengthened by the co-expression of these two proteins in developing pulmonary
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airway epithelium, where HOPX functions as a HDAC-dependent negative regulator of
surfactant protein development. During pulmonary maturation, HOPX and HDAC act as
downstream regulators of Nkx2-1 and GATA6 [41].

HOPX interacts with SRF and prevents the survival of dentate gyrus progenitor cells by
inhibiting the activation of SRF target genes such as Bcl2 [38]. However, HOPX expression
has been demonstrated to be spatially and temporally controlled in the developing central
nervous system, even at sites where SRF was not present, suggesting that HOPX’s role in
neurogenesis is distinct from that of cardiogenesis [37]. HOPX promotes cardiomyogenesis
by fostering the differentiation of cardiomyoblasts into cardiomyocytes, interacting with
activated Smads of the BMP signaling cascade and inhibiting Wnt signaling [42]. In addition
to SRF and HDAC, HOPX interacts with enhancer of polycomb 1 (Epc 1), which is highly
expressed in the embryonic heart and skeletal muscles. A physical interaction between
HOPX and Epc 1 was found in yeast and mammalian cells. For example, myogenin is
activated and myotube formation is stimulated in H9c2 cells following co-transfection of
HOPX and Epc 1, and Epc 1-mediated skeletal muscle differentiation was disrupted in
HOPX-knockout mice [43].

Lee et al. showed a significant downregulation of HOPX during the transdifferentia-
tion of myogenic satellite cells (MSCs) into adipocyte-like cells (ALCs) [44]. HOPX has also
been demonstrated to be required for keratinocyte differentiation, and it is controlled by a
number of signaling pathways following cell cycle exit, including PKC, phospholipase C,
AKT, and NFkB. Interestingly, the activation of HOPX during keratinocyte differentiation
is dependent on the PKC pathway rather than DNA methylation [45].

The role of HOPX in T cell lineages is distinct from that of other cell types. Higher
levels of HOPX expression were seen only in terminally differentiated T-helper type I
(Th 1) cells and not in naïve T-helper (Th) cells. The AP-1 complex, which includes c-Fos
and c-Jun, is well known for maintaining cell proliferation. By inactivating c-Fos, which
is controlled by SRF, HOPX modulates T cell proliferation and antigenic responses and
enables T cell antigen unresponsiveness [46]. HOPX, in particular, suppresses Fas-induced
apoptosis, and only HOPX-positive murine Th 1 cells persist in vivo [47]. Jones et al. found
a negative association between HOPX and IL-2 in peripheral regulatory T cells (pTregs),
which protects pTregs against autoimmune responses to self-antigens [48].

It has been demonstrated that altering normal HOPX function causes significant
developmental heart abnormalities in mouse and zebrafish models [11,12,40]. HOPX
expression is reduced by the SRF- and GATA4-dependent pro-hypertrophic response, and
it is completely absent in severe heart failure [49]. During HOPX-induced hypertrophy in
rats, inhibition of histone deacetylase (HDACi) is critical for atrial fibrosis and arrhythmic
inducibility [50]. Two variants in the HOPX gene have been shown to cause syncope, which
is defined as a loss of consciousness and muscle strength in patients with hypertrophic
cardiomyopathy (HCM) [51].

The molecular mechanisms of HOPX during development are summarized in Figure 2.
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HDAC, HOPX interacts with enhancer of polycomb 1 (Epc-1) to activate myogenin and induces 
myotube formation. During cardiomyogenesis, HOPX and Bmp signals synergistically inhibit Wnt 
signaling through activated Smads. 
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Figure 2. Schematic representation of the molecular networks regulated by HOPX in development:
HOPX is activated by the signaling molecules that are essential for normal development such as
NKX2-5, PKC, and GATA6. However, NOTCH2 inhibits HOPX through SOX7. HOPX interacts with
serum response factor (SRF) and inhibits SRF-mediated transcription. On the other hand, HOPX
recruits histone deacetylase 2 (HDAC2) to modulate the function of SRF. Apart from SRF and HDAC,
HOPX interacts with enhancer of polycomb 1 (Epc-1) to activate myogenin and induces myotube
formation. During cardiomyogenesis, HOPX and Bmp signals synergistically inhibit Wnt signaling
through activated Smads.

5. HOPX in Carcinogenesis
5.1. HOPX as a Tumor Suppressor Gene

There is now a wide body of evidence, which we outline below, that indicates that
HOPX functions to suppress the carcinogenic process. The expression, methylation status,
and function of HOPX in different cancer types is summarized in Table 1.

Table 1. Deregulation and functional significance of HOPX in cancer.

Type of Cancer Expression Pattern and Methylation
Status Functional Insights References

Head and Neck cancer • Hypermethylated and
downregulated.

• Regulates apoptosis and
tumorigenesis (in vitro). [52–54]

Esophageal cancer • Hypermethylated and
downregulated.

• Regulates tumorigenesis (in vitro)
and has prognostic value.

• It does not affect SRF activity.
[53]

Gastric cancer

• Hypermethylated and
downregulated.

• Methylation was identified in the
early stage of cancer.

• Regulates proliferation, apoptosis,
invasion, and tumorigenesis
(in vitro).

• It has prognostic significance.

[55]
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Table 1. Cont.

Type of Cancer Expression Pattern and Methylation
Status Functional Insights References

Lung Cancer • Hypermethylated and
downregulated.

• Regulates proliferation, apoptosis,
invasion, metastasis, and
tumorigenesis (both in vitro and
in vivo).

• It induces senescence through the
RAS/MAPK pathway.

• HOPX synergizes with GATA6 to
regulate metastasis and angiogenesis
of lung cancer cells.

• Downregulation of HOPX correlates
with the differentiation status
and relapses.

[15,56–58]

Uterine cancer • Hypermethylated and
downregulated.

• It partially affects the
SRF-c-Fos-Cyclin D1 pathway. [14,59]

Colon cancer

• Hypermethylated and
downregulated.

• Normal stromal cells showed high
levels of HOPX expression, and it
was low in cancer cells.

• Regulates proliferation, apoptosis,
angiogenesis, invasion, and
tumorigenesis (both in vitro and
in vivo).

• It has prognostic significance.

[60,61]

Pancreaticcancer

• Hypermethylated and
downregulated.

• Strong expression was observed in
Langerhans islet cells and very
weak/negative expression in
pancreatic cancer cells.

• Regulates proliferation, apoptosis,
invasion, and tumorigenesis
(in vitro).

• No prognostic value.

[62]

Breast cancer • Reduced expression. • Regulates proliferation and
tumorigenesis (in vivo). [59]

Placenta (Tropho) • Reduced expression. • Regulates tumorigenesis (in vivo). [14]

Glioblastoma
• Expression was reduced.
• Radial astrocytic stem cells showed

positive staining for HOPX.

• Regulates the apoptosis and
tumorigenicity of glioblastoma
cancer stem cells.

[38]

5.1.1. HOPX Expression in Normal and Malignant Tissues

HOPX was initially isolated using a PCR-based subtracted fragmentary cDNA library
between normal placental villi and a choriocarcinoma cell line [14]. HOPX expression was
later detected in normal tissues of the lung, smooth muscle, brain, placenta, bladder, spleen,
and kidney [14]. Subsequently, HOPX was shown to be downregulated in a wide range
of human tumor types, including lung cancer [15], choriocarcinoma [14], head and neck
cancers [52,54,63–66], esophageal squamous cell carcinoma [53], glioblastoma [38], human
uterine endometrial cancers (HECs) [59], gastric cancer [55], colorectal cancer [60,61], and
pancreatic cancer [62], suggesting a tumor suppressor role for HOPX.

More direct evidence for a tumor suppressor role for HOPX has come from in vivo stud-
ies, where ectopic expression of HOPX in choriocarcinoma [14], esophageal [53], glioblas-
toma [38], HEC [59], gastric [55], colorectal [61], and lung cancer [56] cells resulted in
decreased tumor growth suppression in vivo. Interestingly, loss of HOPX expression has
clinical relevance, at least in lung cancer, because decreased HOPX expression in lung
SCC has been linked to high-grade and advanced-stage cancers [15] and miR-421 has
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been shown to target HOPX, which then stimulates the Wnt/catenin signaling pathway,
promoting the development of non-small cell lung cancer [67].

Despite its function as a tumor suppressor, HOPX gene mutations appear to be rare
in cancer [59]. The precise role of the individual splice variants is still unknown; however,
all variants were detected in HNSCCs [66], and in skin cancer [68] and acute myeloid
leukemia [69], the level of transcripts 1, 3, and 5 were reported to be low while variants 2
and 4 were predominantly expressed.

5.1.2. HOPX Promoter Methylation

Methylation of the cytosine residues of the CpG island within the promoter region
of tumor suppressor genes is one of the mechanisms that suppresses their function in
cancer [70]. HOPX promoter methylation has been detected in human uterine endometrial
cancer [59], head and neck cancer [66], gastric cancer [55], colorectal cancer [60,61], pan-
creatic cancer [62], and lung cancer [56]. Methylation of the HOPX promoter can occur as
an early event in carcinogenesis because it has been detected in the early stages of gastric
cancer [55]. Interestingly, HOPX has been ranked second among the top priority genes that
undergo methylation in primary esophageal squamous cell carcinoma [53]. Treatment of
head and neck, esophageal, and pancreatic cancer cells with demethylating drugs such as
5-aza-2-deoxycytidine restored HOPX expression [53,62,66]. HOPX does not harbor muta-
tions in human uterine endometrial cancer; however, its hypermethylation demonstrates
epigenetic modification as a crucial event for inactivation [59]. Loss of HOPX expression as
a result of promoter hypermethylation has clinical significance because in patients with
gastric and colorectal cancer, the methylation status has been linked to a worse progno-
sis [55,61] and patients with strong HOPX expression in lung cancer have a considerably
longer survival [56]. Epigenetic suppression of HOPX by promoter methylation plays a
critical role in aggressive phenotypes in papillary thyroid cancer and is correlated with a
poor prognosis of patients [71].

5.1.3. HOPX Affects Tumor Cell Behavior

Numerous in vitro and in vivo studies have shown that HOPX affects a variety of
cellular processes and loss of HOPX promotes the malignant phenotype of tumor cells by a
variety of mechanisms, as summarized below. The possible signaling networks regulated
by HOPX in cancer are depicted in Figure 3.

HOPX was found to be involved in the regulation of the cell cycle and apoptosis. By
positively regulating the subG1 and GO/G1 phases, HOPX reduces DNA synthesis and
promotes cell death in pancreatic cancer [62]. Glioblastomas (GBMs) are derived from
neural cancer stem cells and HOPX regulates the hippocampal stem cell niche through con-
trolling cell survival and apoptosis, but it is downregulated in GBMs in mice; a key finding
of this work is that reactivating HOPX causes apoptosis and lowers the tumorigenic ability
of GBM cancer stem cells [38]. HOPX is epigenetically silenced in breast cancer. HOPX
overexpression causes apoptosis and cell cycle arrest in breast cancer cells, suggesting that
it could be utilized as a therapeutic target for breast cancer patients [72].

HOPX is activated by 17b-estradiol (E2) and inhibits cell proliferation in vitro and
in vivo, suppressing uterine endometrial malignancies (HEC) [59]. This occurs by influenc-
ing the activity of SRF and the expression of its targets, c-Fos and Cyclin D1. HOPX activity
was restored when HEC cell lines were treated with the histone deacetylase inhibitor TSA
and inhibiting HOPX also stimulated immortalized human endometrial cells to prolifer-
ate [59]. In esophageal squamous cell carcinoma, however, HOPX had no effect on SRF
activity, showing that the tumor suppressor functions of HOPX are cell type dependent [53].
DNA microarray analysis in colorectal cancer cells showed that the re-expression of HOPX
upregulates WTAP and PRDX2 while downregulating genes associated with proliferation,
angiogenesis, and invasion both in vitro and in vivo [61].
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Figure 3. Signaling molecules related to the tumor suppressor function of HOPX: Loss or gain
experiments and microarray analyses revealed the negative association between HOPX and molecules
involved in invasion, angiogenesis, and transformation, including Mycn, c-Fos, AKT, VEGF, EGR1,
IL11, IL1B, and EMP1. In line with its mechanism during development, HOPX affects the proliferation
of cancer cells by synergizing with SRF and GATA6. Notably, HOPX induces senescence through the
RAS-ERK-MAPK signaling cascade in lung cancer. SLC2A3—Solute Carrier Family 2 (Facilitated
Glucose Transporter), Member 3; NPC1—Niemann–Pick disease, type C1; RUNX1—Runt-related
transcription factor 1; CNN1/CYR61—Cysteine-rich, angiogenic inducer, 61; WTAP—Wilms tumor
1-associated protein; PRDX2—Peroxiredoxin 2; EREG—Epiregulin; ITGA4—Integrin, alpha 4; EMP1—
Epithelial membrane protein 1; EPHA2—EPH receptor A2; EGR1—Early growth response; MYCN—
v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog; IGFII—Insulin-like
growth factor 2 (somatomedin A).

HOPX expression has been reported to be reduced at both the DNA and protein levels
of oral and nasopharyngeal cancer cells, and its re-expression promoted cell prolifera-
tion and invasion and made the cells more susceptible to UV and cisplatin-induced cell
death [66].

Interestingly, a recent study showed that the HOPX knockdown in squamous cell
carcinoma (SCC) cells reduces their proliferative and invasive capabilities through the ac-
celeration of apoptosis. The methylation status of two distinct HOPX promoters, promoter
1 and 2, causes the HOPX transcript expression to differ in normal keratinocytes and SCC
cells. The activation of the second promoter of HOPX may contribute to the pathogenesis
of SCC [68].

5.1.4. HOPX and Senescence

There are a limited number of reports suggesting a role for HOPX in cellular senescence.
For example, HOPX transfection of lung cancer cells resulted in enlarged and flattened
morphologies, with positive SA—Gal staining indicating senescence, and stimulated the
expression of proteins associated with aging, such as SAHFs and p-H2AX. When these
cells were treated with senescence-inducing drugs such as Adriamycin (ADR) and H2O2,
senescence was caused in HOPX-transfected cells but not in mock transfectants [56]. In
H2228 lung adenocarcinoma cells, however, HOPX did not cause senescence, showing that
it is involved in oxidative stress and DNA damage-induced cellular senescence but does
not cause senescence on its own [56].
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It was reported that re-expressing HOPX in immortalized bronchial epithelial cells
promotes senescence. The RAS-ERK-MAPK signaling cascade has been identified to
be involved in HOPX-induced senescence in lung cancer cells. A significant reduction
of AKT/MDM2 accompanied by an upregulation of P53/ P21 was observed in HOPX-
transfected lung cancer and normal bronchial epithelial cells. This study revealed HOPX as
a regulator of the expression of senescence mediators [56]. Furthermore, the HOPX gene
was shown to be overexpressed in keratinocytes with shortened telomeres, which elicits
senescence [73].

5.1.5. HOPX in Cancer Cell Metastasis

A critical molecular event in the development of lung cancer is the downregulation
of HOPX and overexpression of Mycn [74], and re-expression of HOPX suppresses lung
cancer cell proliferation migration and invasion [56]. Furthermore, the alveolar lineage
transcription factors, GATA6 and HOPX, were reported to be essential in airway epithelial
specification and lung adenocarcinoma subtype metastasis inhibition [57].

In a chicken metastatic cell line derived from v-src-induced sarcoma and its non-
metastatic subclone, the role of HOPX in metastasis was investigated. In v-src-transformed
cells, knocking down HOPX reduced metastatic activity by inactivating metastatic-associated
genes such as ITGA4 [75]. The expression of EMT-related molecules, such as ZEB1/2,
TWIST1, E-cadherin, and vimentin, however, was unaffected by GATA6 and HOPX knock-
down. It also had no effect on Wnt or focal adhesion kinase (FAK), although the expression
of src and integrin 5, two mediators of metastasis, was upregulated.

HOPX hypermethylation promotes metastasis in nasopharyngeal cancer by increasing
SNAIL transcription, which facilitates epithelial to mesenchymal transition [76]. Additional
metastasis-related molecules (IL1B, IL11, and EREG) and angiogenesis and ECM remodel-
ing genes (VEGFA and PLAU) were upregulated when HOPX was knocked down [57].

Bioinformatic analysis using STRING software predicts the possible interacting part-
ners of HOPX in mice and humans as indicated in Figure 4 [77].
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Figure 4. Possible interaction partners of HOPX in mice and humans as predicted using the STRING
database. Apart from SRF, HDAC2, and Epc1, HOPX could interact with proteins such as Apc, Nts,
Ran, and Rasl2-9 in mice and COL14A1, SH3GL1, MRPL49, and HRASLS5 in humans. Mouse: Nkx2-
1—NK2 homeobox 1; Ran—RAN, member RAS oncogene family; Naa50—N(alpha)-acetyltransferase
50, NatE catalytic subunit Gene; Nts—neurotensin; Srf—serum response factor; Sh3gl1—SH3-domain
GRB2-like 1; Gpr182—G protein-coupled receptor 182; Rasl2-9—RAS-like, family 2, locus 9; Hopx—
Homeodomain-only protein; Omp—olfactory marker protein; Apc—adenomatosis polyposis coli.
Human: SRI—sorcin; HDAC2—histone deacetylase 2; COL14A1—collagen, type XIV, alpha 1;
HOPX—Homeodomain-only protein; SH3GL1—SH3-domain GRB2-like 1; SRF—serum response
factor (c-fos serum response element-binding transcription factor); AVPR2—arginine vasopressin
receptor 2; MRPL49—mitochondrial ribosomal protein L49; MCL1—myeloid cell leukemia sequence 1
(BCL2-related); HRASLS5—HRAS-like suppressor family, member 5; AATF—apoptosis antagonizing
transcription factor.
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5.2. Evidence for an Oncogenic Function for HOPX

The expression level of HOPX is decreased in most cancer types and it functions as
a tumor suppressor. However, HOPX expression has been reported to be elevated in a
small number of esophageal carcinoma cell lines (TE2, TE5, KYSE410, and KYSE520), lung
adenocarcinoma, and pancreatic cancer Langerhans islet cells [53,56,62]. Strong HOPX
expression was associated with specific clinical and biochemical characteristics in de novo
acute myeloid leukemia and predicted a poor prognosis [69]. HOPX is one of a group of
genes, including deoxynucleotidyl transferase (DNTT) and B cell liners (BLNK), that are
upregulated in patients with RUNX-1 mutant cytogenetically normal acute leukemia [78].
Interestingly, HOPX expression is increased in HPV 16- and 18-infected stage IB-IIA cervical
cancer cells [79]. The expression of HOPX was also noticed in the tumor microenvironment;
in particular, HOPX expression was higher in normal stromal cells than in stromal cells
from colorectal malignant tissue [60,61]. There is increasing evidence that HOPX is a tumor
suppressor gene in numerous cancer types. However, the function of HOPX in cancer could
well be context dependent and more studies are needed to confirm a possible oncogenic
role for HOPX in certain circumstances.

6. Conclusions and Future Perspectives

HOPX is a unique homeodomain protein that does not bind DNA but rather interacts
with other proteins to function as a transcriptional regulator in development. During
organogenesis, HOPX regulates the differentiation of various cell types, including ker-
atinocytes, skeletal muscle, cardiomyocytes, and chondrocytes. In cardiac tissues, HOPX
performs its function by directly controlling SRF and additional roles unrelated to SRF have
been described. However, the entirety of the signaling networks associated with HOPX and
organogenesis has yet to be uncovered and further studies are needed to fully elucidate the
critical role of HOPX in organogenesis and tissue homeostasis.

HOPX is crucial to the prevention of tumor development and progression by promot-
ing tumor suppression mechanisms. In malignancies of the head and neck, stomach, colon,
pancreas, lung, placenta, breast, and esophagus, the HOPX promoter is hypermethylated
and its role as a tumor suppressor gene was proven in a variety of functional studies. In the
future, it is important to understand whether these findings can be utilized in a therapeutic
context. Approaches to activate downstream signaling pathways that are compromised fol-
lowing HOPX loss could reverse some of the effects of HOPX loss in tumor cells. Similarly,
the re-expression of epigenetically silenced HOPX with demethylating drugs would likely
restore its tumor suppressive functions, as demonstrated in vivo in mouse models. A fuller
understanding of the molecular mechanisms by which HOPX regulates carcinogenesis will
likely lead to the development of new therapeutic approaches.
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