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A B S T R A C T   

Children with neurodevelopmental disorders (NDDs) share common behavioural manifestations despite distinct 
categorical diagnostic criteria. Here, we examined canonical resting-state network connectivity in three diag-
nostic groups (autism spectrum disorder, attention-deficit/hyperactivity disorder and paediatric obsessi-
ve–compulsive disorder) and typically developing controls (TD) in a large single-site sample (N = 407), applying 
diagnosis-based and dimensional approaches to understand underlying neurobiology across NDDs. Each par-
ticipant’s functional network graphs were computed using five graph metrics. In diagnosis-based comparisons, 
an analysis of covariance was performed to compare all NDDs to TD, followed by pairwise comparisons between 
NDDs. In the dimensional approach, participants’ functional network graphs were correlated with continuous 
behavioural measures, and a data-driven k-means clustering analysis was applied to determine if subgroups of 
participants were seen, without diagnostic information having been included. In the diagnosis-based compari-
sons, children with NDDs did not differ significantly from the TD group and the NDD categorical groups also did 
not differ significantly from each other, across all graph metrics. In the dimensional, diagnostic-independent 
approach, however, subcortical functional connectivity was significantly correlated with participants’ general 
adaptive functioning across all participants. The clustering analysis identified an optimal solution of two clusters, 
and participants assigned in the same data-driven cluster were highly heterogeneous in diagnosis. Neither cluster 
exclusively contained a specific diagnostic group, nor did NDDs separate cleanly from TDs. Each participant’s 
distance ratio between the two clusters was significantly correlated with general adaptive functioning, social 
deficits and attentional problems. Our results suggest the neurobiological similarity and dissimilarity between 
NDDs need to be investigated beyond DSM/ICD-based, behaviourally-defined diagnostic categories.  
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1. Introduction 

Autism spectrum disorder (ASD), attention-deficit/hyperactivity 
disorder (ADHD) and obsessive–compulsive disorder (OCD) are com-
mon neurodevelopmental disorders (NDDs) present in childhood (De 
Felice et al., 2015). Their behavioural manifestations range widely, 
resulting in specific limitations and global impairments, and crucially 
overlap in some domains across NDDs despite distinct behaviour-based 
criteria in the current diagnostic systems (e.g. DSM-5 and ICD-10/11) 
(Hollingdale et al., 2019; Kashyap et al., 2012; Lai et al., 2019; Ruz-
zano et al., 2014). The overlapping phenotypes across NDDs have led to 
inquiries about shared versus non-shared neurobiological correlates 
underlying these diagnoses. Recent investigations tackling this question 
have demonstrated the value of measuring resting-state functional 
connectivity (rs-fc), which allows the study of intrinsic large-scale brain 
networks that underlie a range of sensory and cognitive processes. 
Although emerging evidence from genetic studies support shared ge-
netic susceptibility across NDD groups (Lionel et al., 2014; Martin et al., 
2014; Zarrei et al., 2019), studies of rs-fc have remained largely incon-
sistent, in findings both in independent analyses of each NDD (Cas-
tellanos and Aoki, 2016; Gürsel et al., 2018a; Hull et al., 2017) and in 
direct comparisons between NDDs (Akkermans et al., 2018; Dajani et al., 
2019; Di Martino et al., 2013; Jung et al., 2019; Ray et al., 2014). Most 
studies have relied on case-control designs using diagnostic labels for 
comparisons, but have not explored heterogeneity within and across the 
groups. Demographic variability, differences in data acquisition pro-
tocols, a variety of metrics representing different aspects of connectivity 
features, and generally small sample sizes have also led to conflicting 
reports. Furthermore, the majority of the previous findings from 
diagnosis-based comparisons across NDDs are mostly available between 
children with ASD and ADHD due their high comorbidity, but the large 
genomic data have indicated that genetic vulnerability is more 
commonly shared across NDDs, including OCD and schizophrenia, 
which have yet to be examined in rs-fc studies (Zarrei et al., 2019). All 
these factors suggest the need for studies including multiple disorders on 
well-powered cohorts, and the use of more integrative and data-driven 
approaches on local and global levels. 

Recent efforts to overcome large inter-subject variability existing in 
NDDs and to reconcile conflicting findings have initiated data exchange 
platforms, such as ABIDE (Di Martino et al., 2014) and ADHD-200 
(Consortium et al., 2012). With this effort, the rs-fc findings seem to 
be somewhat more convergent than before; for example, decreased 
default-mode and visual networks connectivity, and increased subcor-
tical connectivity, were found more often in large ASD samples (Boed-
hoe et al., 2017; Borràs-Ferrís et al., 2019; Delbruck et al., 2019; 
Harlalka et al., 2019; Sen et al., 2018). There are still many conflicting 
findings, however, even in these large datasets. A recent study directly 
compared a number of rs-fc features in ABIDE I, II, and combined ABIDE, 
as well as across data acquisition sites, to see if any of those features 
could be generalized as ASD-related markers. The study demonstrated 
extensive variability and limited reproducibility in rs-fc features across 
sites, including in the combined samples (ABIDE I, II, and combined 
ABIDE) (King et al., 2019). Other studies that have applied data-driven 
approaches in ABIDE are showing similar results. A recent examination 
of functional alterations in ASD and ADHD versus a TD sample, found 
shared and diagnoses-related features in default-mode network coupling 
with dorsal attentional and salience networks (Kernbach et al., 2018). 
Another study demonstrated that the diagnostic labels of ASD and ADHD 
were mapped onto diffusive brain regions with both overlapping and 
distinct patterns of connectivity, while dimensional behavioural mea-
sures such as Social Responsiveness Scale and ADHD Rating Scale were 
defined on more distinct brain circuitry (Lake et al., 2019). Although 
studies, which applied machine learning strategies, were able to suc-
cessfully classify ASD versus TD with a peak accuracy of between 60 and 
90% (Chen et al., 2015; Fredo et al., 2018; Kazeminejad and Sotero, 
2019), there was little consistency in the connectivity features 

classifying ASD versus TD across the studies, conducted at different sites. 
This suggests that studying NDDs in a large single-site cohort would be a 
benefit in reducing the noise originating from inter-site variability, for 
understanding similarity and dissimilarity among diagnostic categories. 
A recent report, on a sub-sample of our study, demonstrated the value of 
machine learning-based clustering work in discovering biologically 
homogeneous subgroups in children with ASD, ADHD and OCD, by 
integrating cortical thickness data and continuous core-symptom mea-
sures. This work revealed that clusters with neuroanatomical homoge-
neity did not correspond to diagnostic labels (Kushki et al., 2019). 

Thus, in the present study, we investigated canonical resting-state 
functional networks in three diagnostic groups (ASD, ADHD and OCD) 
and a TD sample, in a large well-characterized single cohort, using both 
diagnosis-based and dimensional/data-driven approaches, to explore 
shared and distinct functional brain markers at a large-scale network 
level. 

2. Material and methods 

2.1. Participants 

A total of 486 participants (ASD = 221, ADHD = 115, OCD = 58, TD 
= 92) were recruited through the Province of Ontario Neuro-
developmental Disorders (POND) Network, a large single-cohort mul-
ticentre research collaboration across Ontario, Canada between July 
2012 and March 2019. Clinical participants who had one of the primary 
diagnoses of ASD, ADHD or OCD and no contraindications for MRI were 
included in the study. Diagnoses for the clinical groups were based on 
DSM-IV (American Psychiatric Association, 1994) or DSM-V (American 
Psychological Association, 2013), and confirmed using the Autism 
Diagnostic Observation Schedule–2 (ADOS) (Lord et al., 2000) and the 
Autism Diagnostic Interview–Revised (ADI-R) (Lord et al., 1994) for 
ASD, the Parent Interview for Child Symptoms (PICS) (Ickowicz et al., 
2006) for ADHD, and the K-SADS and the Children’s Yale–Brown 
Obsessive Compulsive Scale (CY-BOCS) (Scahill et al., 1997) for OCD. 
The presence of psychiatric comorbidities in participants with NDDs 
were noted in Supplementary Table 1. TD participants were recruited 
via advertisements and had no personal or first degree family history of 
neurodevelopmental, psychiatric or neurological diagnoses, nor history 
of prematurity. Research ethics board approval was obtained at 
participating institutions. Written, informed consent/assent from pri-
mary caregivers/study participants was obtained after a complete 
description of the study and according to the Declaration of Helsinki. 

2.2. Behavioural assessment 

To investigate associations between participants’ graph measures 
and behavioural manifestations, we examined dimensional information 
about general adaptive function (Adaptive Behavior Assessment System- 
II: ABAS-II) (Voets et al., 2001), social deficits (Social communication 
questionnaire: SCQ) (Rutter et al., 2003), ADHD related symptoms 
(Attention-deficit/hyperactivity problem subscale from the Child 
Behavior Checklist: CBCL) (Achenbach and Rescorla, 2000, 2001) and 
obsessive–compulsive symptoms (Toronto Obsessive-Compulsive Scale: 
TOCS) (Park et al., 2016). These symptoms may be characteristic of one 
NDD but also are expressed in varying degrees across the other NDDs. 

2.3. Imaging acquisition and processing 

We collected each participant’s MRI data on a 3 T Siemen’s MAG-
NETOM Trio with a 12 channel head coil or a 3 T Siemen’s PrismaFIT 
with a 20 channel head and neck coil, as the research scanner was 
upgraded once at our institution during this study. Acquisitions included 
anatomical T1-weighted images (Trio: TR/TE: 2300/2.96 ms; FA: 9◦; 
FOV: 192 × 240 × 256mm; 1.0 mm isotropic voxels; Prisma: TR/TE: 
1870/3.14 ms, FA: 9◦, FOV: 192 × 240 × 256mm, 0.8 mm isotropic 
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voxels; both scan times: 5 min) and resting-state fMRI scans (Trio: TR/ 
TE: 2340/30 ms; FA: 70◦; FOV: 224 × 224 × 140mm; 3.5 mm isotropic 
voxels; Prisma: TR/TE: 1500/30 ms, FA: 70◦, FOV: 222 × 222 × 150, 
3.0 mm isotropic voxels, both scan times: 5 min). During the resting- 
state scans, participants scanned pre-upgrade were presented with a 
movie they had chosen (movie) and post-upgrade participants were 
presented with a naturalistic movie paradigm (Inscapes) (Vanderwal 
et al., 2015); the resting-state viewing condition version was added as a 
covariate in all subsequent analyses. 

Resting-state data preprocessing was performed using AFNI 
(http://afni.nimh.nih.gov/afni/), FMRIB Software Library (https://fsl. 
fmrib.ox.ac.uk/) and locally developed tools. All resting-state volumes 
were corrected for slice-timing and head motion (extracting the six rigid 
body parameters), smoothed by a 2D 7 mm full-width-half-maximum 
Gaussian kernel, and bandpass filtered between 0.01 and 0.2 Hz. 
Framewise displacement was calculated from the six rigid body pa-
rameters. Volumes were censored based on framewise displacement 
(FD) (Power et al., 2012) exceeding 0.5 mm or the root mean square 
change in BOLD signal across the whole brain (DVARS) (Smyser et al., 
2010) exceeding 5%. Participants who lost more than 1/3 of the vol-
umes were excluded from the analyses (see Supplementary Table 2 for 
head motion in each diagnostic group). The 36 nuisance signals from 
whole brain, white matter, cerebrospinal fluid, six rigid body motion 
parameters (total 9) and their derivatives (9 × 2) and quadratic terms 
(18 × 2) were regressed out. Data were further cleaned of motion and 
physiological artefacts using FMRIB’s ICA-based Xnoiseifier (FIX) to 
denoise residual artefact not handled by nuisance regression and 
scrubbing process (Salimi-Khorshidi et al., 2014). FIX was trained by 
hand-classifying 20 datasets equally distributed across diagnosis and 
acquisition scanner, and used to automatically classify the rest of the 
data. 

2.4. Functional network construction 

CIVET (http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET) 
was used to parcellate each participant’s T1-weighted image into the 76 
ROIs of the Desikan-Killiany-Tourville atlas (Supplementary Table 3). 
The ROIs were mapped to the Yeo et al. (2011) eight functional networks 
(VIS, visual network; SMOT, sensory motor network; DAN, dorsal 
attentional network; VAN, ventral attentional network; LIM, limbic 
network; FP, fronto-parietal network; DMN, default mode network; SC, 
subcortical network). To construct each participant’s functional 
network, mean time series were extracted for each participant for each 
ROI (node) and pairwise Pearson’s correlation coefficients were calcu-
lated between all nodes and converted to a z-value using Fisher’s r-to-z 
transform to better approximate a normal distribution. Graph theory- 
based measures were used to characterize and summarize each in-
dividual’s connectivity features (Bullmore and Sporns, 2009). Partici-
pants’ graphs were thresholded at a range of connection densities 
(0.5%–10%, 0.5% intervals) and binarized. For each threshold t, the top 
t% of connections were kept, except if this threshold disconnected a 
node, in which case its highest edge was retained. The following mea-
sures were then computed over the range of thresholds: degree (the 
number of links connected to the node), betweenness centrality (a 
measure of “hubness” in each functional network), local efficiency (the 
averaged inverse shortest path length) and clustering coefficient (a 
measure of a node’s neighbourhood connectivity); for more details for 
each measure see the reference (Bullmore and Sporns, 2009). Each of the 
functional networks (subgraphs, e.g., nodes belonging to VIS or to 
SMOT) were also extracted and subgraph density (the fraction of present 
connections to possible connections) was also calculated between each 
functional network pair. Finally, for each participant we calculated the 
area under the curve (AUC) for each measure, providing a summarized 
metric independent of threshold selection, and averaged across func-
tional networks. 

2.5. Statistical analyses 

To investigate functional network features in NDDs and TDs, we 
performed two sets of analyses: (1) group comparisons based on par-
ticipants’ diagnoses using an analysis of covariance (ANCOVA), and (2) 
diagnosis-independent correlation analysis with behavioural measures 
and clustering analysis using the k-means clustering algorithm. 

2.5.1. Analysis 1 
ANCOVAs were employed to evaluate differences in each network 

graph measure AUC between groups. We compared all children with 
NDDs (as a group) to TDs, with age, sex and the resting-state viewing 
condition (movie or inscapes) as covariates to examine shared functional 
alterations across all NDDs, followed by pairwise comparisons between 
NDDs (ASD vs. ADHD, ASD vs. OCD, ADHD vs. OCD) with the same 
covariates to explore overlapping and distinct functional network 
characteristics in each diagnostic group. For each group comparison, 
group labels were permuted 10,000 times and the ANCOVA t-statistic 
was recalculated, creating a null distribution of t-statistics. We assigned 
the group difference a p-value by determining the percentage of the 
computed null distributions that exceeded the observed t-statistic and 
considered the resulting values significant at p < 0.05. For each pairwise 
comparison and graph measure, FDR-corrections were performed using 
Holm-Bonferroni (Holm, 1979), q < 0.05, to correct for comparisons 
across multiple networks. 

2.5.2. Analysis 2 
We examined the relation between the functional graph measures 

and behavioural measures (SCQ, ABAS, CBCL-ADHD subscale, TOCS) 
across all individuals with the same covariates, but without diagnostic 
labels. As we removed group as a factor in the ANCOVAs, the beta 
weights (β) were calculated to indicate the associations between the 
variables and the same corrections for multiple comparisons were 
applied (q < 0.05). Lastly, the data-driven cluster analysis was applied 
for all participants without diagnostic information using the k-means 
clustering algorithm. We vectorized each participant’s binarized graphs 
over the range of thresholds (0.5% − 10%, 0.5% intervals) and ran k- 
means clustering to partition the N observations (i.e. each participant’s 
vectorized data) into k clusters, where each observation belonged to the 
cluster with the nearest mean according to the Hamming distance. We 
used the silhouette method to test for the optimal number of clusters, 
which was determined to be two (k = 2) (Supplementary Fig. 1). Then 
for the purpose of clinical validation of data-driven clusters, we exam-
ined the association between each participant’s distance to each cluster 
and behavioural outcomes, by a permutation test (10,000 times). In 
addition, regression analyses applied to examine the relation between 
the data-driven clusters and behavioural measures with the same 
covariates. 

3. Results 

3.1. Participant demographics 

After excluding participants whose T1-w images failed QC (reviewed 
on a case-by-case basis) or whose resting-state data failed the motion 
criteria (n = 79), a total of 407 participants (ASD = 175, ADHD = 93, 
OCD = 55, TD = 84) remained. The characteristics of those who were 
excluded from the final analysis are presented in Supplementary Table 4. 
The descriptive statistics for age, sex and four behavioural measures are 
summarized in Table 1. The ASD and ADHD groups demonstrated a 
higher proportion of males. 

3.2. Analysis 1 

In diagnosis-based comparisons, children with NDDs did not signif-
icantly differ from TD children and each NDD did not differ significantly 
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from the other diagnostic groups across all five graph metrics (Fig. 1A–E 
and Supplementary Table 5). For exploratory purposes, the overall 
connectivity patterns between each NDD and TD were visualized each 
within the same graph metrics, and the connectivity patterns were seen 
to be very similar across three diagnostic groups, compared to TDs 
(Fig. 2). Furthermore, the two resting-state viewing conditions were 
separated and the ANCOVA analyses were performed again within each 
condition, to examine the possible effect of the different resting-state 
viewing conditions on the results. Demographic and clinical distribu-
tions in each viewing condition are presented in Supplementary Table 6. 
Although the Inscapes condition had a higher portion of typically 
developing children and the mean age was also slightly higher in this 

condition, children with NDDs did not differ significantly from the TDs 
on any graph metrics in either resting-state viewing condition (Supple-
mentary Fig. 2). 

3.3. Analysis 2 

In the dimensional approach which employed behavioural measures 
across all individuals regardless of diagnosis, subcortical network con-
nectivity was significantly correlated with participants’ general adap-
tive functioning in degree (β = − 0.01, q = 0.02), clustering (β = − 0.002, 
q = 0.03) and local efficiency (β = − 0.002, q = 0.03) (Fig. 3A–C), but 
not with other NDD symptom-based behavioural measures (SCQ, ADHD 

Table 1 
Demographics and behavioural indices of participants.  

characteristic Group Analysis 

1. ASD 
(N = 175) 

2. ADHD 
(N = 93) 

3. OCD 
(N = 55) 

4. TD 
(N = 84)  

Mean SD Mean SD Mean SD Mean SD F df p Post hoc analysis 

Age (years) 11.79 4.46 12.04 2.81 12.94 2.84 12.21 5.02 1.15 3,403 0.33 –  
N % N % N % N % χ2 df p Post hoc analysis 

Gender (male) 140 80.0 74 79.6 35 63.6 48 57.1 19.54 3 0.001 –  
Mean SD Mean SD Mean SD Mean SD F df p Post hoc analysis 

Full-scale IQ 96.82 19.90 102.53 13.91 109.10 16.06 112.31 11.67 14.26 3,270 <0.001 TD > ADHD,ASD 
SCQ 

(total score) 
19.70 7.47 7.08 5.83 6.22 5.62 2.19 2.29 174.45 3,346 <0.001 ASD > ADHD,OCD > TD 

ABAS-II 
(GAC score) 

67.69 15.37 81.58 15.10 93.97 20.02 104.79 12.86 106.48 3,340 <0.001 TD > OCD > ADHD > ASD 

TOCS 
(total score) 

− 7.66 22.57 − 24.90 25.41 19.27 19.88 − 34.69 25.27 74.56 3,333 <0.001 OCD > ASD > ADHD,TD 

CBCL 
(ADHD score) 

62.60 8.54 67.03 7.36 58.47 8.52 51.29 2.53 59.16 3,341 <0.001 ADHD > ASD > OCD > TD 

SCQ: The Social Communication Questionnaire, ABAS-II: The Adaptive Behavior Assessment System-II, TOCS: The Toronto Obsessive-Compulsive Scale, CBCL-ADHD: 
Attention-Deficit/Hyperactivity Problems subscale from the Child Behavior Checklist. 

Fig. 1. Comparisons between NDDs and TD in graph metrics Each panel represents group differences in degree, clustering coefficient, lobal efficiency, 
betweenness centrality and density across 8 networks (VIS, SMOT, DAN, VAN, LIM, FP, DMN, SC) from ANCOVA in comparison of all NDDs vs TD (significance: FDR- 
corrections were performed using Holm-Bonferroni, q < 0.05; errors bars are SDs). The incresed subcortical connectivity and decreased dorsal attentional con-
nectivity were observed in NDDs compared to TD, but were not statistically significant. (VIS: visual network, SMOT: sensorimotor network, DAN: dorsal attentional 
network, VAN: ventral attentional network, FP: frontoparietal network, DMN: default-mode network, SC: subcortical network). 
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subscale from CBCL, TOCS). Participants’ general adaptive functioning 
was also significantly correlated with the frontoparietal network in 
clustering (β = − 0.002, q = 0.04) and the DMN in local efficiency (β =
0.001, q = 0.05), but not in other graph metrics (degree, betweenness 
centrality and density) (Fig. 3D and E). The correlations between 
behavioural measures are presented in Supplementary Table 7. The 
data-driven analysis grouped participants into two clusters based on 
participants’ connectivity graphs without diagnostic information, and 
no cluster had one diagnostic group exclusively, including the TD group. 
The TD and the ASD participants were split between the two clusters, 
while approximately 80% of the OCD and the ADHD participants were 

each loaded on different clusters, respectively (Fig. 4A). The distance to 
the data-driven clusters as well as between each pair of participants 
were calculated (Fig. 4B) and the participants grouped by either diag-
nosis or their assigned k-means cluster (Fig. 4C and 4D). None of diag-
nostic categories presented as a group; those who had the same 
diagnostic label were not particularly closer or more similar to each 
other in terms of their connectivity graphs, compared to those who were 
assigned in each k-means cluster. In the subsequent analysis with 
behavioural outcomes, we found each participant’s distance ratio 
(cluster 1: cluster 2) was significantly correlated with participants’ 
general adaptive function (β = 31.20, q = 0.001), social deficits (β =

Fig. 2. Exploratory comparisons between each NDD and TD. In an exploratory purpose, each graph metrics were visualized between each NDD and TD. Each 
NDD group showed similar patterns of fucntional connectivity compared to TD. 

Fig. 3. Behavioural correlations with graph metrics Subjects’ general adaptive function scores (ABAS) were significantly correlated with three subcortical 
network indices (degree, local efficiency, clustering coefficient; q = 0.02, 0.03, 0.03, respectively), the FP network clustering coefficient (q = 0.04), DMN efficiency 
(q = 0.05). SC, Subcortical network; FP, Fronto-parietal network; DMN, Default-mode network. 
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− 18.29, q = 0.001) and inattention problems (β = − 10.87, q = 0.001). 
The regression analyses also revealed that the data-driven clusters were 
significantly explained by participants’ general adaptive function (β =
0.11, p = 0.060) and CBCL-ADHD subscales (β = − 0.125, p = 0.021) 
while controlling for age, sex and the scanner effects. Additionally, we 
grouped participants by the viewing condition. About half of movie 
condition (55.6%) was grouped into cluster 2, while half of Inscapes 
condition (60.9%) was grouped into cluster 1. When these effects were 
examined in each diagnosis, children with ASD looked to be more 
affected by the viewing condition, while no effects were observed in 
children with ADHD and OCD. Although the TD group seemed to show 
effects of the viewing condition, opposite to the ASD group, the overall 
number in the movie condition was too small to compare (Supplemen-
tary Fig. 3). 

4. Discussion 

In this study, we sought to identify cross-diagnostic rs-fc features 
underlying three common NDDs to determine homogeneous subgroups 
based on rs-fc similarity. Our results demonstrated that the categorical 
diagnoses did not represent distinct neurobiological features in canon-
ical resting-state networks, nor were they matched with data-driven 
clusters, which grouped participants based on connectivity similarity. 
Instead, participants’ general adaptive functioning, a diagnosis-free 
continuous measure, was associated with connectivity features across 
the entire sample. 

In our diagnosis-based comparisons, which used five graph metrics 
summarized according to eight canonical resting-state networks, we did 
not find any significant group-specific rs-fc features across the three 
diagnostic groups and the TD controls. These findings suggest that 
diagnosis-based approach is not as useful in identifying distinctions in 

rs-fc between the behaviourally defined, DSM/ICD-based NDD groups. 
This extends studies which have assessed functional connectivity, typi-
cally comparing two groups of children with NDDs based on their di-
agnoses, finding contradictory results even in a large multi-site sample 
(Chen et al., 2015; Fredo et al., 2018; King et al., 2019). A recent study 
applied both categorical and dimensional approaches to compare rs-fc 
features driven by each approach in an ASD group and controls. 
Notably, a strong difference was found between the data-driven clusters 
(i.e., site effects), but not between the diagnostic groups, supporting the 
discrepancy between the behaviourally based diagnoses and the un-
derling neurobiological presentation (Easson et al., 2019). Another 
recent report also found that the overall connectivity patterns were very 
similar amongst those with ASD, ADHD, schizophrenia and even TDs 
(Spronk et al., 2018), while a third study, assessed frontostriatal rs-fc in 
children with ASD and OCD, and found no diagnosis-specific differences 
but an association between increased nucleus accumbens connectivity 
with the frontal region and symptom severity in repetitive behaviours 
(Akkermans et al., 2018). Our findings and those of the recent literature 
suggest that a categorical approach may not be useful even to define 
typically developing controls. We need to reconsider neurobiological 
presentations along a continuum beyond categorical clinical diagnoses 
and dichotomized typical-atypical development. 

In contrast to the diagnosis-based comparisons, the dimensional 
approach, in which we examined the associations between connectivity 
indices and behavioural measures across all participants independent of 
diagnosis, revealed that participants’ general adaptive functioning was 
significantly correlated with subcortical functional connectivity across 
three graph metrics. Subcortical network function has been implicated 
in individual differences in TD individuals, such as reward-based 
learning and decision-making (Yin and Knowlton, 2006), and struc-
tural and functional abnormalities in subcortical regions have been 

Fig. 4. k-means clustering results based on each subject’s graph measure without diagnostic information. 4A. This panel depicts how all participants in each 
diagnostic group can be subgrouped into k-means clusters (k = 2) only based on their graph metrics similarity. No cluster had exclusively any specific diagnostic 
group. We calculated distance of each participant to the data-driven clusters (4B) and of each pair of participancts based on their graph metrics similarity and 
grouped them by either data-driven cluster (4C) or diagnosis (4D). 
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reported in NDDs (Boedhoe et al., 2017; Hoogman et al., 2015; Shep-
herd, 2013; Van Rooij et al., 2018). Atypical subcortical connectivity has 
been noted in interactions with sensory-motor cortices in ASD (Cerliani 
et al., 2015), and connectivity with frontal regions was related to 
atypical reward processing or attention problems in ADHD (Cubillo 
et al., 2012). In OCD, patterns of both increased and decreased fron-
tostriatal and within-striatal connectivity have also been reported 
(Posner et al., 2014; Vaghi et al., 2017). Although the majority of studies 
using the ABIDE samples did not report subcortical findings, increased 
functional connectivity in subcortical regions was one of the frequent 
findings in ASD from other samples, in particular when they were 
defined and assessed at a network-level, rather than a node-level (Cer-
liani et al., 2015; Chen et al., 2015; Di Martino et al., 2014; Fredo et al., 
2018; King et al., 2018; Maximo and Kana, 2019; Smith et al., 2018). We 
also found that DMN connectivity in local efficiency and fronto-parietal 
network connectivity in clustering coefficient were significantly corre-
lated with participants’ general adaptive functioning. Atypical DMN 
activity is one of the most frequent findings in rs-fc studies character-
izing ASD (Hull et al., 2017), ADHD (Castellanos and Aoki, 2016) and 
OCD (Stern et al., 2012), and a few studies have reported the posterior 
DMN as a shared brain marker between ASD and ADHD (Di Martino 
et al., 2013; Kernbach et al., 2018; Ray et al., 2014) and between ADHD 
and OCD (Norman et al., 2017). The fronto-parietal network is known to 
play a critical role in cognitive control, particularly to maintain control 
and provide flexibility by adjusting control in response to feedback 
(Marek and Dosenbach, 2018). Although atypical fronto-parietal 
network function has been linked to cognitive difficulties in NDDs 
(Castellanos and Proal, 2012; Gürsel et al., 2018b; Uddin, 2020) and in 
large multi-site samples in ASD (Chen et al., 2019), less has been re-
ported in comparisons between NDDs. This may be partly attributed to 
high heterogeneity from mild to severe deficits in cognitive control in 
each diagnosis (Gruner and Pittenger, 2018; Luo et al., 2019; McTeague 
et al., 2016; Mottron and Bzdok, 2020). Our findings demonstrated that 
cognitive control issues exist in NDDs along a continuum, which does 
not appear to be diagnosis-specific but be related to adaptive functioning 
across NDDs. 

Notably, general adaptive functioning was found to be associated 
with graph metrics across specific networks, but not other NDD 
symptom-related measures (SCQ, CBCL-ADHD subscale, TOCS), 
although diagnostic groups have shown significant differences in these 
measures. The previous literature has revealed that some standardized 
behavioural tests, such as the Reading the Mind in the Eyes Test (RMET) 
(Baron-Cohen et al., 2001), which was designed to detect diagnostically 
specific individual differences in social sensitivity, have highlighted a 
large amount of overlap in cognitive and behavioural manifestations 
across disorders (Baribeau et al., 2015; Lipszyc and Schachar, 2010; Van 
Hulst et al., 2018). Our result, that only the general adaptive functioning 
was significantly associated with the functional connectivity features, 
would be related to the fact that general adaptive functioning was 
designed in a diagnosis-free manner, while other symptom measures 
were designed to confirm (or support) DSM-based diagnostic criteria. In 
addition, this also mirrors the group comparison results in that the 
diagnostic criteria have failed to identify biological differences in the 
NDDs. We also previously reported in a subsample that investigated 
structural connectivity across NDDs that only general adaptive func-
tioning was positively correlated with fractional anisotropy in major 
interhemispheric and cortico-cortical connections across three disorders 
(Ameis et al., 2016). Together these findings establish that adaptive 
functions are critical trans-diagnostic behavioural constructs in NDDs, 
closely associated with underlying neurobiology and are key to under-
standing the heterogeneity within NDDs. Taken together, even when 
using a dimensional approach, a non-diagnosis-specific measure may 
better capture the functional variability and underlying neurobiological 
heterogeneity across individuals with NDDs. 

Lastly, our data-driven clustering results support the current model 
that categorical approaches have significant limitations in 

understanding the intrinsic functional brain organization and related 
mechanisms in NDDs. In our study, the optimal number of clusters 
across all participants was two, supporting lumping more than splitting 
based on behaviourally defined categorical diagnoses, as highlighted in 
the long debates of diagnostic classifications in neuropsychiatric con-
ditions (McKusick, 1969). Notably, no cluster exclusively mapped onto 
any diagnostic category, suggesting a lack of evidence of specificity of rs- 
fc differences for any of the NDD diagnostic categories. The patterns of 
diagnostic distribution show that a dimensional approach identifies 
typical and atypical brain development along a continuum, suggesting 
that the NDD and TD groups share similar connectivity patterns overall 
and other factors, such as age and sex, may further contribute to 
different connectivity patterns (Easson et al., 2019; Easson and McIn-
tosh, 2019; Rashid et al., 2018; Spronk et al., 2018). This idea was 
supported by our analyses for clinical validation of the data-driven 
clusters. The closer a participant was to the cluster that included more 
OCD and TD participants, the better general adaptive function, fewer 
social deficits and fewer attentional problems. When these associations 
were explored more specifically on the general measures, the data- 
driven clusters were significantly explained by participants’ general 
adaptive function and attention and hyperactivity. These associations 
demonstrate that the interactions between rs-fc features and the multi-
ple levels of human cognition need to be understood beyond specific 
diagnostic labels. In addition, non-diagnosis-specific symptom measures 
would be useful to explain the clinical validation for data-driven clus-
ters. Observations from the distance matrices, which calculated dis-
tances between each pair of participants and grouped them either as 
data-driven clusters (Fig. 4B) or by diagnoses (Fig. 4C), revealed that 
diagnosis-based grouping was less successful in subgrouping partici-
pants having similar functional connectivity features than the data- 
driven clusters. 

The functional connectivity features in NDDs are complex and our 
results are on large canonical resting-state networks, and have more of a 
focus on within-network features since we have used graph theory 
metrics. Some recent studies have attempted to understand functional 
alterations in NDDs by examining not only over- or under-connectivity 
but also investigating various types of connectivity features such as 
temporal dynamics (Harlalka et al., 2019), imbalance in intra- and inter- 
network connectivity (Smith et al., 2018), sustained connectivity (King 
et al., 2018) or HRF dynamics in underlying neurochemical mechanism 
(Yan et al., 2018). A transient and activation-dependent functional 
connectivity as well as more focused networks which targeted specific 
regions or functions have also been investigated in NDDs. A deep-and- 
big data approach by the combination of different types of biological 
information in a single large cohort (Lombardo et al., 2019), such as 
genomics, imaging and other –omics, combined with information on 
cognition and behaviour will be necessary to understand the complexity 
of shared biology from genes to the full expression of signs/symptoms, 
strengths and weakness, across the NDDs. Finally, the scanner upgrade 
in our study needs to be considered in terms of its potential impact on 
the results. Although we demonstrated that the NDD groups did not 
differ significantly from the TD group in either viewing condition and 
that the viewing condition was not the main factor in clustering the 
participants’ functional connectivity features, we did not have enough 
power to address this issue. This can be achieved in a future, larger 
study. 

5. Conclusions 

In summary, by investigating three NDD diagnostic groups together 
with a control group in a single large cohort, we demonstrated that the 
diagnosis-based approach has substantial limitations in understanding 
the neurobiology of NDDs. Our results determined that the dimensional 
or data-driven approach beyond specific diagnoses is a useful alternative 
to understand both neuroanatomical similarity and heterogeneity in 
NDDs. 
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