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Abstract

Imaging of the living human brain is a powerful tool to probe the interactions between brain, gut 

and microbiome in health and in disorders of brain–gut interactions, in particular IBS. While 

altered signals from the viscera contribute to clinical symptoms, the brain integrates these 

interoceptive signals with emotional, cognitive and memory related inputs in a non-linear fashion 

to produce symptoms. Tremendous progress has occurred in the development of new imaging 

techniques that look at structural, functional and metabolic properties of brain regions and 

networks. Standardisation in image acquisition and advances in computational approaches has 

made it possible to study large data sets of imaging studies, identify network properties and 
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integrate them with non-imaging data. These approaches are beginning to generate brain 

signatures in IBS that share some features with those obtained in other often overlapping chronic 

pain disorders such as urological pelvic pain syndromes and vulvodynia, suggesting shared 

mechanisms. Despite this progress, the identification of preclinical vulnerability factors and 

outcome predictors has been slow. To overcome current obstacles, the creation of consortia and the 

generation of standardised multisite repositories for brain imaging and metadata from multisite 

studies are required.

INTRODUCTION

Functional brain imaging research in gastroenterology has allowed for improved insight into 

spontaneous and evoked brain features and into the role of brain–gut interactions in health 

and disease.12 Until recently, the focus of brain imaging research in gastroenterology has 

been to gain a better understanding of the pathophysiology of disorders of brain-gut 

interactions (DBGI),3 also known as functional gastrointestinal disorders.145 DBGIs are 

defined as a group of disorders classified by the presence of GI symptoms related to any 

combination of motility disturbance, visceral hypersensitivity, altered mucosal and immune 

function, altered gut microbiota and altered central nervous system (CNS) processing in the 

absence of detectable organic disease.3 Common DBGIs include IBS, functional dyspepsia 

(FD), chest pain of oesophageal origin and functional heartburn. There is considerable 

overlap of the DBGIs with each other, with other visceral and somatic ‘functional’ pain 

syndromes (including urological pelvic pain syndromes (UCPPS), vulvodynia, fibromyalgia 

and chronic back pain36) and with psychiatric disorders, in particular anxiety and 

depression.78

The current diagnostic criteria for DBGIs, as well as illness severity, frequency, duration and 

treatment efficacy all rely exclusively on subjective patient reports and not on objective 

biomarkers.36 Regardless of the primary aetiology, these subjective symptom reports are 

generated in part by the brain from interoceptive signals originating in the GI tract, from 

memories of such signals, and are extensively modulated by emotional (anxiety and 

depression), cognitive (attention and expectation) and motivational factors. As pointed out 

for all other chronic pain disorders, this translation of objective gut signals into subjective 

symptoms is highly non-linear.910 Therefore, multimodal assessment of the brain’s structure, 

function and biochemical and receptor properties has the potential to provide more objective 

information about pathophysiology, treatment efficacy and biologically based patient 

subgroups in these conditions by elucidating the contribution of multiple brain networks to 

the subjective symptom reports. Indeed, numerous studies examining brain processing of 

visceral sensations have been published in an attempt to identify biomarkers of these 

disorders (see details in refs 71112) (reviewed in refs 2913). A comprehensive model of brain-

gut interactions incorporating reported alterations in brain networks (‘brain connectome’) 

and networks of interacting systems in the gut (‘gut connectome’)14 is shown in figure 1.

In the last two decades, and in particular since the last Rome Working Team report on this 

topic in 2009,7 multimodal brain imaging research has greatly improved our understanding 

of the brain–gut interactions in DBGIs and identified commonalities and differences to other 
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functional pain syndromes and psychiatric disorders. However, the ultimate goal of 

identifying generally agreed on biomarkers for individual syndromes, patient stratification 

for treatment trials and assessing treatment efficacy has not been fully realised.1315 This 

article will review the current literature on the use of brain imaging in DBGI and will 

provide recommendations for future studies.

Understanding structural and functional brain alterations and their role in pathophysiology 
of DBGIs

Although it has long been assumed that specific brain functions, such as pain processing, 

emotion and cognition are attributable to the isolated operations of single brain regions, 

these processes are now viewed as resulting from the dynamic interactions of distributed 

brain areas operating in several large-scale networks (figure 2; box 1). These networks and 

their properties have been assessed by using neuroanatomical and neurophysiological studies 

in animals,16 as well as different brain imaging techniques and analyses in humans.17–24 In 

humans, several types of networks have been reported: (A) functional brain networks based 

on evoked responses725 or intrinsic connectivity of the brain during rest,1719–212326–30 (B) 

structural networks based on grey matter parameters3132 and white matter properties and (C) 

anatomical networks based white matter connectivities.33 Both evoked and resting state 

studies performed in patients with IBS have demonstrated abnormalities in regions, as well 

as in resting state and task related networks related to default mode (DMN),3435 emotional 

arousal,72336–38 central autonomic control,17182022 central executive control,172038 

sensorimotor processing39–42 and salience detection.4344 (table 1). IBS-related alterations in 

these networks have provided plausible neurobiological substrates for several information 

processing abnormalities reported in patients with IBS, such as biased threat appraisal 

(‘catastrophising’) and expectancy of outcomes (eg, salience network), autonomic 

hyperarousal (emotional arousal and central autonomic networks) and symptom-focused 

attention (central executive network).19

What are the correlations of these networks with non-brain imaging metadata and how can 
these correlations help to gain insights into DBGI pathophysiology

In order to make conclusions about the involvement of structural and functional brain 

alterations in the generation of clinical symptoms of IBS and other brain–gut disorders, 

associations with subjective clinical (including symptom severity, abdominal pain and bowel 

habits) and behavioural measures (including anxiety, depression, stress, early adverse life 

events) should be correlated with these brain alterations. Even though such associations have 

been reported in most published cross-sectional reports, effect sizes are generally small, and 

causality has not been demonstrated for any of these parameters in longitudinal studies. 

Reported associations of clinical, behavioural and biological measures with brain parameters 

are shown in figure 2.4345–47 Several such associations of specific brain parameters with 

genes related to the hypothalamic-pituitary-adrenal axis,48 catecholamine46 and 5-

hydroxytryptamine (5-HT) signalling49 and with gene expression profiles in peripheral 

blood mononuclear cells50 have been reported. An example of the association of a 5-HT3 

receptor polymorphism with amygdala activation is shown in figure 3.49 Preliminary data 

suggest correlations of regional brain structural differences with gut microbial taxa,51 even 
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though similar to the situation with clinical metadata, it is currently not possible to draw 

conclusions about causality from these results.

How do brain signatures differ between male and female subjects and what implications 
do these differences have for DBGI pathophysiology and treatment

Sex is increasingly being understood as an important basic variable, influencing the quality 

and generalisability of biomedical research.52 Sex differences in IBS-related structural and 

functional brain alterations may relate to known sex differences in prevalence, symptom 

presentation, comorbidities and response to treatment of patients with IBS.53 Although IBS 

neuroimaging research is predominately female specific or mixed sex,54 an increasing 

number of studies have examined sex differences in IBS-related brain alterations, 

demonstrating differences among key regions in the emerging brain networks discussed 

above (table 1). In addition, several studies have examined the role of variations in female 

sex hormones (related to menstrual cycle or birth control pills) in neural pain processing, 

which may explain some of the observed sex related differences.55–58 These findings 

highlight the importance of taking sex differences into account when reporting brain 

imaging data in IBS. Reported structural and functional sex differences in several brain 

networks may explain the greater prevalence of IBS in women and sex differences in 

individual symptoms. Furthermore, sex differences in brain alterations may play a role in 

different responsiveness of male and female patients to pharmacological and non-

pharmacological therapies.

Acquisition of multimodal brain imaging data

Several acquisition methods (summarised in table 2) are available to provide complementary 

information on the structure and function of the brain in humans. When applied together, 

this methodological approach is referred to as multimodal brain imaging.

Contributions to better understanding of the pathophysiology of DBGIs from positron 
emission tomography (PET) ligand studies and MRI of brain metabolites (MR 
spectroscopy)

Radioligand PET and MR spectroscopy studies have made it possible to elucidate the 

involvement of specific neurotransmitter systems or brain metabolites in DBGI 

pathophysiology but are only beginning to be applied in this context.

Radioligand PET studies—This technique allows quantification of regional availability 

of receptor/transporter systems in the brain by injecting radioactively labelled ligands for 

these systems in sub pharmacological doses. Limitations include the availability of ligands 

(although they are available for most receptor systems of the major neurotransmitters, and 

new ones are being developed continuously), the need for a specialised radiopharmaceutical 

facility in close proximity to the study location and the involvement of radiation burden for 

the subjects. Some ligands also allow quantification of endogenous release of the 

corresponding neurotransmitter. For example, using [11C]-carfentanyl, Ly et al demonstrated 

that prolonged painful gastric stimulation, contrary to a similar somatic pain stimulus, did 

not provoke endogenous opioid release in pain responsive brain regions in healthy 

volunteers.59
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Most studies have compared regional availability of receptor/transporter systems between 

DBGI patient populations and healthy controls (HCs). Jarcho et al60 studied neurokinin-1 

receptor (NK-1R) availability in a small sample of IBS patients compared with age-matched 

and sex-matched samples of HCs and patients with IBD. As shown in figure 4, patients with 

gut inflammation showed a widespread reduction in NK-1R availability compared with HCs, 

particularly in the basal ganglia, hippocampus, amygdala and cingulate subregions. In 

contrast, in patients with IBS, reductions compared with HCs were only found in the 

putamen and anterior middle portion of the anterior cingulate cortex (ACC) but did not reach 

statistical significance. However, effect sizes were large, suggesting the lack of significance 

could be driven by the small sample size.

Ly et al found widespread increases in cannabinoid-1 receptor (CB1-R) availability in a 

small sample of patients with FD compared with age-matched, sex-matched and body mass 

index-matched HCs.61 More specifically, significant differences surviving multiple testing 

correction, with large effect sizes, were found in subcortical (basal ganglia, amygdala and 

brainstem) and cortical (insular, cingulate and prefrontal subregions) areas involved in pain 

processing and modulation as well as control of appetite, food intake and nutrient tolerance. 

These increases in CB1-R availability were stable after a naturalistic follow-up of on average 

3 years in a subsample of the patients. Tominaga et al62 reported preliminary findings, 

demonstrating increased serotonin transporter (SERT) availability in the midbrain and the 

thalamus in patients with FD compared with HCs. In patients with FD, SERT availability in 

these regions correlated with total GI symptom and abdominal pain levels.

MR spectroscopy studies—This MR-based technique allows quantification of regional 

metabolite concentrations in brain tissue, including the neurotransmitters glutamate and 

GABA, and the inflammatory mediator myo-inositol, based on the differential resonance 

frequency of protons in different molecules, although with a much lower spatial and 

temporal resolution compared with MRI.63 To the best of our knowledge, only one study 

used this technique in DBGI. Niddam et al demonstrated a reduction in hippocampal 

glutamate-glutamine (Glx) in 15 patients with IBS without psychiatric comorbidity 

compared with 15 well-matched controls. Glx concentrations were inversely associated with 

stress indicators in IBS patients only, which was interpreted as malfunction of inhibitory 

hippocampal feedback on the hypothalamo–pituitary–adrenal axis.64

Analsis of multimodal brain imaging data

IBS brain connectome—Until recently characterising and comparing the brain’s wiring 

in DBGIs has been limited to functional and effective connectivity analyses associated with 

specific circuitry and functionality of neural subsystems including attention/cognitive 

control, emotional arousal and homeostatic afferent brain networks. However, using network 

analysis based on graph theory,22 it has become possible to characterise the architecture of 

large-scale functional and structural networks in IBS65–67 and to examine how these network 

properties relate to clinical and other biological parameters (box 2). Network analysis based 

characterises of the role of brain regions and their connections in the integrity and 

information flow of brain networks. Network metrics are classified into measures that reflect 

centrality, integration and segregation.68–70
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Data repositories—It is clear not all labs have the means to produce a large number of 

images required to ensure reliability of results. With this in mind, The Pain and 

Interoception Imaging Network Repository (painrepository.org71) was developed to 

accelerate scientific discovery regarding brain mechanisms in pain and to provide more rapid 

benefits to pain patients through the harmonisation of efforts and data sharing. This will 

serve as an invaluable research for studying central mechanisms in DBGIs.

In sum, the volume and diversity of neuroimaging data available for analyses has increased 

exponentially. These developments and the urgent need for large, well-phenotyped data sets 

has become a major limitation to progress in the field. Computational tools in neuroscience 

are yielding larger and more complex data sets than ever before. However, determining 

which imaging parameters best answers specific questions (biomarkers, outcome predictors, 

underlying mechanisms) remains to be determined.

Computational algorithms and tools applied to each type of data acquired via automated and 

semiautomated processing pipelines can result in a vast amount of subject-specific data at 

the regional or voxel level. For example, from structural MRI volume, cortical thickness, 

surface area and mean cortical thickness can be estimated. For diffusion tensor imaging, 

workflows result in several measures of microstructural integrity (eg, mean diffusivity and 

fractional anisotropy) and connectivity (eg, tractography). Using resting state data, we can 

produce measures that reflect oscillatory dynamic and intrinsic connectivity at the voxel or 

regional level. Time-efficient neuroimaging data processing and analysis pipelines that 

produce an enormous amount of data reflecting white matter properties, brain topology, grey 

matter morphometry, anatomical and functional connectivity can be of great benefit.7273

Big Data approaches to study brain–gut interactions

Improvement in computer storage and processing capacity and efficiency has ushered in the 

age of ‘Big Data’ (box 2). Nowhere is this more true than in the field of neuroscience and 

neuroimaging, which has experienced exponential increases in the scale and speed of data 

collection and generation of complex data sets. Concurrently, there has been a shift from 

smaller scale, hypothesis-driven science to complementary data-driven methods that apply 

machine learning techniques to large-scale data sets to identify underlying networks and 

patterns with little or no reference to existing theories. Multivariate data sets (including data 

from brain, microbiome, metabolome, symptoms and genetics) permits modelling of 

complex interactions between the brain, biology and behaviour to inform disease 

phenotypes, diagnosis, prevention and treatment of functional gastroenterological disorders. 

In addition to the advantages of generating large-scale data sets, experts in the field strongly 

encourage multisite studies and open access repositories in order to promote a culture of 

sharing, collaboration and as a consequence the greatest advancements in the field. The 

BRAIN Initiative74 and the European Human Brain Project75 mark this paradigm shift and 

focus on neurological disorders and psychiatric disease. Other important large data 

repositories include the NIH Human Connectome Project (1200 people)76 and the UK 

Biobank Imaging (100000 brains imaged from 500000 people who have all their genotype 

and phenotypes plus lifestyle aspects catalogued).77
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Analyses of multimodal, large-scale neuroimaging data (figure 5)—Big Data 

approaches are needed to analyse the high-dimensional neuroimaging data sets. These so-

called data-driven methods apply supervised and unsupervised machine learning techniques 

(also called multivariate pattern analysis and projection methods) to large data sets to find 

patterns in the data without referring to theories (summarised in table 3). Big Data analysis 

has provided insights into disease mechanisms that have propelled genomic and metabolic 

science into the spotlight for unprecedented advances in medical care and having 

measureable positive influence financially within the USA. Big Data science has brought 

cutting-edge technological advances for patient diagnosis and care including providing 

insights into the genetic and immunological underpinning in Alzheimer’s7879 and 

Parkinson’s diseases.80

Identifying the neurobiological basis of treatment effects using neuroimaging and its 
relevance for dbgi pathophysiology and treatment

Can structural and functional brain signatures be used as biomarkers in 
treatment prediction and outcome?—There is considerable potential to use 

neuroimaging-based measures of brain structure and function as predictors (moderators) of 

treatment selection and outcome (box 3). In addition, brain imaging measures can be used 

also to estimate a chronic pain or disease trajectory, that is, identifying who might be 

vulnerable towards getting certain conditions based on their brain functional and structural 

networks. Outside of the field of DBGI, several studies have identified that patients 

transiting from acute to chronic back pain show differences in their reward and corticolimbic 

brain networks (identified functionally and structurally) at baseline that are highly sensitive 

and specific for predicting the development of chronic pain.81–83 Other areas proposed as 

conferring vulnerability include the descending pain modulatory system that includes the 

brainstem’s inhibitory and facilitatory arms.84 A major caveat of these studies to date is their 

failure to identify causality. For brain–gut related conditions, which are more complex in 

terms of the beginning of their trajectory (often in childhood), longitudinal studies, Big Data 

initiatives and consortia alongside the supervised and unsupervised classification methods 

will be required to generate similar information. Therefore, for now studies are taking a 

different approach and attempting to characterise whether ‘non-pain’-related features are 

present in cross-sectional studies that correlate with differential brain activity or structure 

compared with HCs. For example, identifying potential pre-existing vulnerabilities due to 

neuroticism, a stable personality trait characterised by a propensity for negative affect has 

shown a correlation between white matter connectivity strength and neuroticism in IBS.85 

Also, IBS patients with a tendency to predict worst outcomes with high likelihood 

(catastrophising) showed reduced dorsolateral prefrontal cortex (PFC) thickness and 

increased hypothalamic grey matter.86 These studies suggest that aspects of an individual’s 

personality might be associated with differential brain structure and connectivity in areas 

relevant to chronic pain. Such presymptomatic brain alterations in healthy individuals could 

include the sensorimotor cortex (making healthy individuals more sensitive to visceral and 

somatic stimuli),87 the PFC and the emotional arousal system (compromising a healthy 

person’s ability to downregulate emotional circuits), and the endogenous pain modulation 

system (limiting an individual’s ability to counter regulate acute pain). Interestingly, the 

research exploring sex differences described in the earlier section might be seen as 
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conferring a differential vulnerability. An alternative hypothesis about chronic pain 

vulnerability is related to the responsiveness of patients with acute pain to pharmacological 

intervention. For example, studies in HCs and animals have shown that baseline reward 

circuitry and normal endogenous opioid activity in the anterior cingulate, respectively, is 

predictive of and necessary for analgesic outcome with pharmacological agents in somatic 

pain.8889 These findings suggest a reinterpretation of the ‘vulnerability’ question from 

predicting chronic pain development towards perhaps resistance to positive analgesic 

outcome.90 It remains to be determined if such observations pertain to chronic visceral pain 

conditions. To date, there is little human data and mostly from non-GI conditions to inform 

how such brain measures, whether identified as precondition vulnerability or disease 

relevant factors and responsiveness to treatment, predict treatment outcome. The 

experimental challenge is getting adequate signal to noise to perform such prediction studies 

for individual patients—a necessary condition for patient stratification and personalised 

medicine approaches.

A recent study91 in a small cohort of female fibromyalgia patients highlights how brain 

imaging may be used to distinguish drug from placebo effects in patients with DBGI. The 

study showed that glutamate/glutamine (right posterior insula (INS) only), connectivity of 

anterior and posterior INS to a key region of the DMN and deactivation of some DMN 

regions to evoked pressure pain were altered by pregabalin but not placebo. Many of the 

pretreatment baseline levels of these measures correlated with the magnitude of clinical pain 

at that time. In addition, the study showed that clinical pain changes were predicted by 

resting connectivity and evoked neural activity (deactivation) in the DMN, whereas 

glutamate within the posterior INS predicted behavioural changes in evoked pain only. This 

study highlights the potential for neuroimaging to aid the prediction of treatment outcomes. 

Together with the baseline reward network/opioid analgesia prediction study,89 it illustrates 

that neuroimaging might aid treatment selection by identifying networks more amenable to 

one treatment over another. This principle holds also for non-pharmacological treatment 

interventions and identifying patients who will benefit most from either a cognitive–

behavioural treatment (CBT)-based approach rather than acupuncture, hypnosis or 

mindfulness-based stress reduction.

How do pharmacological therapeutic interventions affect brain network alterations in 
DBGIs?

In contrast to many chronic pain disorders that have well-defined peripheral disease 

mechanisms (eg, neuropathic pain and inflammatory pain), issues of how therapeutic 

interventions affect brain systems in patients with DBGI remains more challenging due to 

the lack of agreed on brain92 or other biomarkers for each condition,93 a relatively poor 

understanding of how pharmacological agents affect brain systems, the multifaceted and 

complex nature of the disease involving sensory, emotional, cognitive and modulatory 

networks as well as complex psychosocial issues independent of potential biological 

processes that may be the target of pharmacological agents. In the following sections we 

briefly review: (1) brain measures of pharmacological effects and (2) putative mechanisms 

of drugs on brain networks.
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Unlike some brain disorders that are characterised by a major abnormality in a particular 

neurotransmitter system (eg, the dopamine system in Parkinson’s disease), there is currently 

no such discrete neurobiological abnormality in DBGIs. The ideal pharmacological agent or 

combination of agents (or other adjunctive therapies) should normalise an altered brain state. 

Currently, our best objective measure of such an altered brain state is the normalisation of 

resting state networks (RSNs) as well as grey matter changes that has been noted to respond 

to treatment in other chronic pain conditions (see refs 9495). A few papers have evaluated 

altered functional networks96–98 and grey matter changes8599100 in patients with DBGIs29 

and have been discussed at the beginning of this review.

Network modules and functional specialisation and grey matter changes

As discussed in detail earlier, brain networks provide an integrated measure of neural 

systems that define behaviour and are made up of modules. The complexity is intricate given 

the anatomical connectivity of any specific brain region with multiple local and distant brain 

regions. These processes will provide targets for pharmacological measures. Numerous 

processes including sex, comorbidities, age, duration of disease, pain intensity or treatment 

resistance are issues that need to be defined in the context of potential pharmacological 

targets given the ongoing changes in the brain connectome (https://

www.humanconnectome.org).

Ideally, any pharmacological agent should have the following effects on brain systems: (1) 

modify functional connectivity towards a ‘normal’ state and (2) induce plastic changes in 

brain morphology (including white matter connections) or grey matter volume. 

Pharmacological agents are known to have effects on brain systems as evaluated by 

functional MRI approaches.101102 Commonly used pharmacotherapies aimed at the CNS 

(neuromodulators) include antidepressants (tricyclic antidepressants (mechanisms of action 

(MOAs): noradrenergic and serotonergic but also antimuscarinic and antihistaminic 

properties); selective serotonin uptake inhibitors (MOA: blocking uptake of 5-HT); and 

cyproheptadine (MOA: antihistaminic, anticholinergic and antiserotonergic properties).

Modification of functional connectivity in DBGIs by pharmacological agents 
(box 4)—The main brain targets of current pharmacological action of commonly used drugs 

for DBGIs include: serotonergic, noradrenergic and histaminergic mechanisms. These are 

well defined in the mammalian brain103 but how changing one affects modular or more 

diverse brain circuits in DBGIs is not known. Previous brain imaging studies have 

demonstrated the effects of several candidate compounds for IBS treatment (antagonists for 

the CRF-R1 receptor,104105 5-HT3 receptor106107 and neurokinin 1 (NK1) receptor60108 

which are no longer pursued for IBS drug development. Figure 6 shows the reported effect 

of a CRF-R1 receptor antagonist on the activity of the hypothalamus and on functional 

connectivity within the emotional arousal network in IBS and HC subjects. Levels of 

specific neurotransmitters in one brain region may predict responses in other brain regions 

using RSN analysis109 or the effects on brain RSNs evaluated by pharmacological 

manipulation of a specific system, for example, dopamine.110111 In the case of dopamine, 

changes have provided insights into specific network changes112 and symptoms (eg, pain).
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Modification of structural changes in DBGIs by pharmacological agents—
Several alterations in brain grey matter volume have been reported in DBGIs (see above). As 

such, these findings represent an enormous opportunity to target and understand functional 

changes. Changes in structure are linked to changes in functional connectivity.113 Structural 

changes in grey matter volume have been considered to reflect levels of dendritic 

complexity.114 The notion that pharmacotherapies alter morphology is not new (see ref 115) 

and offers a robust measurable approach to understanding effective treatments.116 Dendritic 

plasticity may be very rapid to induce remodelling and consequently new connections. How 

to maintain such changes if effective are still now well defined. However, changes in 

dendritic complexity may provide insights into drug resistance or disease modification.

In summary, pharmacological approaches may contribute to alterations in brain systems 

whether their effects are central or peripheral in action. Such changes may reflect processes 

that are dependent on drug–receptor interactions but may also affect dendritic plasticity 

acutely or in a more disease modulatory role. Effective pharmacotherapies have the potential 

to change the brain. Brain pharmacoimaging may help dissect systems that may be targets to 

recapitulate altered brain morphology and connections to define the development of new 

pharmacological therapeutic strategies.

How do non-pharmacological therapeutic interventions affect brain network alterations?

Neuroimaging is at its most powerful when it can reveal an insight and understanding to a 

phenomenon that has been either a mystery or not believed due to the subjectivity of 

response measures. In terms of lending credence to the efficacy of non-pharmacological 

therapeutic interventions by identifying the neurophysiological basis, neuroimaging has been 

a powerful advocate. An early study showed that CBT in IBS was associated with reduced 

activity in emotion-related brain regions (parahippocampal gyrus and inferior portion of the 

right ACC, GI-related symptoms and anxiety.117 A more recent study using moxibustion-

induced analgesia in IBS with diarrhoea showed improved symptoms and quality of life in 

the active treatment group compared with sham, with a decrease in the perception of rectal 

distention and a decreased PFC and ACC activation to rectal distension.118 The majority of 

studies in this area have been done in HCs or small patient cohorts with very few in DBGI. 

Several excellent reviews and articles have been written that summarise the findings to date 

across non-pharmacological interventions (eg, refs 119120) or focus exclusively on one type 

of intervention (eg, acupuncture and opioids121; acupuncture and brain connectivity 

normalisation in chronic pain122; acupuncture and the human brain123). A recent review 

suggests that brain mechanisms underlying the modulation of pain perception under 

hypnotic conditions involve cortical as well as subcortical areas including anterior cingulate 

and prefrontal cortices, basal ganglia and thalami.124It has been suggested that hypnosis 

modulates pain perception and tolerance by affecting cortical and subcortical activity in 

brain regions involved in these specific processes with the ACC playing a central role in 

modulating pain circuitry activity under hypnosis. Most studies also showed that the neural 

functions of the prefrontal, insular and somatosensory cortices are consistently modified 

during hypnosis-modulated pain conditions. From these reviews, authors conclude that 

findings from neuroimaging studies support the clinical use of hypnosis.125 While there have 

been several reasonably sized studies exploring how mindfulness therapies produce benefits 
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in patients with IBS, none to date have combined this with neuroimaging.126127 However, 

several neuroimaging studies aimed to identify brain changes underlying mindfulness 

interventions and symptom improvement are currently under way.

In conclusion, while no consensus has been reached yet regarding a unified set of 

mechanisms underpinning how non-pharmacological interventions produce their effects—

and certainly not specifically for DBGIs—there is evidence that such interventions have 

specific neurophysiological effects that can be detected using neuroimaging tools. It appears 

that different psychological and non-pharmacological treatment modalities are associated 

with activations of executive-cognitive and affective-motivational brain networks, with some 

evidence for decreased pain-related activations in afferent pain regions (sensorimotor 

network) and emotional structures (emotional arousal network), with the descending pain 

modulatory system as a potential key system recruited by several interventions. Future 

classification methods employing multivariate pattern analyses will help identify whether 

common underlying modulatory mechanisms exist or if each therapy relates to a specific 

brain mechanism.

Identifying gaps in current knowledge and goals for future research (box 5)

Psychological factors and specificity—There is a general consensus that DBGIs are 

heterogeneous group of disorders with respect to GI symptoms, and a large proportion of 

patients are characterised by psychological and behavioural alterations such as psychiatric 

comorbidity, dysfunctional symptom-related cognitions (catastrophising) and symptom-

related anxiety. These cognitive and emotional factors modulate central processing both 

during expectation and during the actual delivery of visceral stimuli and contribute to altered 

structural and functional brain connectivity, as well as to the associated alterations in 

autonomic nervous system outflow to the gut. However, many studies on emotional and 

cognitive modulation of symptom perception have been carried out in HCs, and more studies 

are needed to determine if and how psychological modulation of central pain processing is 

altered in patients with chronic visceral pain. Innovative paradigms involving psychological 

stress or administration of stress mediators, placebo/nocebo intervention or conditioning 

studies are emerging and awaiting application in patient studies.

In order to address whether brain alterations are specific to chronic visceral pain rather than 

to the associated anxiety or depression, future studies should include carefully selected 

patient control groups, such as patients with chronic somatic pain or patients with a 

diagnosis of anxiety or depression. Finally, while brain imaging studies in the GI field have 

already successfully begun to unravel how psychological trait and state factors shape brain 

structure and function, future work will need to address how trait factors (such as depression 

or anxiety), interact with state factors (such as negative emotions) and determine how these 

factors contribute to symptom generation and maintenance. This knowledge may reveal if 

chronic symptoms are primarily driven by central alterations or peripheral changes in 

specific patient subgroups, which could be a basis for individualised treatment approaches.

Increased perception of visceral stimuli (visceral hypersensitivity)—Although 

visceral hypersensitivity (the increased perception or response to visceral stimuli) plays an 
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important role in the pathophysiology of the functional GI disorders, especially IBS, and has 

inspired much mechanistic work, the number of brain imaging studies addressing visceral 

hypersensitivity remains very small. Like in other chronic pain condition, there is strong 

evidence that visceral hypersensitivity is a consequence of altered central pain processing in 

IBS128 and FD.129 However, altered neural activation in response to visceral stimuli has also 

been reported in normosensitive IBS,130 and both perceptual ratings and central arousal 

appear to habituate over time.44 Future brain imaging work is needed to clarify which 

peripheral and/or central processes may underlie visceral hypersensitivity in the 

pathophysiology of DBGIs.

Combining central and peripheral measures

One of the greatest challenges of the field will be to conduct innovative and highly 

interdisciplinary research to address the interactions between peripheral alterations, 

including gut microbiota and their metabolites, permeability or GI transit and changes at the 

level of the brain. For example, in healthy subjects, perturbation of the gut microbiota by 

regular intake of a probiotic mix was shown to result in an altered brain response to an 

emotion recognition task.131 Preliminary results show correlation of gut microbial taxa with 

brain structure and function in both HCs132 and IBS subjects.51 Multimodal brain imaging 

approaches, including MR spectroscopy, with peripheral measures, hold this promise and 

innovative approaches are emerging in related fields.133 Along the same lines, a combination 

of structural and functional brain imaging techniques reveal sensitivity of specific brain 

measures to treatment.134

Understanding similarities and differences between different types of chronic 
pain conditions—The cerebral processing of clinical pain shares many similarities across 

different conditions with different sources of nociceptive input. This is not surprising, given 

that the perception of pain, in acute and potentially even more so in chronic situations, is 

influenced and shaped to a large extent by supraspinal processes, such as emotions, 

cognitions and memories. Imaging research has started to tease out contributions of 

supraspinal modulatory influences to an individual’s subjective experience. Depending on 

the emotional and cognitive states of a patient, specific modulatory areas might be engaged 

to a variable extent, relatively independent of the type of pain. Nevertheless, pain 

characteristics influence how pain is processed supraspinally. For example, pain that is 

uncontrollable and unpredictable is processed differently than controllable and predictable 

pain.135 Such pain characteristics vary systematically across different clinical conditions: 

patients with episodic migraine, for instance, experience frequent unavoidable and 

unpredictable pain attacks, whereas an osteoarthritis patient who only experiences pain on 

movement is able to avoid pain and is therefore in control. Therefore, future studies could 

investigate how pain characteristics shape supraspinal pain processing across different 

clinical pain conditions. At present, the knowledge on differences in brain processing of 

controllable and uncontrollable pain stems from several experimental pain studies in HCs 

and studies in patients are lacking. Furthermore, it is unknown how patient characteristics 

(degrees of anxiety, depression and sense of control) and pain characteristics interact. It is 

tempting to speculate that individuals with premorbid high anxiety levels are more 

vulnerable when faced with unpredictable stressors compared with individuals with low 
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anxiety. Future work could address this for different clinical pain conditions, also because it 

might impact to what extent ‘controllability’ of pain should be addressed therapeutically and 

weighted against other (life) goals. In addition to pain characteristics, the type of afferent 

input influences how the brain processes pain and how the organism copes with the input. 

For example, activation of superficial A8-fibres promotes active coping, such as escape or 

avoidance behaviour, whereas activation of C-fibres originating in deeper tissues triggers 

quiescence and passivity.136 This neurobiological phenomenon becomes apparent every time 

when a patient with visceral pain curls up and does not move, but it is virtually never taken 

into account when pain coping is investigated. Given that for most chronic pain conditions, 

including DBGIs, an active coping style is far more adaptive than passivity,137138 which is 

not the neurobiologically ‘innate’ response; it is important that future imaging studies 

investigate pain coping for different types of afferent input and their interaction with top 

modulation.

Preclinical brain imaging studies—Significant technical progress has been made in the 

use of brain imaging modalities in preclinical studies.139–141 The usefulness of such studies 

is their ability to identify cellular and molecular mechanism underlying the more descriptive 

findings reported from human studies. For example, such preclinical studies will be required 

to identify mechanism underlying neuroplastic brain changes observed in human studies and 

to identify the mechanism by which certain gut microbial metabolites can modulate brain 

structure and function. A major limitation in performing disease-relevant studies in rodents 

is the poor homology between mouse and human brain and the absence of a rodent model 

with great validity for IBS and other DBGIs.

SUMMARY AND CONCLUSIONS

Considerable progress has been made since the last Rome Neuro-imaging Working Group 

report in 20097 in the characterisation of altered neural mechanisms in the development and 

maintenance of chronic visceral pain. This progress has been driven by several factors, 

including the evolution of novel imaging modalities, the development of novel analytical 

techniques and the study of large, homogeneous patient populations made possible through 

national funding agencies.142–144 Structural and functional alterations in brain regions and in 

the network properties that include these regions have been reported (see above and figure 

1), and several studies are under way to assess the effect of therapeutic interventions on 

these alterations. Similarities of some observed brain changes have been identified in other 

chronic pain populations such as the often comorbid UCPPS interstitial cystitis and chronic 

prostatitis.2 Despite this progress, challenges remain that include the likely heterogeneous 

nature of DBGI and its overlap with equally heterogeneous visceral and somatic syndromes; 

methodological differences in stimulation and recording techniques; and lack of control for 

psychological, physiological, gut microbial, dietary and genetic factors that are known to 

influence sensory perception and emotional reactivity. There is clearly a need for 

standardising brain imaging studies and the acquisition of metadata across different centres, 

as has happened in other fields.142–144 The growing use of complimentary and multimodal 

brain imaging modalities such as resting state imaging, arterial spin labelling, brain 

morphometry, spectroscopy and tractography, and analytical techniques such as connectivity 
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analysis and machine learning approaches coupled with the use of large data sets obtained 

from standardised studies in homogenous populations from multiple centres has great 

promise to contribute to a full understanding of the CNS alterations and better treatment 

outcomes in DBGIs.
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Box 1

Understanding structural and functional brain alterations and their role in 
the pathophysiology of disorders of brain–gut interactions

• Specific brain functions, including the perception and modulation of visceral 

pain, can best be understood as the result of multiple interacting brain 

networks.

• Networks most relevant to symptoms of IBS include salience, attentional, 

emotional arousal, central autonomic and sensorimotor networks.

• Sex differences in IBS-related structural and functional brain alterations may 

relate to known sex differences in prevalence, symptom presentation, 

comorbidities and response to treatment of patients with IBS.

• Several acquisition methods for brain imaging data, including MRI, diffusion 

tensor imaging, positron emission tomography and MRS are available to 

provide complementary information on the structure, function and 

biochemistry of the human brain.
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Box 2

Analysis of multimodal brain imaging data

• Advanced network analysis applied to structural and functional brain imaging 

data has made it possible to characterise the architecture of large-scale 

functional and structural networks in IBS and examine relationships of these 

networks with clinical and other biological data.

• Data-driven analysis methods (Big Data approaches) apply supervised and 

unsupervised machine-learning techniques (also called multivariate pattern 

analysis and projection methods) to large data sets to find patterns in the data 

without referring to theories or prior hypotheses.

• An essential prerequisite for Big Data approaches is the generation of 

multisite data repositories for standardised multimodal brain imaging, 

biological and clinical metadata.
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Box 3

Identifying the neurobiological basis of treatment effects using 
neuroimaging and its relevance for disorders of brain–gut interactions 

pathophysiology and treatment

• Specific network alterations have the potential to become biomarkers for IBS 

or for IBS subtypes, as well as predictors (moderators) of treatment outcomes, 

replacing existing symptom-based classifications.

• Specific brain alterations are potential targets for pharmacological and non-

pharmacological treatments.

• Future treatment goals include modification of altered functional connectivity 

patterns, the induction of network specific neuroplastic changes and the 

normalisation of altered metabolite patterns in the brain.
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Box 4

Clinical implications

Data driven analyses of large multimodal brain imaging data sets obtained at multiple 

time points has the potential to identify:

• The biological basis of individual disorders of brain-gut interactions, 

including IBS.

• The biological mechanisms underlying common comorbidities with other 

chronic pain and affective conditions.

• The causative role of gut microbial metabolites in IBS symptom generation.

• Subgroups of patients responsive to specific pharmacological and non-

pharmacological therapeutic interventions.
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Box 5

Identifying gaps in current knowledge and goals for future research

To realise the full potential of multimodal brain imaging approaches to the study of 

disorders of brain–gut interactions and to revolutionise the understanding and treatment 

of IBS, the following goals have been identified:

• Longitudinal studies in large patient cohorts with specific pharmacological 

and non-pharmacological approaches, including medications, diet and mind 

based therapies.

• Developmental studies starting in infancy to identify the aetiology of IBS, 

including the role of early life experiences (diet, antibiotics and stress) in the 

development of brain alterations.

• Understanding the relative causative role of central and peripheral alterations 

in children and adults in IBS pathophysiology.

• Understanding similarities and differences between different types of chronic 

pain conditions.
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Figure 1. 
Proposed integrative model for disorders of gut–brain Interactions. Replacing the 

conventional focus on individual brain regions and cell types in the gut, this integrative 

model posits reciprocal interactions between brain networks (brain connectome) and 

networks made up of multiple cells in the gut, including the gut microbiota (gut 

connectome). Gut-to-brain communication is mediated by neural, endocrine and 

inflammatory pathways, while brain-to-gut communication relies mainly on autonomic 

nervous system output to the gut. Modified with permission from Enck et al.14
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Figure 2. 
Brain networks involved in centrai processing and modulation of visceral pain. Shown are 

the default mode network (DMN) and four task-related brain networks that have been 

described in the literature, for which structural and functional alterations and correlations 

with clinical and behavioural measures have been reported in IBS subjects. Correlations of 

the listed clinical and behavioural measures have been reported for the salience network,
435065145146 sensorimotor network,46100147 emotional arousal network,404547145147 central 

executive network,43 central autonomic network434547 and DMN.146 Arrows indicate: (A) 

shift of activity from the DMN to the task-related networks in response to input from the 

salience network; (B) switching between DMN and central executive network depending on 

input from the salience network; (C) engagement of emotional arousal network in response 

to central executive network activation; (D) engagement of central autonomic network in 

response to emotional arousal network activation; (E) central autonomic network activation 

with output in the form of descending pain modulation and autonomic nervous system 

activity to GI tract; (F) ascending viscerosensory signals from gut to sensorimotor network; 

and (G) assessment of information from sensorimotor network by salience network. The 

functions of these networks are described in detail in the text. Modified with permission 

from Mayer et al.9
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Figure 3. 
Effect of the HTR3A polymorphism c. −42C>T on amygdala reactivity to emotional and 

non-emotional stimuli. C/C genotype subjects displayed greater amygdala responses during 

an emotion matching and form matching task, suggesting a role of this gene polymorphism 

in influencing the emotional response to different laboratory tasks. With permission from 

Kilpatrick et al.49
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Figure 4. 
Reduced neurokinin-1 receptor binding in IBD. Whole-brain voxel-wise statistical 

parametric mapping analysis shows regions with lower levels of neurokinin-1 receptor 

binding in several brain regions in subjects with IBD (A) and patients with IBS (B), relative 

to healthy controls (voxel extent threshold p<0.001; cluster extent threshold >20). With 

permission from Jarcho et al.60
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Figure 5. 
Schematic of workflow from multimodal brain image acquisition to multiomics integration 

of brain and metadata. Acquisition of structural, anatomical (DTI), functional (resting state 

oscillations) and metabolic (MR spectroscopy, not shown) is followed by image processing 

and parcellation into multiple regions of interest (ROIs). These parcellated data undergo 

multiomics integration of different image modalities and clinical, behavioural and non-brain 

metadata using machine learning approaches. Such data-driven analysis approaches are 

expected to reveal distinct patters of brain-gut interactions. DTI, diffusion tensor imaging.
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Figure 6. 
Effect of a CRF-R1 antagonist on amygdala response and emotional arousal circuit. (A). 

Error plot showing standard mean errors for beta contrasts (threat – safe) following placebo 

(PLA) versus a 20 mg or a 200 mg dose of the CRF-R1 antagonist GW876008 for the left 

locus coeruleus complex in patients with IBS and healthy controls (HCs) during an 

experimental pain threat. Results show a dose-dependent reduction in the threat-induced 

amygdala response by the CRF-R1 antagonist. (B). Path coefficients for the effective 

connectivity analysis of an emotional-arousal circuit during a pain threat following placebo 

versus high dose of the CRF-R1 antagonist (200 mg GW876008) In healthy controls and 

IBS subjects. Significantly different parameter estimates are shown by green arrows, while 

those not significantly different are shown in black. With permission from Hubbard et al.104 

alNS, anterior insula; aMCC, anterior midclngulate cortex; AMYG, amygdala; HPC, 

hippocampus; HT, hypothalamus; LCC, locus coeruleus complex; OFC, orbitomedial 

prefrontal cortex; sgACC, subgenual anterior cingulate cortex.
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Table 2

Brain imagina modalities

Imaging modality Description

Positron emission tomography Measures regional glucose utilisation, cerebral blood flow (both measures of regional brain activity) and 
receptor occupancy.

Arterial spin labelling Cerebral blood flow.

Electroencephalogram Cerebral electrical activity.

Magnetoencephalography Measures magnetic fields produced by electrical activity of the brain.

Magnetic resonance spectroscopy Measures brain concentration of brain metabolites and neurotransmitters.

Structural MRI Provides high spatial resolution and soft tissue contrasts to measure brain morphometry.

Functional MRI Measures brain activity by detecting changes in blood oxygenation and flow during rest or an evoked task.

Diffusion tensor imaging Assesses the microstructure of white matter and anatomical connectivity and integrity.
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