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ABSTRACT 

Prostate cancer is the most commonly diagnosed cancer in men worldwide. Early 

diagnosis of the disease provides better treatment options for these patients. Magnetic 

resonance imaging (MRI) provides an overall assessment of prostate disease. 

Quantitative metrics (radiomics) from the MRI provide a better evaluation of the tumor 

and have been shown to improve disease detection. Recent studies have demonstrated 

that plasma extracellular vesicle microRNAs (miRNAs) are functionally linked to cancer 

progression, metastasis, and aggressiveness. In our study, we analyzed a matched 

cohort with baseline blood plasma and MRI to access tumor morphology using imaging-

based radiomics and cellular characteristics using miRNAs-based transcriptomics. Our 

findings indicate that the univariate feature-based model with the highest Youden’s index 

achieved average areas under the receiver operating characteristic curve (AUC) of 0.76, 

0.82, and 0.84 for miRNA, MR-T2W, and MR-ADC features, respectively, in identifying 

clinically aggressive (Gleason grade) disease. The multivariable feature-based model 

demonstrated an average AUC of 0.88 and 0.95 using combinations of miRNA markers 

with imaging features in MR-ADC and MR- T2W, respectively. Our study demonstrates 

combining miRNA markers with MRI-based radiomics improves predictability of clinically 

aggressive prostate cancer.  
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INTRODUCTION  

Prostate cancer (PCa) is the second most common cause of cancer mortality among men 

worldwide and represents a significant health burden1. PCa is a heterogeneous disease 

that can manifest as either a low-risk, indolent tumor; about 42-66% of patients are 

estimated to be indolent Pca2 or as a high-risk, aggressive tumor that may eventually 

metastasize and become lethal if untreated. The widespread adoption of serum-based 

prostate-specific antigen (PSA) tests has significantly improved early detection of PCa3. 

However, the PSA test lacks specificity, which has led to a higher rate of false detection 

of tumors4, 5. Most localized PCa patients with higher Gleason grade tend to prophetically 

obtain radical prostatectomy (RP) as a curative option. In some of these patients, the 

disease progresses to present as biochemical recurrence (BCR) with an increased risk 

of metastasis6-9. It becomes critical to have reliable biomarkers capable of diagnosing 

clinically significant diseases early and can distinguish disease progression, which will 

greatly improve patient outcomes10.  

Due to its ability to assess the whole prostate gland, magnetic resonance imaging (MRI) 

has been adopted as the primary modality to clinically stage prostate disease11. The 

prostate imaging reporting and data system (PIRADS) allows radiological assessment of 

prostate disease, which has improved standardized reporting but still suffers from inter-

reader variability12. Radiomics has evolved as a methodology to characterize tumor 

morphology, and these quantitative metrics can prognosticate disease progression in 

oncological diseases13-15. 

Extracellular vascular microRNAs (miRNAs) are short, non-coding RNA molecules that 

regulate gene expression post-transcriptionally16. They play critical roles in various 

cellular processes and are involved in the pathogenesis of numerous diseases, including 

cancer16, 17. miRNAs are typically found inside cells. However, some are shed into 

circulation in lipid-coated particles known as exosomes18. Circulatory exosomal miRNAs 

have been identified as possible disease biomarkers as they are relatively stable in blood 

and are protected from endogenous RNase activity. Recently, several miRNAs have been 

implicated as crucial regulators in PCa progression, some targeting oncogenes with an 

impact on cancer proliferation19-22.  These miRNAs have been shown to target the most 
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common oncogene pathways like the mTOR pathway23 and cell cycle regulation24, 25. 

These findings underscore the diverse roles of miRNAs in PCa pathogenesis and 

therapeutic responses.  

In this study, we obtained radiomic characterization of abnormal regions using baseline 

biparmetric MRI. We also quantified the exosomal miRNAs in blood plasma in the same 

cohort of patients. In combination, we showed that these non-invasive complementary 

assessments (imaging, miRNAs) can predict clinically significant prostate disease at the 

patient level. We also outline the role of multi-omic features using biparametric MRI (MR-

T2w, MR-ADC) features and blood plasma (miRNAs) to provide improved predictability 

and allow better reproducibility across patients.  

 

MATERIAL AND METHODS 

Patient Cohort and Plasma Sample Preparation   

The patient cohort for the study was retrospectively obtained from The Moffitt Cancer 

Center. Patients were enrolled in the institutional research protocol (Total Cancer Care), 

which waived additional informed consent for the research study. Our retrospective 

research protocol allows access to the presented study, approved by the Moffitt Cancer 

Center/University of South Florida’s Institutional Review Board (IRB). Diagnostic 

multiparametric Magnetic resonance imaging (MRI) was obtained before treatment or 

biopsy. We selected patients who had prostate MRIs for this study to get the best 

characterization of the gland region. The patients clinical record and pathological 

assessment of the biopsy specimen were obtained from the medical record.   

Blood samples (5-10 mL) were collected in EDTA K2 vacutainers from patients diagnosed 

with PCa (n=48), prior to treatment. Plasma samples were processed by initial 

centrifugation at 1300× g for 10 minutes at room temperature (RT). The resulting plasma 

was then transferred to a fresh 1.5 mL centrifuge tube and subjected to a second 

centrifugation step at 5000× g for 10 minutes at RT to obtain platelet-poor plasma. 

Aliquots of 250 µL from the processed plasma were quickly preserved at -80°C until 
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subsequent processing for exosome isolation. We formed patient sub-cohorts with 

following groups: MR imaging, blood/plasma, matched imaging and blood plasma. 

 

Prostate Lesion delineation  

The multiparametric MR imaging was assessed by our clinical radiologists (JC and TG), 

who provided consensus reading for the most aggressive (pathological grade) disease 

regions, along with glandular boundaries on the prostate MRI (T2W).  The annotations 

were digitally recorded as an RT (radiotherapy format) referenced to T2W and stored on 

our research PACS (MIM software®). The clinical reports (radiology, pathology) were 

available for the clinical radiological assessment. We used bi-parametric MR modalities 

for the study, MR-ADC modality was semi-automatically registered to T2W using 

intensity-based image registration in Matlab® and the image resolution was remapped to 

T2W, used as a reference. 

 

Prostate Imaging and Quantification. 

Baseline bi-parametric MRI on patients with blood specimens were collected before 

treatment for PCa. The imaging cohort was restricted to the patients who followed the 

prostate MR image protocol to have a better characterization of prostate glandular 

anatomy. Our institutional clinical radiologists (JC, TK) reviewed the patient’s imaging 

(T2W, diffusion-weighted imaging or DWI/ Apparent diffusion coefficient or ADC) and 

identified the abnormalities across the prostate glandular anatomy. The abnormal regions 

were digitally recorded spans across the glandular volume (3 Dimensions) in RT 

(radiation therapy) format and stored on our research Picture Archive Communication 

System (PACS) (MIM Software Inc.). Institutional in-house radiomics feature extraction 

(306 features) was used to quantify abnormal regions of interest on the bi-parametric MR 

imaging (T2, ADC), which complies with the recommendations of the Image Biomarkers 

Standardization Initiative (IBSI)26.  The radiomics toolbox has 306 quantitative features 

spanning three major categories (size, shape and texture), that was independently 

extracted in each of the biMRI modalities (MR-T2W, MR-ADC). 
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Plasma Exosome Isolation  

The exosome isolation process began with the thawing of 250 µl plasma aliquots at room 

temperature (RT), followed by their transfer to 1.5 mL microcentrifuge tubes. These tubes 

were then centrifugated at 10,000× g for 15 minutes at 4°C to eliminate large vesicles and 

cellular debris, yielding a supernatant utilized for exosome isolation. The SBI SmartSECTM 

Single for EV IsolationTM (System Biosciences, Palo Alto, CA, USA; cat# SSEC200A-1) 

was employed as a size exclusion chromatography-based approach. The exosomes were 

eluted using phosphate buffer saline (PBS) and stored at -80°C until miRNA extraction. 

The plasma samples were randomized before processing, which will mitigate batch 

effects in our analysis.  

miRNA Extraction 

The extraction of exosome miRNA was conducted using the miRNeasy (Micro) Kit 

(Qiagen, Valencia, CA, USA, cat# 217084). Initially, 200 µL of the exosome sample was 

mixed with 1 mL of QIAzol Lysis Reagent, followed by chloroform addition and 

centrifugation at 12,000 × g for 15 minutes at 4°C to isolate the RNA-containing aqueous 

phase. The extracted RNA underwent purification using the RNeasy Mini Elute spin 

column, involving ethanol washes and specific buffers, and elution with 15 µl of RNase-

free water. The concentration of RNA was measured using the QuantiFluor® RNA 

System (Promega, Madison, WI, USA, Cat#E3310) with Quantus equipment, and the 

eluted RNA was subsequently stored at -80°C. 

 

Library preparation 

miRNA libraries were generated employing the QIAseq miRNA library kit (Qiagen, 

Valencia, CA, USA cat#331502) with 5 µl of total RNA utilized for library preparation. The 

process involved initial ligation of 3’ and 5’ adapters to the miRNAs. Complementary DNA 

(cDNA) libraries were then constructed via reverse transcription, followed by 22 cycles of 

PCR amplification and subsequent cleanup of cDNA using QMN beads. The 
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concentration of the prepared libraries was quantified using the Qubit 2.0 Fluorometer 

with the Qubit™ dsDNA Quantification Assay Kits (Thermo Fisher Scientific, Middletown, 

VA, USA, cat#Q32851). Additionally, library quality was assessed using the Agilent High 

Sensitivity DS1000 method and the Agilent 2200 TapeStation (Agilent, Santa Clara, CA, 

USA, cat#5067-5585). Subsequently, libraries were pooled in an equimolar ratio based 

on their molarity, and the weight-to-moles conversion ratio for nucleic acids was 

determined. 

miRNA-seq and Data Analysis  

The miRNA-seq procedure began with pooling 20 to 24 libraries, following the guidelines 

outlined in the NextSeq System - Denature and Dilute Libraries Guide. To ensure quality 

control, 1% PhiX Control v3 was incorporated into all pools as an internal standard. 

Single-read sequencing was performed with a 75 bp read length using the NextSeq 500 

Sequencing System and the NextSeq 500/550 High Output v2.5 kit (75 cycles) (Illumina, 

San Diego, CA, USA cat#20024906).  

Prior to alignment, the sequencing data’s quality control (QC) was executed using FastQC 

(version 0.11.9). Subsequently, adaptor removal was carried out using cutadapt (version 

3.3). The adapter-trimmed small RNA sequencing reads were then mapped against the 

miRBase database (version 21) utilizing the DNAStar tool (version 3.2). All statistical 

analyses were conducted within the R environment (version R4.0.3). 

Biological Pathway Enrichment related to miRNAs 

Regulatory targets and functional annotations of microRNAs were identified using 

TargetScan 27 and miRDB 28. The Database for Annotation Visualization, and Integrated 

Discovery (DAVID V 6.7) was used to identify functional biological pathways for top 

miRNAs identified by our analysis. Furthermore, miRanda software was utilized for target 

prediction of the putative novel microRNA sequences 29, 30. 

Redundancy reduction and Statistical methods 

Coefficient of discrimination (R2) between the features was computed to quantify 

dependency across the patient samples in our cohort. the metric (R2) was iteratively 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.24312491doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.23.24312491
http://creativecommons.org/licenses/by-nd/4.0/


computed between all possible features and highly dependent features (R2 ≥ 0.99) were 

flagged.  In this dependent group, a representative feature with the highest variability 

across the patient population was selected, and others were removed. This process was 

repeated across each sub-cohort and modalities (miRNA, MR-T2W, MR-ADC)31. The 

process allowed forming a feature set that was uncorrelated (see Table 1). The level of 

dependency threshold needs to be balanced between removing correlated features and 

leaving behind those with information.  

a logistic regression-based classifier model in univariate and multivariable (up to 

three dimensions) was then built using uncorrelated features identified in our cohorts. All 

possible combinations of features were evaluated to find the best feature combination in 

each cohort, and this was repeated independently across the modalities. In our study, 

over 4.45 million possible pairs in the miRNA’s cohort, over 708 thousand pairs in the 

MR-T2W, and 971 thousand in the MR-ADC cohort were evaluated, respectively. The 

feature pair was sorted based on hold-out (80/20, train/test) test classification accuracy, 

and estimates were randomly repeated (over 200 times).  Combination mixed multimodal 

features were then formed by selecting the top candidates from each combination (1, 2, 

and 3 pairs).  Sensitivity, specificity, positive predictive value, negative predictive value, 

and area under receiver operator characteristics were estimated using cross-validation 

method with average estimates reported. The feature-based models were ranked based 

on Youden’s index (Sensitivity + Specificity -1) and receiver operator characteristics area 

under the curve (ROC AUC or AUC) 32. A hold-out cross validation approach (80% train, 

20% test) was used to estimate the model performance, which was averaged over 

multiple repeats (over 200), and ensemble test statistics reported.  

 

RESULTS 

1. Patient characteristics.   

The study included 48 primary PCa patients with pretreatment blood plasma samples and 

MR imaging using mixed protocol (pelvic, prostate, abdomen).  Of the samples, we 

converged on 13 patients (18 biopsies) who had prostate MR imaging that followed 
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standardized prostate imaging protocol (see Table 1). We assessed patients imaging in 

each of the bi-parametric modalities (miRNA, MRI-T2/ADC) that were matched with 

plasma-based markers to create subcohorts (miRNA with MR-T2W and miRNA with MR-

ADC). We carried out statistical analysis to identify features that discriminate clinically 

significant PCas defined by Gleason scores (GS≥ 3+4) across these subgroups, 

considering them independently.  

 

2. Modality base classifiers.  

To identify individual miRNAs and image features that were associated with aggressive 

PCa, we first performed correlation analysis and removed correlated features (R2>=0.99) 

across all possible features in a modality (miRNA, n=48; MR-T2W/ADC, n=18 biopsies).  

This step removed 6.8%, 46.7%, and 40.8% of the metrics, leaving us with 300, 163, and 

181 uncorrelated features for miRNA, MR-T2W, and MR-ADC, modalities respectively.  

While in the matched cohort (imaging & miRNA, n=13), we had 285 (removed 11.4%), 

143 (removed 53.2%), and 166 (removed 40.8%) uncorrelated features for miRNA, MR-

T2W, MR-ADC modalities, respectively. We then performed non-parametric test and 

identified individual features that were statistically significant across indolent and clinically 

significant patients (Table 1 and Figure 1).  We then built classifier models using logistic 

regression with univariate and multi-variable (2 and 3) features. Predictive ability of these 

models was assessed based on area under the receiver operator characteristics (AUC) 

using a cross-validation (hold out) approach. For univariate feature-based model using 

either miRNA or imaging modalities, we found that miRNAs (R193: miR-151a-5p, R46: 

miR-93-5p) based model had an average AUC in the range of 0.66-0.76. MR-T2W 

radiomic features (Laws-features) had an average AUC range from 0.78 to 0.87, while 

MR-ADC radiomic features (Co-Occurrence, volume, wavelet) showed an average AUC 

range from 0.78 to 0.84 (see Table 2).  An example univariate feature-based classifiers 

are shown in Figure 3. 

 

3. Multimodal classifier model. 

To evaluate if combination of multi-modality features could improve performance of 

detecting aggressive disease, we built multi-modal predictors by combining miRNAs and 
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bi-parametric MR features (MR-T2W / ADC) from respective modalities in the matched 

cohort (n=13). In multimodal feature analysis, we selected the best univariate miRNA’s 

that had functional relevance to prostate oncology. Using miRNA and MR-T2W radiomics, 

univariate features had an average AUC of 0.65 to 0.71 and 0.77 to 0.90, respectively. 

Combination of these two features (miRNA & MR-T2W radiomics) had an average AUC 

of 0.73 to 0.86. Using two feature-based models (miRNA: miR-7704, miR-151a-5p, T2W: 

COV, Co-Occurrence) from each of the modalities, seems to moderately complement 

AUC (average range from 0.79 to 0.96). While using a single feature from miRNA and 

MR-ADC modalities, a combination (miRNA & MR-ADC) had an average AUC range from 

0.73 to 0.75, 0.87 to 0.90 and 0.77 to 0.88, respectively. While using two features from 

each of the modalities (miRNA: miR-151a-5p, miR-338-3p & MR-ADC: Co-occurrence, 

Laws features) improved AUC (average range from 0.76 to 0.88) in comparison on using 

them individually. Importantly, the sensitivity/specificity was higher compared to individual 

modality-based models (see Table 3 and Figure 4).  

 

 

4. Gene Ontology and regulatory pathways 

After identifying top miRNAs (miR-151a-5p, miR-338-3p, miR-7704, miR-93-5p, and miR-

190b-5p) that were predictors of aggressive PCa we used these markers to link regulatory 

pathways associated with their predicted targets using the following curated databases: 

TargetScan (targetscan.org) and miRDB target computational prediction software. We 

also evaluated other open-source pathway miner tools (KEGG33, PANTHER34, and  

Database for Annotation, Visualization, and Integrated Discovery, DAVID35). The data-

mining analysis identified the most relevant pathways using miRNAs as seeds that were 

most common between TargetScan and miRDB. We found a significant enrichment in the 

following gene-pathway associations: Pathways in cancer, PI3K, Akt signaling, FoxO 

signaling and Wnt signaling pathway genes, reported by PANTHER (See Figure 5A). In 

addition, ras signaling, angiogenesis, FGF signaling, wnt signaling, and PDGF (Platelet-

derived growth factor) signaling pathway were the most significant pathways obtained 

using the KEGG pathway (see Figure 5B). 
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DISCUSSION 

PCa diagnosis and treatment strategies have been improved in the last two 

decades36-39. Despite these changes, early detection of clinically significant cancers 

remains challenging39.Since the use of PSA-based tests has resulted in a high level of 

false diagnosis3, 40,genomic-based technologies are believed to provide a promising tool 

in identifying aggressive disease37, 41. Clinical use of genomic markers to assess 

metastasis of the disease has improved the management of the disease42. For example, 

the use of extracellular miRNAs has evolved in the assay development for disease 

detection, including PCa25, 43. Prior studies have shown radiomic features related to 

histogram intensity and cooccurrences were predictive of aggressive prostate disease, 

and these metrics have been related to biochemical recurrence44, 45.  Recent work has 

implicated radiomic metrics related to first-order statistics, texture (laws features, 

Haralick/cooccurrence) features extracted in MR-T2w, and radiomics features related to 

texture, edge descriptors (Laws, gradient, Sobel) computed in MR-ADC were associated 

to aggressive disease grades45.   In comparison, our study finds several imaging features 

related to intensity and texture-based features (co-occurrence, wavelets, Laws) in 

T2W/ADC modalities were predictive of aggressive prostate disease (see Tables 2 &3).  

Numerous studies have demonstrated that specific miRNAs are differentially expressed 

in PCa, making them valuable for early diagnosis and disease monitoring. Our study, 

utilizing a univariate feature-based model with miRNA and imaging modalities, identified 

miR-151a-5p and miR-93-5p as having the highest AUC (see Table 2). Other possible 

combinations of miRNA and imaging features are deferred to supplemental section (See 

Supp. Table ST.1). miR-151a-5p is differentially expressed in PCa, indicating its role in 

tumor aggressiveness46. This miRNA is well-known as an oncogene, particularly in 

colorectal cancer, and is also overexpressed in lung cancer and lymphoblastic leukemia47-

49. Our KEGG analysis predicted that miR-151a-5p indirectly targets the Neuregulin 1 

(NRG1) gene through P53 and c-Myc. Recent studies have also shown that the NRG1 

gene promotes antiandrogen resistance in PCa50. The consistent dysregulation of miR-
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151a-5p across various cancers highlights its universal role in oncogenic processes. The 

overexpression of miR-93-5p has been linked to increased migration and invasion in 

squamous cell carcinoma of the head and neck, suggesting an oncogenic role51, 52. While 

the exact mechanism of action needs further investigation, elevated levels of miR-93-5p 

have also been associated with epithelial-mesenchymal transition (EMT), radiotherapy 

response, and poor prognosis52-54. Additionally, miR-93-5p has been shown to be 

upregulated in oral cancer55, 56. These findings reinforce the role of miRNAs in regulating 

PCa, a foundation for further research into their mechanistic roles and therapeutic 

potential (See Table 4). 

In our multi-modal miRNA and bi-parametric MR feature-based analysis, we identified 

miR-7704, miR-3136-3p, miR-151a-5p, and miR-338-3p as having high AUC values. 

Based on other studies, miR-7704 emerges as a potential target for aggressive PCa, 

consistent with its reported roles in ovarian and breast cancers57, 58. In ovarian cancer, 

miR-7704 is part of a feedback loop with IL2RB and AKT, influencing tumorigenesis and 

chemoresistance57. This suggests that miR-7704 may play a critical role in cancer 

progression and underscores its potential as a therapeutic target and prognostic 

biomarker across different cancer types. In another study, miR-3136-3p was significantly 

upregulated in high-grade cervical intraepithelial neoplasia in liquid biopsy samples59. 

miR-338-3p is downregulated in several cancers, including gastric, ovarian, and breast 

cancers60-63. In PCa cells, overexpression of the miR-338-3p suppresses cell migration 

and invasion64-66. These miRNA with high AUC in multi-modal miRNA and bi-parametric 

MR feature-based analysis, indicating their strong diagnostic potential for aggressive 

prostate cancer (PCa). These miRNAs may serve as valuable therapeutic targets and 

prognostic biomarkers across various cancer types (see Table 3 & 4 and Figures 3&4). 

Although single omics analysis has shown promising in identifying aggressive disease, 

the PCa is known to be highly heterogenous. One omics data may not capture the 

complete landscape of PCa biology (add some references). It is believed that multi-omic 

approach can increase sensitivity of biomarkers. Therefore, we evaluated the multi-omic 

approach in a matched cohort of pre-treatment blood plasma and MR imaging to identify 

biomarkers in localized PCa patients. Our data showed that several miRNA and image-
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based features are differentially expressed in clinically significant PCa. By combining 

circulating extracellular transcriptomes and MRI-based radiomes, our multi-omic model 

improved performance in distinguishing aggressive disease. The integration of these 

features significantly enhances the accuracy of predicting clinically significant PCa, 

demonstrating the value of a mixed-modality approach in assessing disease 

aggressiveness. 

Limitations  

Our study has relatively small sample size, which may affect the generalizability of the 

findings. Additionally, the reliance on a single institutional cohort may introduce bias and 

limits the racial cross-sectional nature of the data that could add to biases. We used 

several mitigation strategies that include cross validation approach. The study also did 

not account for potential confounding factors such as providers, patient racial/treatment 

history and genetic variability. Further research with larger, diverse cohorts and 

longitudinal data is necessary to validate and expand upon these results. 

CONCLUSION 

Our study findings highlight the significant roles of circulating transcriptomics and 

radiomics in identifying aggressive PCa. By outlining specific miRNAs and MR imaging 

features, the study enhances our understanding of PCa pathogenesis through improved 

assessment of morphological characteristics. The combination of prostate miRNAs with 

imaging metrics offers a non-invasive method for assessing aggressive disease. 

However, validation of these findings in secondary, independent studies is essential.  
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Table Legends 

Table 1. Feature that are non-dependent across fluid and imaging modalities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Modalities Patients 
Samples 
(Gleason 
score) 

Number 
of 
Features 

Uncorrelate
d Features  
(Rsq ≥ 0.99) 

Number of Significant 
Features  
(Wilcoxon, p ≤0.05) 

3+3 Vs 
≥3+4 

3+3 Vs ≥ 4+3 

Individual Modalities 

1 miRNA 48 
(3+3: 21 
3+4: 14 
≥4+3: 13) 
 

322 300 27 28 

2 Radiomics on 
MRI:T2W 

18 
(3+3: 11 
 3+4: 5 
≥4+3: 2) 

306 163 13 N/A 

3 Radiomics on 
MRI:ADC 

306 181 5 

Matched Samples (across modalities) 

1 miRNA 13 
(3+3: 7 
3+4: 4 
≥4+3: 2) 

322 285 5 N/A 

2 Radiomics on 
MRI T2W 

306 143 4 

3 Radiomics: on 
MRI:ADC 

306 166 3 
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Table 2. Features that discriminate clinically significant prostate cancer from indolent 

(3+3) using independent features in these modalities; a) miRNA, in 3+3 Vs  ≥3+4 (n=48), 

b) miRNA, in 3+3 Vs  ≥4+3 (n=34), c) MRI T2 W radiomics (n=18) d) MRI ADC radiomics 

(n=18). 

(a)     miRNA – Univariate (n=48)  (GS 3+3 Vs ≥3+4) 

  miRNA (1-marker) 
E[Sensitivity]/ E[PPV]/ 

E[NPV] 
E[AUC], CI , Std 

E[Specificity] 

1 miR-151a-5p 0.798/0.68 0.756/0.726 
0.76[0.388,0.956],0
.162 

2 miR-338-3p 0.807/0.573 0.696/0.709 
0.699[0.213,0.956],
0.201 

3 miR-93-5p 0.775/0.547 0.692/0.67 
0.767[0.457,0.971],
0.15 

4 miR-208a-5p 0.833/0.482 0.671/0.686 
0.658[0.2,0.95],0.1
94 

5 miR-190a-5p 0.842/0.469 0.654/0.687 
0.702[0.392,0.968],
0.173 

(b)     miRNA – Univariate (n=34)   (GS 3+3 Vs ≥4+3) 

  miRNA (1-marker) 
E[Sensitivity]/ E[PPV]/ 

E[NPV] 
E[AUC], CI , Std 

E[Specificity] 

1 miR-93-5p 0.684/0.857 0.762/0.798 
0.821[0.3,0.95],0.2
08 

2 miR-8072 0.631/0.855 0.74/0.767 
0.776[0.05,0.95],0.
237 

3 miR-328-3p 0.589/0.861 0.727/0.73 
0.798[0.417,0.958],
0.178 

4 miR-1469 0.574/0.845 0.652/0.772 
0.772[0.333,0.958],
0.183 

5 miR-5583-5p 0.539/0.821 0.645/0.728 
0.786[0.25,0.958],0
.202 

c) Univariate Imaging T2w (n=18) (GS 3+3 Vs ≥3+4) 

  T2 (Radiomics) 
E[Sensitivity]/ E[PPV]/ 

E[NPV] 
E[AUC], CI , Std 

E[Specificity] 

1 
3D_Laws_features_L5_E5_S
5 

0.588/0.882 0.627/0.748 
0.83[0.05,0.95],0.2
67 

2 
3D_Laws_features_L5_E5_W
5 

0.522/0.897 0.645/0.713 
0.871[0.325,0.963],
0.192 

3 
3D_Laws_features_L5_S5_S
5 

0.575/0.802 0.587/0.712 
0.827[0.05,0.95],0.
264 
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4 
3D_Laws_features_L5_W5_
W5 

0.432/0.925 0.565/0.688 
0.853[0.2,0.95],0.2
38 

5 
3D_Laws_features_E5_E5_L
5 

0.448/0.892 0.557/0.699 
0.778[0.05,0.95],0.
312 

d) Univariate Imaging ADC (n=18) (GS 3+3 Vs ≥3+4) 

  ADC (Radiomics) 
E[Sensitivity]/ E[PPV]/ 

E[NPV] 
E[AUC], CI , Std 

E[Specificity] 

1 
Volume_density_minimum_vo
lume_enclosing_ellipsoid 

0.72/0.832 0.702/0.808 
0.844[0.367,0.967],
0.208 

2 
Maximum_histogram_gradient
_grey_level 

0.413/1 0.61/0.708 
0.777[0.525,0.975],
0.174 

3 
GLSZM_Small_zone_high_gr
ey_level_emphasis 

0.582/0.81 0.663/0.693 
0.818[0.3,0.95],0.2
34 

4 
avgCoocurrence_Difference_
entropy 

0.605/0.758 0.546/0.759 
0.801[0.05,0.95],0.
263 

5 3D_Wavelet_P1_L2_C12 0.648/0.71 0.576/0.714 
0.817[0.325,0.963],
0.22 
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Table 3. Multimodal features based (miRNA and imaging) model to discriminate clinically 

significant prostate cancer (≥3+4) from indolent (3+3) in a matched cohort of patients 

(n=13). (A1&2) extracellular exosomal miRNA with MRI T2W. (B-1&2) extracellular 

exosomal miRNA with MRI ADC features. 

 

(A1) Combined: miRNA + Img (T2W):   (GS 3+3 Vs ≥3+4): 1-dimension 

  miRNA Imaging (T2W) 

                        E[AUC], CI , Std 

miRNA Img: T2W 
Combined 
(miRNA, 
T2W) 

1 
miR-
151a-
5p 

avgCoocurrence_Joint_MAX 
0.713[0.05
,0.95],0.34
7 

0.77[0.05,0.
95],0.358 

0.73[0.05,0.
95],0.344 

2 
miR-
7704 

Statistical_Coefficient_of_variance 
0.653[0.05
,0.95],0.37
1 

0.9[0.4,0.95
],0.225 

0.858[0.4,0.
95],0.223 

(A2) Combined: miRNA + Img (T2W):   (GS 3+3 Vs ≥3+4): 2-dimension 

  miRNA Imaging (T2W) 

                        E[AUC], CI , Std 

miRNA Img: T2W 
Combined 
(miRNA, 
T2W) 

1 

miR-
151a-
5p;M27
5:miR-
6717-
5p; 

Volume_at_intensity_fraction_10;F8
6:Weighted_CoM_x_(mm); 

0.978[0.7,
0.95],0.11
8 

0.948[0.525
,0.975],0.13
4 

0.95[0.2,0.9
5],0.178 

2 

miR-
7704;M
189:mi
R-
3136-
3p; 

avgCoocurrence_Autocorrelation;F3
01:3D_Wavelet_P1_L2_C12; 

0.633[0.05
,0.95],0.36
8 

0.963[0.525
,0.975],0.12 

0.958[0.525
,0.975],0.12
8 

3 

miR-
151a-
5p;M25
2:miR-
338-3p; 

GLSZM_High_grey_level_zone_em
phasis;F301:3D_Wavelet_P1_L2_C
12; 

0.573[0.05
,0.95],0.40
6 

0.898[0.05,
0.95],0.219 

0.785[0.4,0.
95],0.238 

 

(B1) Combined: miRNA + Img (ADC):   (GS 3+3 Vs ≥3+4): 1-dimension  

  miRNA Imaging (ADC)                         E[AUC], CI , Std  
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miRNA Img: ADC 
Combined 
(miRNA, 
ADC) 

 

1 
miR-
338-3p 

avgCoocurrence_Difference_entrop
y 

0.75[0.05,
0.95],0.31
4 

0.865[0.05,
0.95],0.29 

0.88[0.475,
0.963],0.21
2 

 

2 
miR-
151a-
5p 

Volume_density_minimum_volume_
enclosing_ellipsoid 

0.733[0.05
,0.95],0.31
8 

0.895[0.2,0.
95],0.241 

0.768[0.05,
0.95],0.312 

 

(B2) Combined: miRNA + Img (ADC):   (GS 3+3 Vs ≥3+4): 2-dimension  

  
miRNA 
(2-dim) 

Imaging (ADC) – (2-dim) 

                        E[AUC], CI , Std  

miRNA Img: ADC 
Combined 
(miRNA, 
ADC) 

 

1 

miR-
190b-
5p; 

avgCoocurrence_Difference_entrop
y; 

0.843[0.05
,0.95],0.27
2 

0.88[0.05,0.
95],0.276 

0.88[0.4,0.9
5],0.237 

 

miR-
106b-
3p 

avg_3D_LGRE_(Low_grey_level_ru
n_emphasis) 

 

2 

miR-
151a-
5p; 

3D_Laws_features_E5_E5_W5; 

0.6[0.05,0.
95],0.381 

0.898[0.05,
0.95],0.256 

0.76[0.2,0.9
5],0.261 

 

miR-
338-3p 

3D_Laws_features_E5_R5_E5  
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Table 4.  Predictive biomarkers relationship to biological pathways  

Pathways 

 Biomarkers Target Gene Biological Function  

miRNA’s 

1 
 

miR-151a-5p,   
 
miR-338-3p 
 
 
 
 
 

Neuregulin 1 
(c-Myc, p53) 

Promotes proliferation and metastasis  
 
Inhibits Proliferation and Promotes 
Apoptosis 

2 miR-93-5p 
 
miR-208a-5p 
 
miR-190a-5p 
 
 

TGF-
β1/Smad3 
 
 
N/A 
 
PHLPP1 

Suppressing proliferation and invasion 
of PCa cells67  
 
N/A 
 
Promoting migration and invasion68  

Radiomics (MRI) 

1 T2W: 
Volume_at_intensity_fractio
n; 
Weighted_CoM; 
avgCoocurrence_Autocorrel
ation; 
3D_Wavelet_P1_L2_C12; 
GLSZM_High_grey_level_z
one_emphasis; 

Texture, 
Morphology 
related to 
hetrogenity 

Disease heterogeneity, proliferation  

  
 
AvgCoocurrence-
Difference_entropy;  
Volume_density_minimum; 
Volume_enclosing_ellipsoid 

Texture, 
shape, density 

Disease proliferation 
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Figure Legends:  

Figure 1. Process flow to identify discriminate features from multimodalities, plasma-

based miRNA and MR image based radiomics (T2W, ADC) to discriminate aggressive 

grade prostate disease.  

Figure 2. Feature distribution that differentiates clinically significant (>=3+4) from indolent 

(3+3) for a) individual cohorts (miRNA, MR T2w, MR ADC), b) combined cohort (miRNA, 

MR T2w, MR ADC).   

Figure 3. Multi-feature scatter plot to show spread of aggressive from indolent grade 

prostate cancer along with discrimination boundary A) using miRNA-based features (miR-

93-5p, miR-151a-5p) b) MR-T2w features (3-features). 

Figure 4. Receiver operating characteristic curve (ROC) in using top predictors to 

discriminate clinically significant (Gleason 3+4) from indolent grade prostate cancers A) 

miRNA (hsa-miR-7704) with T2W radiomics (univariate), C) miRNA (has-miR-338-3p) 

with ADC radiomics (univariate). 

Figure 5. Regulators pathways enriched for miRNAs (miR-151a-5p, miR-338-3p, miR-

7704, miR-93-5p, miR-190b-5p), that was identified in our predictive analysis. Pathway 

tools using; a) GO functional pathway (Pather.org), b) p52 pathway enriched, seeded with 

two miRNAs (miR-151a-5p, miR-338-3p) using (GeneGo®). 
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