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Abstract

To control the ongoing coronavirus disease‐2019 (COVID‐19) pandemic,

CoronaVac (Sinovac), an inactivated vaccine, has been granted emergency use

authorization by many countries. However, the underlying mechanisms of the

inactivated COVID‐19 vaccine‐induced immune response remain unclear, and

little is known about its features compared to (Severe acute respiratory syndrome

coronavirus 2) SARS‐CoV‐2 infection. Here, we implemented single‐cell RNA

sequencing (scRNA‐seq) to profile longitudinally collected PBMCs (peripheral

blood mononuclear cells) in six individuals immunized with CoronaVac and

compared these to the profiles of COVID‐19 infected patients from a Single Cell

Consortium. Both inactivated vaccines and SARS‐CoV‐2 infection altered the

proportion of different immune cell types, caused B cell activation and

differentiation, and induced the expression of genes associated with antibody

production in the plasma. The inactivated vaccine and SARS‐COV‐2 infection also

caused alterations in peripheral immune activity such as interferon response,

inflammatory cytokine expression, innate immune cell apoptosis and migration,

effector T cell exhaustion and cytotoxicity, however, the magnitude of change

was greater in COVID‐19 patients, especially those with severe disease, than in
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immunized individuals. Further analyses revealed a distinct peripheral immune

cell phenotype associated with CoronaVac immunization (HLA class II upregula-

tion and IL21R upregulation in naïve B cells) versus SARS‐CoV‐2 infection (HLA

class II downregulation and IL21R downregulation in naïve B cells from severe

disease individuals). There were also differences in the expression of important

genes associated with proinflammatory cytokines and thrombosis. In conclusion,

this study provides a single‐cell atlas of the systemic immune response to

CoronaVac immunization and revealed distinct immune responses between

inactivated vaccines and SARS‐CoV‐2 infection.
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1 | INTRODUCTION

COVID‐19 (coronavirus disease‐2019), caused by SARS‐CoV‐2

(severe acute respiratory syndrome coronavirus 2), is an

unprecedented threat to global public health and has rapidly spread

throughout the world.1 COVID‐19 has led to high mortality and

morbidity worldwide, and as of June 11, 2022, 552 504 629

laboratory‐confirmed cases of SARS‐CoV‐2 infection have been

reported, resulting in 6 347 816 deaths (WHO COVID‐19 Dash-

board). As there are no effective drugs available at this time against

COVID‐19, safe and effective COVID‐19 vaccines are urgently

required to control the pandemic and reduce the global burden of

SARS‐CoV‐2.2

Various candidate vaccines including inactivated viral vac-

cines, live attenuated vaccines, nucleic acid vaccines, viral‐

vectored vaccines, and protein or peptide subunit vaccines are

being rapidly developed, tested, and granted approval for

emergency use.3 Each vaccine has advantages and disadvantages

and these have been reviewed elsewhere.4,5 Among these

candidate vaccines, the inactivated COVID‐19 vaccines are

among one of the most widely used and well developed vaccines

due to their ease of production and scale‐up, and relatively low

cost. They are produced by growing SARS‐CoV‐2 in cell culture

(e.g., Vero cells), followed by chemical inactivation of the virus.6

Inactivated vaccines present the whole SARS‐COV‐2 virus for

immune recognition, thus the immune responses are likely to

target not only the unique protein (e.g., S protein) of the virus but

also matrix, nucleoprotein and envelope.6 Moreover, the inacti-

vated vaccines exhibit stable expression of conformation‐

dependent antigenic epitopes, and also offer advantages in a

variety of different populations (e.g., those with immune

senescence).7

CoronaVac (initially known as PiCoVacc) from Sinovac, is a

leading Chinese COVID‐19 vaccine and was devised with

β‐propiolactone as an inactivating agent and formulated with

aluminum hydroxide as an adjuvant.8 The inactivated CoronaVac

vaccine is a whole‐virus preparation that is administered in a two‐

dose regimen (at Day 0 and day > 21). Its immunogenicity, safety and

tolerability have been assessed in different populations including

children and adolescents aged 3−17 years old,9 adults aged 18−59,10

and adults aged 60 years and older.11 Within the scope of combating

the SARS‐CoV‐2 pandemic, CoronaVac has been granted an

emergency use authorization by Chinese authorities in July, 2020,5

and a host of others countries such asTurkey, Chile, Brazil, Indonesia,

and so forth.12–15

Currently, the knowledge about the immunity generated by

COVID‐19 vaccines (including the inactivated vaccines) are

limited with researchers understanding less about this than about

immunity to natural SARS‐CoV‐2 infection. Although clinical trial

data have demonstrated that the current COVID‐19 vaccines

approved (including CoronaVac) can elicit immunity with a high

degree of safety, efficacy and tolerability, much remains to be

learned concerning the genetic drivers of COVID‐19 vaccine‐

induced humoral and/or cellular immunity, defining detailed

targets of the immune response at the epitope level, and

characterizing the B and T‐cell receptor repertoires induced by

COVID‐19 vaccines.5 Inactivated vaccines (such as CoronaVac)

have been shown to keep the immunogenicity of the SARS‐CoV‐2

virus, and can elicit an immune response, however whether there

is a distinct immune response landscape between natural SARS‐

CoV‐2 infection and the inactivated COVID‐19 vaccine remains

unclear.

Here, we implemented single‐cell RNA sequencing (scRNA‐seq)

to obtain a comprehensive and unbiased visualization of PBMCs

(Peripheral blood mononuclear cells) from healthy adults immu-

nized with the inactivated COVID‐19 vaccine, CoronaVac, at three

time points: Day 0 (before vaccination), Day 21 after the first dose

and Day 14 after the second dose (Figure 1A). This study provides

a high‐resolution transcriptomic landscape of PBMCs during the

immune response to CoronaVac immunization, which will foster a
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better understanding of the protective immune response gener-

ated by inactivated COVID‐19 vaccines. We also compared this

data to the reported profiles from a Single Cell Consortium for

COVID‐19,16 revealing the distinct immune features between

natural SARS‐CoV‐2 infection and the inactivated COVID‐19

vaccine.

2 | METHODS

2.1 | Volunteer cohort

Three male and three female healthy adults (n = 6) were admitted at

the Sanya People's Hospital and enrolled in the study. Peripheral

F IGURE 1 Study design and overall results of single‐cell transcriptomic profiling of PBMCs isolated from vaccine recipients without
COVID‐19 infection. (A) A schematic diagram of the overall study design. The PBMCs from six recipients, three male and three female adults,
and across three conditions were subjected to scRNA‐seq gene expression profiling, TCR and BCR profiling analyses. The data set was
integrated with a published COVID‐19 scRNA‐seq data set comprised of 64 fresh PBMC samples. (B) Cell populations identified and 2‐D
visualization. The UMAP projection of 180k single cell transcriptomes from NJ (n = 6), FJ (n = 6) and SJ (n = 6) samples, showing the presence of
10 major clusters and 27 smaller clusters with their respective colors. Each dot corresponds to a single cell, colored according to the annotated
major cell type (left panel) or subtype (right panel). (C) Canonical single cell RNA markers were used to label major clusters by cell identity as
expression level on the UMAP plot. Cells are colored according to log transformed and normalized expression levels of 12 genes (CD3D, CD8A,
CD40LG, etc.). (D) Expression distribution of cell identity specific RNA markers of vaccine cohort samples. The rows represent 10 cell clusters
labeled with different colors and the columns represent log transformed gene expression of the RNAs. The distribution of a gene in a cluster is
shown as one small violin plot. (E) Similar to Figure 1B, Cell populations identified and 2‐D visualization of 410k single cell transcriptomes from
Cont (Control), Conv (Convalescence), Mild (Mild), and Seve (Severe) samples from Ren et al. BCR, B cell receptor; PBMCs, peripheral blood
mononuclear cells; scRNA‐seq, single‐cell RNA sequencing; TCR, T cell receptor; UMAP, uniform manifold approximation and projection.
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blood samples were collected at 3 key timepoints (Figure 1A):

prevaccine baseline (timepoint 1, Day 0), 3 weeks following the first

dose (timepoint 2, Day 21), which was also the same day they

received the second dose, and finally, 2 weeks following the second

dose (timepoint 3, Day 35). All six volunteers had matching samples

at 3 time points. This study design allowed us to investigate the

kinetics of the immune responses following both primary and

secondary immunizations.

2.2 | Sample collection

Supporting Information: Table 1 summarizes the characteristics of

individuals assessed in each assay. Full cohort information is

described in Figure 1. The fresh blood samples for each timepoint

immediately underwent PBMCs isolation using standard density

gradient centrifugation. PBMCs are typically employed to assess

immune‐regulatory effects at the single‐cell level. PBMCs were

isolated using HISTOPAQUE‐1077 (Sigma‐Aldrich; 10771) solution

according to the manufacturer's instructions. Briefly, 3ml of fresh

peripheral blood was collected in ethylene diamine tetraacetic acid

anticoagulant tubes and subsequently layered onto HISTOPAQ

UE‐1077. After centrifugation, PBMCs remained at the plasma‐

HISTOPAQUE‐1077 interface and were carefully transferred to a new

tube. Erythrocytes were removed using Red Blood Cell Lysis Solution

(×10) (Miltenyi; 130‐094‐183) and washed twice with ×1 phosphate

buffered solution (PBS) (Gibco; 10010023). The cell pellets were

resuspended in sorting buffer (PBS supplemented with 2% fetal bovine

serum (FBS, Gibco; 10099141)). Cell viability of PBMCs were assessed

using the Countstar cell viability detection kit and showed greater than

90% viability. PBMCs were then used in immunological analysis and cell

encapsulation. The x10 Genomics single‐cell transcriptome platform

was used to generate the 5' gene expression profiles, T cell receptor

(TCR) and B cell receptor (BCR) data. This approach employs a

commercial emulsion‐based microfluidic platform (Chromium x10) that

enables the generation of amplified complementary DNA (cDNA) used

for both the preparation of single cell RNA‐seq libraries and TCR/BCR

target enrichment and sequencing.

2.3 | Single cell RNA library preparation and
sequencing

Cell suspensions were barcoded through the x10 Chromium Single

Cell platform using Chromium Single Cell 5' Library, Gel Bead and

Multiplex Kit, and Chip Kit (x10 Genomics). Single‐cell RNA libraries

were prepared using the Chromium Single Cell 5' Kit v2 (x10

Genomics; PN‐ 1000263), Chromium Single Cell V(D)J Reagent kits

(x10 Genomics, PN‐1000252[TCR], PN‐1000253[BCR]) according to

the manufacturer's instructions. Each sequencing library was gener-

ated with a unique sample index. The libraries were sequenced on the

Illumina Novaseq. 6000 sequencer with a paired‐end 150‐bp (PE150)

reading strategy. With the provided sample sheet, the CellRanger

(v.5.0.0) mkfastq command was used to demultiplex the flow cells'

raw base call files into fastq files.

2.4 | SARS‐CoV‐2‐specific IgM/IgG ELISA and
plasma cytokine detection

The S‐specific IgG/IgM and plasma cytokine detection were detected

according to our previous study.17

2.5 | Quantification and statistical analysis

2.5.1 | scRNA‐seq and data processing

The human reference (v.GRCh38‐3.0.0) was downloaded from the

x10 Genomics official website in March, 2021. Raw and filtered gene

expression matrices were generated for each sample using the

kallisto/bustools (kb v0.24.4) pipeline coupled with human GRCh38.

The kb count command was called to generate single cell feature

counts for each sample by specifying the library name in the

argument. Then the filtered feature, barcode and matrix files

were analyzed in python (v3.8.10) using the anndata (ad) (v0.7.6)

and scanpy (sc) (v1.7.2) packages. Data files of all 18 samples and the

largest data set of Chinese PBMC COVID‐19 infection (64 fresh

PBMC samples from Cell 2021 Zhangzemin) were merged together

by the ad.concat function. Cells and genes were filtered by the

sc.pp.filter_cells and sc.pp.filter_genes function for further analyses.

First, genes expressed at a proportion >0.1% of the cells were

selected. Second, to minimize technical artifacts from low‐quality

cells and potential doublets, cells meeting the following criteria were

filtered out: (1) <1000 or >25000 unique molecular identifiers (UMIs,

representing unique messenger RNA transcripts); (2) <500 or >5000

genes; or (3) >10% UMIs derived from the mitochondrial genes. The

scanpy's external module Scrublet (Wolock et al., 2019) was called

using the sc.external.pp.scrublet function to identify potential

doublets using default parameters. An automatically set threshold

labelled 299 cells with a doubletScore >0.25 as “predicted_doublets”

and were filtered out. After quality control, a total of 585 860 cells

remained. The violin distribution and scatter plot for computed

quality measures including gene counts per cell, UMI counts per cell

and mitochondrial gene percentage are shown in Supporting

Information: Figure 1. The gene expression matrix were normalized

by library size to 10 000 reads per cell by sc.pp.normalize_total

function, so that all cells were comparable in UMI counts. Next, the

normalized counts were natural log transformed (X = log(X + 1)) by

sc.pp.log1p function. The log transformed expression values were

used for downstream analysis. In addition, basic characteristics of the

integrated data set collected from individuals receiving inactivated

COVID‐19 vaccines (CoronaVac) were showed in Supporting

Information: Figure S17.
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2.6 | Batch effect correction and data set
integration

Gene features with high cell‐to‐cell variation in the data were

prioritized using the sc.pp.highly_variable_genes function (Supporting

Information: Figure 1). Briefly, the informative highly‐variable genes

(HVGs) were selected within each sample separately and merged to

select the consensus set of 1500 top‐HVGs. All ribosomal and

mitochondrial genes were removed from HVGs as described

(Cell 2021 Zhangzemin). The HVGs subset matrix extracted from

the full expression matrix was used for downstream integration steps.

Then each gene was scaled to unit variance and zero mean and

clipped when values exceeded 10.

Integration of different datasets was conducted in the order of

dimension reduction by principal component analysis (PCA), batch

effect correction using Harmony algorithm, Fast, sensitive and

accurate integration of single‐cell data with Harmony) and

unsupervised clustering using Louvain algorithm. Specifically, the

main axes of variation was identified using the sc.tl.pca function with

parameter svd_solver = “arpack.” Dimensionality of the datasets was

reduced to 50 PCA components and fed into sc.external.pp.harmo-

ny_integrate function implemented in the python package harmony-

py. The parameter theta was set as 2.5 for sample for technical

covariate correction. Nearest neighbor graph of cells was built using

the sc.pp.neighbors function with batch‐corrected matrix.

2.7 | Cell clustering and annotations

Unsupervised clustering of cells was then computed by sc.tl.louvain at

different resolutions using the neighborhood relations of cells. Cluster‐

specific signature genes were identified using the sc.tl.rank_gen-

es_groups function. Cluster annotation was done manually by matching

canonical cell marker genes with Cluster‐specific signature genes.

Clustering analysis of cell types consisted of two rounds. The

first round (Louvain resolution = 1.2) was performed on all cells and

identified 10 major cell types (Figure 1, Supporting Information: S1).

The second round (with Louvain resolution ranging from 0.3 to 1.8)

was performed on CD4+/CD8+ T cells, B cells, monocyte and DC cells

separately to subdivide each cell type into sub‐clusters. These

sub‐clusters represented distinct immune cell lineages within each

major cell type. Each subcluster was manually analyzed by domain

experts and considered as distinctive enough when they had at least

one highly expressed signature gene compared to other cells. The

complete list of canonical marker genes and cluster‐specific highly

expressed signatures are provided in Figure 2 and 5, Supporting

Information: Figure S4, Figure S7, Figure S11 and Figure S13.

2.8 | Cell state score of cell subtypes

After cluster annotation were completed, several gene sets from

important immune processes were used to compare overall activation

level or physiological activity of cell clusters. Gene sets related to

cytokine storm and immune exhaustion were collected from previous

literature (Nature Immun 2020; Cell 2021 zhangzemin) and gene sets

about Response To Interferon Alpha (GO:0035455), Response To

Interferon Beta (GO:0035456), Acute Inflammatory Response

(GO:0002526), Apoptotic Signaling Pathway (GO:0097190), Leuko-

cyte Migration (GO:0050900) were collected from the MsigDB

database. Cell state scores were calculated using the sc tl.score_

genes function available in Scanpy.

The cell scores of the cell were defined as the average expression

of the genes from the predefined gene set with respect to reference

genes. Comparison of the cell state score of one condition versus

another condition was statistically assessed using the Mann‐Whitney

rank test (two‐tail, p< 0.01, adjusted using the Benjamini–Hochberg

method).

2.9 | TCR and BCR V(D)J immune repertoire
sequencing and analysis

From one aliquot of the gene expression 5′ libraries, full‐length

TCR/BCR V(D)J segments were enriched from transcriptome cDNA

via polymerase chain reaction amplification using the Chromium

Single‐Cell V(D)J Enrichment kit according to the manufacturer's

protocol. Similar to the gene expression pipeline, immune repertoire

preprocessing was performed using Cell Ranger (v.6.0.0) vdj

command with human vdj reference vGRCh38‐alts‐ensembl‐5.0.0.

This pipeline includes demultiplexing by index and barcodes,

TCR/BCR V(D)J sequence discovery and TCR/BCR clonotype

assignment to each cell. V(D)J immune repertoire was analyzed by

the python‐toolkit, Scirpy. In brief, the productive chains of each cell

were identified and connected with the cell's barcode information.

Each unique TRA(s)‐TRB(s) pair was defined as a TCR clonotype and

each unique IGH(s)‐IGK/IGL(s) pair was defined as a BCR clonotype.

If one clonotype was present in at least two cells, cells harboring this

clonotype were considered to be clonal and the number of cells with

such pairs indicated the degree of clonality of the clonotype. Only

cells with at least one productive clonotype was used in the following

analysis. The TCR/BCR downstream analysis were similar for the

most part. TCR/BCR data table of cells loaded by Scirpy was matched

together with gene expression profiles already prepared by Scanpy in

the AnnData data structure. Clonotypes were then clustered based

on the similarity of their CDR3 amino acid sequences. TCR/BCR

diversity metric, containing clonotype frequency and clonotype

composition, was obtained using scirpy.pl.alpha_diversity function

based on “normalized_shannon_entropy.”

2.10 | Statistics

The statistical analysis, visualization and method details described in

this study were performed in python and R and are provided with the

results of the main text, in the figure legends or in the
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above Sections 2. In all figures with significance marks, the following

convention for symbols indicating statistical significance were used:

ns: p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.

2.11 | Code availability

Experimental protocols and the data analysis pipeline used in our

work follow the X10 Genomics and Seurat official websites. The

analysis steps, functions and parameters used are described in detail

in the Section 2. Custom scripts for analyzing data are available upon

reasonable request. The software and algorithms used in this report

are presented in Supporting Information: Table S6.

3 | RESULTS

3.1 | Single‐cell transcription profiling of PBMCs

To identify features of the immunological hallmarks from individuals

receiving inactivated COVID‐19 vaccines (CoronaVac), the droplet‐

based scRNA‐seq (X10 Genomics) was performed to study the

transcriptomic profiles of PBMCs, which were longitudinally collected

from six individuals at three pivotal time points (Figure 1A). Single‐cell

BCR and TCR sequencing were also performed for each sample.

According to the time points, these samples were classified into three

conditions: no injection (NJ, Day = 0, PMBCs were collected before

vaccination), first injection (FJ, Day = 21, PBMCs were collected at Day

21 after the first dose) and second injection (SJ, Day = 35 PBMCs were

collected at Day 14 after second dose). The associated metadata of the

six individuals enrolled and the three conditions are detailed in

Supporting Information: Table S1. After the single‐cell analysis pipeline

(refer to Section 2), we obtained ~0.895 billion unique transcripts

belonging to 178 268 cells from the PBMCs of vaccinated individuals.

Among these cells, 60 783 cells (34.1%) were from the NJ conditions,

47 451 cells (26.6%) were from the FJ condition, and 70034 cells

(39.3%) from the SJ condition. Next, we integrated all high‐quality cells

into an unbatched and comparable data set, which was subjected to

PCA after correction for read depth and mitochondrial read counts

(Supporting Information: Figure S1A−B).

To reveal immune cell populations in individuals administered with

inactivated COVID‐19 vaccines, the graph‐based clustering of UMAP

(uniform manifold approximation and projection) was performed.

According to the expression of canonical cell‐type markers, we

identified 10 major cell types (Figure 1B (left), C−D; Supporting

Information: Figure S1A‐B): B cells (CD79A+CD79B+MS4A+), plasma

cells (XBP1+MZB1+), γδ T cells (TRDV1+TRDV9+), natural killer (NK)

cells (CD11b+NKG7+KLRD1+NKG2A+), CD4+ T cells (CD3D+CD3E+

CD40LG+), CD8+ T cells (CD3D+CD3E+CD8A+CD8B+), mucosal‐

associated invariant T (MAIT) cells (CD3D+CD3E+SLC4A10+), mono-

cytes (CST3+LYZ+CD68+), dendritic cells (DCs) (CST3+LYZ+CD163+)

and megakaryocytes (CST3+LYZ+PPBP+). At the more granular level, we

identified 27 different cell subtypes (Figure 1B (right); Supporting

Information: Figure S1A‐B). Likewise, we also successfully identified 10

major cell types (Figure 1E (Left)) and 27 cell subtypes (Figure 1E (Right))

for the PBMCs samples reported by a Single Cell Consortium for

COVID‐1916 (Supporting Information: Figure S1C‐F). As such, the

composition of cell subpopulations in peripheral blood from individuals

with COVID‐19 vaccine and COVID‐19 patients were clearly defined

(Figure 1B,E; Supporting Information: Figure S1G).

3.2 | Differences in major cell type compositions
across conditions

In our sc‐RNAseq data, we first determined the relative change in cell

composition (10 major cell types) after the first and second

vaccination (Supporting Information: Figure S2A−D). The relative

abundance of CD4+ T cells, CD8+ T cells, γδ T cells, NK cells and

MAIT cells at FJ and SJ conditions remained similar when compared

with the NJ condition (Supporting Information: Figure S2D). The

relative percentage of B cells appeared to increase in FJ and SJ

conditions in comparison with NJ condition, implying that the change

in B cells may be related with the humoral immune response after

vaccination (Supporting Information: Figure S2D). The proportions of

DCs, monocytes (Mono) and megakaryocytes (Mega) also increased

after vaccination (Supporting Information: Figure S2D). Increased

DCs may be involved in antigen presentation to stimulate the

immune response to CoronaVac, while increased Mono and Mega

may be involved with the potential inflammatory response after

vaccination. Of note, the percentage of plasma cells did not

significantly increase in the FJ and SJ conditions (Supporting

Information: Figure S2D). This may be due to plasma cells requiring

a strong level of continuous antigen stimulation, or that the plasma

cell level had decreased or was restored when the PBMC samples

were collected at the FJ (21 days after first dose) and SJ (14 days

after first dose) timepoints.

Next, we compared the cell composition between vaccine and

natural SARS‐CoV‐2 infection. Patients with COVID‐19 (n = 64) were

classified into four conditions: control (Cont; n = 15), mild (mild;

n = 12), severe (seve; n = 4) and convalescent (conv; n = 33) (Support-

ing Information: Figure S2E−G, Figure S3A). After SARS‐CoV‐2

infection, the proportion of innate immune cells, including NK cells,

γδ T cells, MAIT cells and DCs, decreased with disease severity

(Supporting Information: Figure S2E−G). This trend was different to

what was observed with vaccines (Supporting Information:

Figure S2D,G; S3B−D). Similar to vaccination, the relative abundance

of monocytes and megakaryocytes in COVID‐19 patients increased

with disease severity, and the relative percentage of these cells later

declined in Conv conditions (Supporting Information: Figure S2G). In

contrast to immunization with CoronaVac, a decrease in CD4+ and

CD8+ T cells were observed in COVID‐19 infected patients, and this

was related with disease severity (Supporting Information:

Figure S2D,G; S3D). A slight increase in B and plasma cell levels

were observed after SARS‐CoV‐2 mild infection, whereas a massive

increase in plasma cells was observed in the Seve condition
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(Supporting Information: Figure SG; S3D). These data suggested that

both vaccination with CoranaVac and natural SARS‐CoV‐2 infection

cause changes in the cell composition of PBMCs.

3.3 | Features of B cell subsets across samples

To reveal the dynamic changes in different B cell subtypes in

immunized (Figure 2A‐E; Supporting Information: Figure S4A) and

infected individuals (Supporting Information: Figure 2F‐G, S3B−E),

we classified B cells into six subsets according to the distribution and

expression of classical subtype markers. We successfully identified

one naïve B subcluster (MS4A1+IGHD+), one memory B subcluster

(MS4A1+CD27+), one germinal center B subcluster (MS4A1+NEIL1+),

one intermediate transition memory B subcluster (MS4A1+IGHD+

CD27+), one plasma B subcluster (MZB+CD38+) and one proliferating

plasma B subsets (MZB+CD38+MKI67+).

The general patterns of B/plasma cells were compared across

conditions. The relative percentages of germinal center B cells

significantly increased after vaccination, suggesting that B cells may

be activated after vaccination (Figure 2E), Other B cell subsets, including

naïve B cells, memory B cells and intermediate memory B cells,

remained similar after vaccination (NJ, FJ, and SJ) (Figure 2E), suggesting

that the inactivated COVID‐19 vaccine has a relatively low impact on

the composition of these B cell subsets. Likewise, SARS‐CoV‐2 infection

also had a relatively low impact on the composition of these B cell

subsets, with only the memory B cell subtype decreased in severe

COVID‐19 patients (Figure 2G). Increased plasma and dividing plasma

cells were observed in COVID‐19 patients with the percentage of

plasma cells in severe COVID‐19 patients reaching 15% while mild

COVID‐19 patients only reached 3% (Figure 2G). Although the levels of

plasma cells and dividing plasma cells did not significantly increase after

vaccination, the levels of neutralizing antibodies (anti‐S‐RDB‐specific

antibody) did after the SJ for all six individuals (Figure 2H, Supporting

Information: Figure S4G, Table S2). Interestingly, the levels of

neutralizing antibody did not significantly increase after the first dose

of CoronaVac (Figure 2H, Supporting Information: Figure S4G, Table S2)

implying that two doses of CoronaVac are required for efficient

seroconversion. After vaccination, the plasma cells in PBMCs had highly

expressed genes which encode the constant regions of immunoglobulin

G1 (Ig G1), IgG2, IgA1, or IgA2. This correlates with their function in

secreting antigen‐specific antibodies and implies that the serum of

immunized individuals may have had high titers of SARS‐CoV‐2‐specific

antibodies (Figure 2H‐I, Supporting Information: Figure S4G). These

findings were also observed in COVID‐19 patients (Figure 2J).

3.4 | Transcriptomic changes in B cells after
vaccination and SARS‐CoV‐2 infection

To investigate differential transcriptomic changes in B/plasma cells

after vaccination, we compared the expression profiles of B/plasma

cells in FJ or SJ conditions with the NJ condition. As expected, genes

involved in B cell activation, adaptive immune response, response to

interferon, and antigen processing and presentation were specifically

enriched in B cells after vaccination (Figure 3A). This suggests that

the B cells were responding to the inactivated COVID‐19 vaccine.

For SARS‐CoV‐2 infection, genes involved in defense response to

virus and interferon signaling pathways were the most highly

upregulated in B cells (Supporting Information: Figure S5A). Notably,

we observed that genes associated with the “Interferon (IFN)

response” were enriched in both postvaccination samples and

COVID‐19 patients (Figure 3A and Supporting Information:

Figure S5A).

Next, we further examined the expression of important genes

(e.g., PRDM1, T‐bet) that are involved in B/plasma‐cell‐activation‐

related processes after vaccination and SARS‐CoV‐2 infection.

Two Gene Ontology (GO) pathways (GO:0002312 and

GO:0042113) that were related to the activation of B cells were

significantly enriched after vaccination (Figure 3B). Several genes

(e.g., PTPRC, HMCES, and SWAP70) involved in the B cell activation

GO pathways (GO:0002312 and GO:0042113) were highly upregu-

lated in the naïve B cell subtype, implying activation of naïve B cells

after vaccination (Figure 3C). In contrast, these three genes (PTPRC,

HMCES, and SWAP70) were downregulated in severe COVID‐19

patients, suggesting that activation of naïve B cells in these

individuals may be impaired (Supporting Information: Figure S5B).

Naïve B cells in vaccinated samples also highly expressed IL4R and

IL21R (Figure 3D), but these genes were downregulated in activated

and memory B cells (Figure 3E). This indicates that naïve B subsets

were more responsive than activated and memory B cells to IL‐4

(interleukin 4) and IL‐21, which regulate class switching to IgG,

including IgG1, IgG3, or IgG4.18,19 Similar findings for IL4R and IL21R

expression were also observed in SARS‐CoV‐2 mild infection but not

severe infection where IL4R and IL21R were significantly down-

regulated (Supporting Information: Figure S5C−D).

Five transcription factors (TBX21, ZEB2, TFEC, ZBTB32, and

YBX3) associated with the activation of memory B cells were highly

expressed in intermediate transition memory B cell (also referred to

as activated memory B cells) compared to memory B cells (Figure 3F

and Supporting Information: Figure S5E).18 TBX21 (also known as T‐

bet) has been hypothesized to play a key regulatory role in activation

and is required for class switching to IgG2.20 This transcription factor

showed higher expression in activated memory B cells than memory

B cells (Figure 3F and Supporting Information: Figure S5E). A triad of

transcription factors, including PRDM1, XBP1, and IRF4, also had

increased expression in activated B cells (which encompasses:

germinal center B cell, intermediate transition memory B cell, dividing

plasma and plasma) from COVID‐19 patients and immunized

individuals compared to nonactivated B cells (including naïve B cell

and memory B cell) (Figure 3G and Supporting Information:

Figure S5F). These transcription factors are associated with B‐cell‐

differentiation‐related pathways and are required for activating the

ASC (antibody‐secreting cell) program.21 Finally, three B cell‐

promoting transcription factors: BACH2, BCL6, and PAX5, showed

increased expression in B cells after vaccination (Figure 3H) while in
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severe COVID‐19 patients (Supporting Information: Figure S5G),

these transcription factors decreased. BACH2, BCL6, and PAX5 play

a key role in determining the fate of B cells during differentiation.21

Interestingly in COVID‐19 infected samples, expression of

important chemokine receptors such as CXCR5 were significantly

decreased, especially for severe samples (Supporting Information:

Figure S5H). However, this loss of chemokine receptors was not

observed in immunized samples (Figure 3I). Decreased chemokine

receptors can impair germinal center reactions and ultimately cause

dysregulated humoral immunity responses.22–24 Our data also

observed significant upregulation of HLA class II genes after

immunization (Figure 3J), implying that there is an enhancement of

immune cell crosstalk between the adaptive immune cell classes.

However in COVID‐19 patients, several HLA class II genes were

significantly downregulated, especially for severe COVID‐19 patients

(Supporting Information: Figure S5I). This suggests a dysregulated

immune cell crosstalk between the adaptive immune cell classes

during infection. Together, these data define the transcriptional

hallmarks of CoronaVac‐induced B cell activation and clonal expan-

sion and revealed underlying differences in the B cell transcriptome

between vaccine‐induced immunity and SARS‐CoV‐2 infection.

3.5 | V(D)J gene usage and clonal expansion in
B cells after vaccination and SARS‐CoV‐2 infection

BCR information was detected in all B/plasma subsets and in >80% of

cells while clonal expansion (clonal size > 10) was observed in

memory B cells, intermediate transition memory B cells, dividing

plasma cells, and plasma cells (Figure 4A, Supporting Information:

Figure S6A−B). The largest proportion of BCR in B cells was the

immunoglobulin M heavy chain (IGHM) subtype and the largest

proportion of BCR in plasma cells were immunoglobulin A heavy

chain 1 (IGHA1) and immunoglobulin G heavy chain 1 (IGHG1)

(Figure 4B). After vaccination, the percentage of IGHM significantly

increased in B cells (Figure 4C, Supporting Information: Figure S6A)

while the percentage of IGHA1 decreased in plasma cells

(Figure 4C, Supporting Information: Figure S6C, S6D). The light chain

type, IGK and IGL, did not change in B and plasma cells (Figure 4D).

We compared the clonal expansion of B cell subtypes at different

timepoints in the vaccine cohort (Figure 4E). BCR clonal expansion of

plasma cells increased from NJ to FJ to SJ, suggesting that two‐doses

of CoronaVac induced plasma proliferation of specific BCR

clonotypes. In COVID‐19 patients, increased clonal expansion in

CD8+ T was also observed in severe COVID‐19 patients (Figure 4E),

in agreement with Zhang et al., ($year$).25 BCR diversity, as

measured by alpha diversity, showed no change after vaccination

but was significantly decreased in severe COVID‐19 infections

(Figure 4H). The length distribution of the CDR3 region was similar

for all conditions except COVID‐19 severe condition (Figure 4I).

The usage of IGH V(D)J genes across vaccination and infection

conditions were compared (Figure 4F). The combinations of the

6 IGHJ and >40 IGHV genes demonstrated that CoronaVac induced

many changes in the IGH V(D)J genes (Figure 4F left panel). TheV(D)J

pair pattern was significantly altered after two doses of CoronaVac.

For example, the most prevalent pair in NJ was IGHJ2/IGHV3‐23

which shifted to IGHJ2/IGHV4‐59 and IGHJ1/IGHV3‐23 following

vaccination. The percentage of IGHJ1/IGHV3‐43 and IGHJ1/IGHV3‐

15 also increased after vaccination. In addition, we also analyzed the

usage of IGK/L V(D)J genes (Figure 4F right panel) and observed that

the V(D)J pair pattern were also altered after two doses of

CoronaVac. For example, IGKJ5/IGKV3‐11, IGLJ1/IGKV2‐14 and

IGLJ7/IGKV1‐51 were all increased after vaccination. Interestingly,

IGLJ1/IGKV2‐14 and IGLJ7/IGKV1‐51 were also increased in

COVID‐19 mild and convalescent conditions compared to control.

These results suggest similar B‐cell protective responses between

vaccine and mild/convalescent conditions.

3.6 | Characterization of innate immune cells

To investigate vaccine (Figure 5A‐D, Supporting Information:

Figure S7A) and infection‐driven (Figure 5F, Supporting Information:

Figure S7B−E) changes in innate immune cells, the distribution and

expression of classical subtype markers were used to classify innate

cell types. We identified six innate cell types including NK cells, γδ T

cells, MAIT cells, DC cells, monocytes and megakaryocytes

(Figures 5A−B, 5F, Supporting Information: Figure S7A−E). The DCs

F IGURE 2 Characterization of B cell composition differences in individuals across vaccination and infection conditions (A) UMAP projection
of all B cells from NJ, FJ, and SJ conditions. Each dot corresponds to a single cell, colored by its cell subtype. (B) Expression levels of canonical B
cell RNA markers were used to identify and label major cell clusters on the UMAP plot. Cells are colored according to log transformed and
normalized expression levels of eight genes. Cells are from NJ, FJ, and SJ conditions (C) Average proportion of each B cell subtype derived from
NJ, FJ, and SJ groups. (D) Proportion of each B cell subtype derived from NJ, FJ, and SJ individual samples. (E) The box plot shows the
composition of B cells before (NJ) and after vaccination (FJ and SJ) at a single sample level. (F) UMAP projection of all B cells from Cont, Conv,
Mild, and Seve conditions. Each dot corresponds to a single cell, colored by its cell subtype. (G) Proportion of each B cell subtype derived from
Cont, Conv, Mild, and Seve individual samples. (H) IgM and IgG antibody levels from NJ, FJ, and SJ conditions in serum. (I) The composition of Ig
classes in the vaccine cohort identified by BCR single cell sequencing. (J) The composition of Ig classes in the COVID‐19 infected cohort
identified by BCR single cell sequencing. All pairwise differences with p < 0.05 using two‐sided unpaired Mann–Whitney U‐test are marked to
show significance levels.BCR, B cell receptor; FJ, first injection; NJ, no injection; SJ, second injection; UMAP, uniform manifold approximation
and projection.
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were further classified into 2 subtypes including pDCs (plasmacytoid

DCs) and mDC (monocyte‐derived DCs), while monocytes were

classified into 3 subtypes including CD16+ monocytes, CD14+

monocytes and CD14+CD16+ monocytes (Figures 5A‐B, 7F, Support-

ing Information: Figure S7A−E).

To obtain further insights into the features of innate cells, we

examined the distribution of each subset across three conditions (NJ,

FJ, and SJ). The proportions of γδ T cells, NK cells, MAIT cells,

CD16+Mono and CD14+CD16+Mono were similar across the

three conditions (NJ, FJ, and SJ) (Figures 5E, 5H, Supporting

F IGURE 3 Characterization of gene expression differences in B cells in individuals across vaccination and infection conditions. (A) GO
enrichment analysis of diDEGs identified by comparing before‐ and after‐ vaccination conditions. DEGs refer to genes with Benjamini–Hochberg
adjusted p value (two‐sided unpaired Mann–Whitney U‐test) ≤0.01 and average log2 fold change ≥1 in both FJ/NJ and SJ/NJ comparisons. (B)
Violin plots of B cell expression activities in three vaccine conditions. Cells are grouped and colored by conditions. Y axis represents the
normalized expression score of gene sets related to B_CELL_ACTIVATION_INVOLVED_IN_IMMUNE_RESPONSE (GO:0002312) and B_CELL_
ACTIVATION (GO:0042113). (C) Dot plots of the gene expression level of naïve B cells in three vaccine conditions. Rows represent conditions;
columns represent genes. Dots are colored by mean expression levels in each condition. (D) (Left) Dot plots of IL4R and IL21R expression level in
naïve B cells between pre‐vaccination and postvaccination. Rows represent conditions; columns represent genes. Dots are colored by mean
expression levels in each condition. (Right) Violin plots show the expression level of the two genes in before‐ and after‐vaccination conditions.
(E) Violin plots of the expression level of IL4R and IL21R genes in naïve B cells, activated B cells and memory B cells. (F) Dot plots of gene
expression level of memory B and intermediate transition memory B cells in vaccine cohort. Rows represent genes (TBX21, ZEB2, TFEC, ZBTB32,
and YBX3); columns represent B cell subtypes. Dots are colored by mean expression levels in each group. (G) PRDM1, XBP1, and IRF4 gene
expression level of activated B cells and other B cells in the vaccine cohort. Dot plots (Left) and violin plots (Right) are used for visualization.
(H) PAX5, BCL6, and BACH2 gene expression level of B cells in before‐ and after‐vaccination conditions. Dot plots (Left) and violin plots (Right)
are used for visualization. I. CXCR5, CXCR4, and CCR6 gene expression level of B cells in before‐ and after‐vaccination conditions. Dot plots (Left)
and violin plots (Right) are used for visualization. (J) Gene expression level of HLA‐II genes in B cells in before‐ and after‐vaccination conditions.
Dot plots (Left) show individual genes and violin plots (Right) show normalized average expression of the HLA‐II gene set. (K) Gene expression
level of HLA‐II genes in B cells in Cont, Conv, Mild, and Seve conditions. Dot plots (Left) show individual genes and violin plots (Right) show
normalized average expression of the HLA‐II gene set. All pairwise differences with p < 0.05 using two‐sided unpaired Mann–Whitney U‐test are
marked to show significance levels. DEGs, differentially expressed genes; FJ, first injection; GO, Gene Ontology; NJ, no injection; SJ,
second injection.
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Information: S7F), while the relative percentages of γδ T cells, NK

cells and MAIT cells decreased after SARS‐CoV‐2 infection, especially

in severe patients (Figures 5G, 5H, Supporting Information:

Figure S7F). The innate cell subsets mDC, pDC, megakaryocytes

and CD14+ monocytes increased after vaccination (Figures 5E, 5H,

S7F). For COVID‐19 patients, the percentages of mDC and pDC

significantly decreased in severe patients but were restored in

convalescent samples (Figures 5G, 5H, Supporting Information:

Figure S7F). In contrast, the proportions of megakaryocytes and

CD14+monocytes were significantly increased in severe patients and

were also increased in convalescent samples (Figures 5G, 5H). These

findings of changes to innate cell subsets in COVID‐19 patients are

F IGURE 4 Changes in BCR clones and selective usage of V(D)J genes. (A) UMAP projection of B cells derived from PBMCs. Cells are colored
by conditions (Panel 1), B cell subtypes (Panel 2), if BCR detection was successful (Panel 3) and clone‐type expansion size (panel 4). (B) Pie graph
showing the distribution of IGHA, IGHD, IGHG and IGHM in B cells and plasma cells. (C) Box plot showing the percentages IGHA, IGHD, IGHG
and IGHM in B cells and plasma cells under each condition. (D) Pie graph showing the distribution of light chain IGK and IGL in B cells and plasma
cells under each condition. (E) Stacked bar plots showing the clone state of each B cell subtype in each condition. (F) Heat maps showing
differential IGH/K/L rearrangement. Prevalent IGHV‐IGHJ combination pairs (left) and IGKV‐IGKJ combination pairs (right) are compared across
conditions. Usage percentage are sum normalized by column. (H) Box plot showing the alpha diversity of clonotypes in each PBMC sample. Data
points are colored by condition. (I) Density curve plots showing the distribution shift of IGK/L and IGH chain CDR3 region length in BCR clone
types for each condition. BCR, B cell receptor; IGHA, immunoglobulin A heavy chain; IGHG, immunoglobulin G heavy chain; IGHM,
immunoglobulin M heavy chain; PBMCs, peripheral blood mononuclear cells; UMAP, uniform manifold approximation and projection.
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F IGURE 5 Characterization of innate cell composition differences in individuals across vaccination and infection conditions. (A) UMAP
projection of all innate cells from NJ, FJ, and SJ conditions. Each dot corresponds to a single cell, colored by its cell subtype. (B) Expression levels
of canonical innate cell RNA markers were used to identify and label major cell clusters on the UMAP plot. Cells are colored according to log
transformed and normalized expression levels of eight genes. Cells are from NJ, FJ, and SJ conditions. (C) Average proportion of each innate cell
subtype derived from NJ, FJ, and SJ groups. (D) Proportion of each innate cell subtype derived from NJ, FJ, and SJ individual samples. (E) The box
plot shows the composition of innate cells in NJ, FJ, and SJ conditions at a single sample level. (F) UMAP projection of all innate cells from Cont,
Conv, Mild, and Seve conditions. Each dot corresponds to a single cell, colored by its cell subtype. (G) Proportion of each innate cell subtype derived
from Cont, Conv, Mild, and Seve individual samples. (H) Proportion of each innate cell subtype derived from ContNJ(NJ), Vacc(FJ + SJ), Conv, MiSe
(Mild and Seve) individual samples. All pairwise differences with p < 0.05 using two‐sided unpaired Mann–Whitney U‐test are marked to show
significance levels. FJ, first injection; NJ, no injection; SJ, second injection; UMAP, uniform manifold approximation and projection.
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consistent with previous reports and flow‐cytometry‐based

results.26,27 Our data also indicate that both vaccines and SARS‐

CoV‐2 infection alter components of the innate cells in PBMCs and

reveals distinct differences in innate cells between vaccine‐induced

immunity and natural SARS‐CoV‐2 infection.

3.7 | Transcriptomic changes in innate immune
cells after vaccination and SARS‐CoV‐2 infection

Next, we investigated the transcriptomic changes in innate immune

cells after vaccination. GO analyses were conducted to obtain

functional insights into innate cell subtypes between FJ/SJ conditions

with NJ condition (Figure 6A). Genes associated with the adaptive

immune response (such as “T cell activation,” “immune response‐

activating signal transduction,” and “antigen processing and presen-

tation”) were enriched after vaccination (Figure 6A), while for

COVID‐19 infection, other pathways (such as “response to virus”

and “defense response to virus”) were enriched (Supporting

Information: Figure S8A). Genes associated with “Response to IFN

signaling” were enriched in both vaccination and SARS‐CoV‐2

infection (Figure 6A−B, Supporting Information: Figure S8B−8C).

INF response is an essential pathway for innate cells to respond to

viral infections, and our data indicates that CoronaVac successfully

induces the INF response in innate cells (Figure 6B, Supporting

Information: Figure S8B). The “INF response” of innate immune cells

was stronger in SARS‐CoV‐2 infection (especially for severe COVID‐

19 patients) compared to vaccination (Figure 6B). We observed that

four innate immune cell types (monocytes, γδ T, MAIT, and NK cells)

significantly upregulated IFN after vaccination (Supporting Informa-

tion: Figure S8B), while all 6 innate cell types had higher IFN in

COVID‐19 patients (Supporting Information: Figure S8C).

Our data showed that levels of cellular apoptosis and migration

were significantly upregulated in innate cells at the bulk level after

vaccination and SARS‐CoV‐2 infection (Figure 6C, Supporting

Information: Figure S8D−E). The expression of HLA‐II genes at FJ

and SJ conditions was higher compared to NJ, suggesting the

enhancement of crosstalk across cells after vaccination (Figure 6E).

However, some HLA‐II genes (e.g., HLA‐DRB5, HLA‐DPB1, and HLA‐

DPA1) were downregulated after SARS‐CoV‐2 infection, especially in

severe COVID‐19 patients (Figure 6F), implying possible impairment

of crosstalk across cells. Genes which encoded HLA class I molecules

(such as HLA‐A, HLA‐B, and HLA‐E) were upregulated in innate cells

from immunized samples relative to NJ condition (Supporting

Information: Figure S9). Similar results were also seen in COVID‐19

patients (Supporting Information: Figure S10). The underlying

mechanism and effect of changes in HLA‐I molecules requires

further investigation. In addition, we also investigated the expression

of several critical genes related with platelet aggregation (P2RX1,

P2RY1, and TBXA2R) in megakaryocytes.28 P2RX1, P2RY1, and

TBXA2R were not significantly upregulated after immunization which

suggests a low risk of thrombosis following CoronaVac immunization

(Figure 6G). P2RX1, P2RY1, and TBXA2R were significantly

upregulated in mild COVID‐19 patients (Figure 6G), which may imply

a higher risk of thrombosis for mild COVID‐19 patients than severe

COVID‐19 patients.

We further analyzed monocytes, as previous reports suggested

that this cell subset appeared to be the source of inflammation in

COVID‐19 patients.16 We evaluated the expression of genes

reported to encode inflammatory cytokines (Supporting Information:

Table S3).16,27 We found elevated expression of inflammatory genes

in COVID‐19 patients compared to healthy controls at the bulk level,

indicating that peripheral monocytes are potential contributors to the

inflammatory cytokine storm observed in COVID‐19 patients.

However, severe COVID‐19 patients did not show higher expression

of inflammatory cytokines compared to mild patients (Figure 6I). We

also identified increased expression of inflammatory response genes

in vaccinated individuals (FJ and NJ conditions) compared to NJ

condition at the bulk level, especially after the second dose

(Figure 6J). Of note, expression of inflammatory response genes in

vaccinated individuals was much lower than COVID‐19 patients

(Figure 6K). This implies that postvaccination may not cause an

increase in inflammatory cytokines in peripheral blood or causes a

lower increase in inflammatory cytokines. To validate this result, we

investigated the levels of 11 cytokines (including proinflammatory

cytokines: TNF‐α, IL‐1B, and IL‐6) in the sera using a bead‐based

flow‐cytometry assay on the BD LSRFortessa X‐20 platform. No

obvious postvaccination elevation in most cytokines were observed

(Supporting Information: Figure S12, Table S4), which further

suggests that postvaccination does not lead to significant increases

in inflammatory cytokines in peripheral blood. Interestingly,

CD14+monocytes contributed to the highest proportion of cell

composition (Figure 6L) and inflammatory scores (Figure 6M) after

vaccination or SARS‐CoV‐2 infection, suggesting that CD14+mono-

cytes may be the major source of inflammation.16,29

3.8 | Features of T cell subsets in individuals after
vaccination and SARS‐CoV‐2 infection

To investigate changes in individual T cell subclusters, theT cells from

PBMCs of vaccinated individuals across three conditions (NJ, FJ, and

SJ) (Supporting Information: Figure S11A−B, S13A) and in COVID‐19

patients (Supporting Information: Figure S13B−D) were subclustered

into 12 subtypes according to the distribution and expression of

classical T cell markers. These include seven CD4+T cell subtypes

(CD3D+ CD3E+ CD40LG) and five CD8+T cell subtypes (CD3D+

CD3E+ CD8A+CD8B+).

For CD4+T cells, we defined one naïve CD4+ T cell subset

(CCR7+SELL+), one memory CD4+ T cell subset (S100A4+GPR183+),

one effector memory CD4+ T cell subset (S100A4+GPR183+GZMA+),

one regulatory CD4+ T cell subset (Treg; FOXP3+IL2RA+), one

follicular T helper (Tfh) cell subset (CXCR5+, ICOS+, SLAMF1+) and

two effector CD4+ T cell subsets (CD4+ effector‐GZMK and CD4+

effector‐GNLY). Notably, the CD4+ effector‐GNLY cell subtype was

characterized with high expression of genes related with cytotoxicity,
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F IGURE 6 Characterization of gene expression differences in innate immune cells from vaccine and COVID‐19 infected cohort samples. (A)
GO enrichment analysis of DEGs identified by comparing the before and after vaccination conditions. DEGs refer to genes with Benjamini–
Hochberg adjusted p value (two‐sided unpaired Mann–Whitney U‐test) ≤0.01 and average log2 fold change ≥1 in both FJ/NJ and SJ/NJ
comparisons. (B−D) Expression activity of IFN‐alpha, apoptosis and migration pathways in innate immune cells of NJ, FJ, SJ, Cont, Conv, Mild
and Seve conditions shown as violin plots and colored by sample conditions. (E) Heatmap dot plot of HLA‐II gene expression in innate immune
cells of NJ, FJ, and SJ conditions. (F) Heatmap dot plot of HLA‐II gene expression in innate immune cells of Cont, Conv, Mild, and Seve
conditions, (G) Violin plot showing normalized expression levels of P2RX1, TBXA2R, and P2RY1 in megakaryocytes (Mega) from NJ and Vaccine
(FJ + SJ) conditions. (H) Violin plot of normalized expression of P2RX1, TBXA2R and P2RY1 in megakaryocytes (Mega) from Cont, Mild and Seve
conditions. (I) Expression activity of inflammatory pathways in monocytes from NJ, FJ, and SJ conditions shown as box plots. Boxes are colored
by sample conditions. (J) Expression activity of inflammatory pathways in monocytes from Cont, Conv, Mild, and Seve conditions shown as box
plots. Boxes are colored by sample conditions. (K) Expression activity of inflammatory pathways in monocytes from NJ, Vacc, Cont, Conv, Mild,
and Seve conditions shown as violin plots. Violins are colored by sample conditions. (L) Pie graph of relative percentage for CD14+ monocytes,
CD16+ monocytes, CD14+CD16+monocytes in the vaccine and COVID‐19 cohort. (M) Pie graph of inflammatory scores from CD14+ monocytes,
CD16+ monocytes, CD14+CD16+monocytes in the vaccine and COVID‐19 cohort. DEGs, differentially expressed genes; FJ, first injection; GO,
Gene Ontology; IFN, Interferon; NJ, no injection; SJ, second injection.
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such as GNLY, GZMB, NKG7, and KLRD1, whereas the CD4+ effector‐

GZMK cell subtype displayed high expression of GZMK and low

expression of other cytotoxic genes (Supporting Information:

Figure S11A−B, S13A, Table S5). The CD4+ effector‐GNLY subtype

also had highly expressed TBX‐21 (T‐bet), suggesting that this

subcluster were Th‐1 (Type 1 helper)‐like cells (Supporting Informa-

tion: Table S5). For CD8+ T cells, we defined one naïve CD8+ T cell

subset (CCR7+SELL+), one cycling CD8+ T cell subset (MKI67+), one

effector memory CD8+ T cell subset (S100A4+GPR183+GZMA+), two

effector CD8+ T cell subsets (CD8+ effector‐GNLY and CD8+

effector‐GZMK) (Supporting Information: Figure S11A−B, S13A,

Table S5).

To gain further insights into the characteristics of the T cell

subclusters, we examined the distribution of each subtype across

three vaccine timepoints (Supporting Information: Figure S11C−E)

and compared these profiles with data collected from COVID‐19

patients (Supporting Information: Figure S11F, S13E−G). Three T cell

subsets were significantly altered after vaccination (Supporting

Information: Figure S11E) in comparison to NJ with CD4+ effector‐

GNLY and Tfh cell subsets decreasing while Treg cells increased. For

SARS‐CoV‐2 infection, the relative percentage of naïve CD8+ T cells

significantly decreased in severe COVID‐19 patients whereas no

significant changes were observed in naïve CD4+ T cell subsets

(Supporting Information: Figure S11F). The proportion of CD4+ effec-

tor memory decreased in COVID‐19 patients compared to controls

(Supporting Information: Figure S11F) and in the convalescence

stage, the CD4+ effector memory cells remained low and were not

restored to the levels observed in the controls. In contrast, two

cytotoxic subsets, including CD4+ effector‐GNLY and CD4+ effector‐

GZMK, were present in higher percentages for convalescence

patients (Supporting Information: Figure S11F). Of particular note,

the cycling CD8+ subset was almost absent in controls but were

highly enriched in COVID‐19 patients, especially for severe patients

(Supporting Information: Figure S11F). Besides naïve CD8+,

CD4+ effector‐GNLY, CD4+ effector‐GZMK, CD4+ effector memory

and cycling CD8+ subsets, others T cell subsets were not significantly

altered (Supporting Information: Figure S11F, S13F−G).

3.9 | Transcriptomic changes in T cells after
vaccine and SARS‐CoV‐2 infection

We investigated transcriptomic changes in the T cell subsets of

vaccinated individuals and identified differences between vaccine

and natural infection induced responses. GO analyses found that

genes associated with “T cell activation,” “antigen processing and

presentation” and “response to interferon” were enriched in T cell

subsets after vaccination, implying an ongoing adaptive immune

response to vaccination (Figure 7A). For SARS‐CoV‐2 infection,

“Interferon signaling pathway,” “response to virus” and “defense

response to virus” were specifically enriched in T cell subsets,

suggesting an ongoing response against the virus (Supporting

Information: Figure S14A). IFN response is essential to the immune

response triggered by vaccines or viral infections and consistently,

we found that T cell subsets exhibited significant upregulation of IFN

after vaccination and SARS‐CoV‐2 infection (Figure 7B, Supporting

Information: Figure S14B). Four activated state T cell subsets,

including CD4+ effector memory, CD4+ effector‐GZMK, CD8+ effec-

tor‐GNLY and CD8+ effector memory, showed significantly upregu-

lated IFN after vaccination, whereas in SARS‐CoV‐2 infection, all

activated state T cell subsets had IFN significantly upregulated

(Figure 7C, Supporting Information: Figure S14B). COVID‐19 patients

had stronger expression of IFN than vaccinated individuals

(Figure 7D).

We then evaluated the cytotoxicity scores of different effector T

cell subsets after vaccination. Our data showed that effector T cell

subsets had lower cytotoxicity scores after vaccination than NJ

condition at the bulk level (Figure 7E), and only two effector T cell

subsets (CD8+ effector‐GNLY and CD8+ effector memory) showed

higher cytotoxicity scores after vaccination (Figure 7F). In contrast,

the effector T cell subsets exhibited higher cytotoxicity scores in

COVID‐19 patients than controls at the bulk level, and all effector T

cell subsets showed higher cytotoxicity scores in COVID‐19 patients

(Supporting Information: Figure S14C). COVID‐19 patients also

exhibited higher cytotoxicity scores than vaccinated individuals

(Figure 7G). Interestingly, we did not observe significant elevation

in exhaustion scores for effector T cell subsets after vaccination at

the bulk level (Figure 7H) however only CD4+ effector‐GNLY and

CD8+ effector‐GZMK showed an increase in exhaustion scores after

vaccination (Figure 7I). For SARS‐CoV‐2 infection, effector T cell

subsets did show higher exhaustion scores at the bulk level

(Supporting Information: Figure S14D). All effector T cell clusters in

mild and severe COVID‐19 patients had higher exhaustion scores

than controls, with severe patients having the highest exhausted

score (Figure 7J, Supporting Information: Figure S14D). COVID‐19

infection did not display a stronger exhaustion score in comparison to

vaccinated individuals (Figure 7).

We also investigated the apoptosis and migration scores of

different T cell subsets. Our data indicated that both vaccination and

SARS‐CoV‐2 infection showed a high level of apoptosis and

migration in T cell subsets at the bulk level (Figure 7K‐P, Supporting

Information: Figure S14E−F), however stronger apoptosis and

migration of T cell subsets were observed in COVID‐19 patients,

especially in the severe group (Figure 7K‐P, Supporting Information: -

Figure S14E−F). These results suggest that significant activation of

cell apoptosis and migration pathways in the PBMCs of severe

disease may be associated with lymphopenia, consistent with

previous studies.30,31

In addition, we observed that the expression of genes involved in

T‐cell activation (CD2AP, CD258 [TNFSF14], and KDM5A) were

significantly upregulated in activated CD4+ and/or cytotoxic CD8+ T

cells after vaccination and SARS‐CoV‐2 infection (Figures 7Q, 7R, 7S,

7T). CD2AP, as an adaptor protein in CD4+ T cell, can modulate the

differentiation of Tfh cells and promote protective antibody

responses in viral infection.32 TNFSF14 serves as a key component

for T cell recruitment to tissues from peripheral blood as well as

5318 | WANG ET AL.



F IGURE 7 Characterization of gene expression differences in activated T cells from vaccine and COVID‐19 infected cohort samples. (A) GO
enrichment analysis of DEGs identified by comparing the before and after vaccination conditions. DEGs refer to genes with Benjamini–
Hochberg adjusted p value (two‐sided unpaired Mann–Whitney U‐test) ≤0.01 and average log2 fold change ≥1 in both FJ/NJ and SJ/NJ
comparisons. (B and C) Expression activity of IFN‐alpha pathways in activated T cells (B) and subtypes (C) of NJ and Vacc (FJ and SJ) conditions
shown as box plots and are colored by sample conditions. (D) Expression activity of IFN‐alpha in activated T cells of NJ, FJ, SJ, Cont, Conv, Mild
and Seve conditions shown as violin plots and colored by sample conditions. (E and F) Expression activity of cytotoxicity pathways in activated T
cells (E) and subtypes (F) of NJ and Vacc (FJ and SJ) conditions shown as box plots and are colored by sample conditions. (G) Expression activity
of cytotoxicity pathways in activated T cells of NJ, FJ, SJ, Cont, Conv, Mild, and Seve conditions shown as violin plots and colored by sample
conditions. (H and I) Expression activity of exhaustion genes in activated T cells (H) and subtypes (I) of NJ and Vacc (FJ and SJ) conditions shown
as box plots and are colored by sample conditions. (J) Expression activity of exhaustion genes in activated T cells of NJ, FJ, SJ, Cont, Conv, Mild,
and Seve conditions shown as violin plots and colored by sample conditions. (K and L) Expression activity of apoptosis pathways inT cells (K) and
subtypes (L) of NJ and Vacc (FJ and SJ) conditions shown as box plots and are colored by sample conditions. (M) Expression activity of apoptosis
pathways in activated T cells of NJ, FJ, SJ, Cont, Conv, Mild, and Seve conditions shown as violin plots and colored by sample conditions. (N and
O), Expression activity of migration pathways in activated T cells (N) and subtypes (O) of NJ and Vacc (FJ and SJ) conditions shown as box plots
and are colored by sample conditions. (P) Expression activity of migration pathways in activated T cells of NJ, FJ, SJ, Cont, Conv, Mild, and Seve
conditions shown as violin plots and colored by sample conditions. (Q and R) Gene expression level of CD2AP (Q) and TNFSF14 (R) in activated
CD4 + T cells in NJ, FJ, SJ, Cont, Conv, Mild, and Seve conditions. Violin plots showed normalized average expression of CD2AP (Q) and
TNFSF14 (R). (S and T) Gene expression level of KDM5A (S) and TNFSF14 (T) in cytotoxic CD8+ T cells in NJ, FJ, SJ, Cont, Conv, Mild, and Seve
conditions. Violin plots showed normalized average expression of KDM5A (S) and TNFSF14 (T). All pairwise differences with p < 0.05 using
two‐sided unpaired Mann–Whitney U‐test are marked to show significance levels. DEGs, differentially expressed genes; FJ, first injection;
GO, Gene Ontology; IFN, Interferon; NJ, no injection; SJ, second injection.
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promoteT cell activation. KDM5A encodes a demethylase‐H3K4me3,

which is needed for T cell activation. These data suggested that

increased activation of T cells in vaccinated individuals and

COVID‐19 patients may contribute to defense against the vaccine

and SARS‐CoV‐2 virus.

3.10 | V(D)J gene usage and clonal expansion in
T cells after vaccination and SARS‐CoV‐2 infection

TCR information was detected in all subsets and in ~60% of T cells.

Clonal expansion of CD8+ effector T cells was larger (clonal

size > 100) than CD8+ cycling T cells and CD4+ T cells (Supporting

Information: Figure 8A−B). More than seventy percent of T cells in

the vaccine cohort and 53%~61% of T cells in COVID‐19 cohorts had

unique TCR clonotypes (Supporting Information: Figure S15A−B). A

negative correlation between clone size and clonotype number was

observed, consistent with previous report25 and suggests that large

clonal expansion is a rare event (Figure 8C). Next, we compared the

expression of TCR β‐chain constant domains 1 and 2 (TRBC1 and

TRBC2). The percentage of TRBC1 increased after vaccination, while

in COVID‐19 patients, the percentage of TRBC1 was highest in

severe disease and lowest in controls (Figure 8D,H, Supporting

Information: Figure S15C). This suggests that immune activation by

vaccination and infection are able to modulate TCR β‐chain ratios.

We compared T cell clonal expansion after vaccination and

observed a significant decrease in clonal expansion of CD8+ T cells,

especially CD8+ T effector‐GNLY cells, from NJ to FJ to SJ. This

suggests that two‐doses of CoronaVac induced immunogenic

proliferation leading to many new unique TCR clonotypes

(Figure 8E, Supporting Information: Figure S15D). For COVID‐19

infection, decreased CD8+ T cell clonal expansion was also observed

in infected patients compared to control and convalescent

(Figure 8E), in agreement with previous report.33 Clonal expansion

in CD4+ T cells was also decreased from NJ to SJ but was higher in

severe than controls, suggesting that CD4+ T cells may play different

roles in vaccine and infection immune responses (Figure 8E).

The length distribution of the CDR3 region were similar for all

conditions (Figure 8G). COVID‐19 infected patients tended to have

lower TCR diversity while vaccinated patients had higher diversity

(Figure 8I) which may suggest a protective role for TCR diversity. The

usage of TRB V(D)J genes across vaccine and infection conditions were

compared (Figure 8F). The combination of the most prevalent 11 TRBJ

and 22 TRBV genes indicates that vaccination induced greater diversity

inTRB V(D)J genes (Figure 8F top panel). Mild COVID‐19 infection also

induced greater diversity however no new V(D)J pair patterns were

observed. In contrast, severe COVID‐19 infection induced new

prominent V(D)J pairs, including TRBJ1‐6/TRBV9, TRBJ1‐4/TRBV27,

and TRBJ1‐5/TRBV4‐1. The change in pattern for TRAJ and TRAV pairs

showed similar trends to TRB V(D)J (Figure 8F bottom panel). In

addition, the CDR3 peptides sequences showed large individual

differences however we did not observe any interesting patterns across

conditions (Supporting Information: Figure S16).

4 | DISCUSSION

As an emerging virus, SARS‐CoV‐2 is highly pathogenic and is

responsible for the COVID‐19 pandemic. Currently, there are no

effective drugs or optimal treatments for SARS‐CoV‐2 infection, thus

considerable effort has been put into developing safe and effective

vaccines against COVID‐19. Inactivated SARS‐CoV‐2‐based vaccines

are one of the most‐widely used COVID‐19 vaccines due to its low

cost, ease of scale‐up and production.7 CoronaVac is an inactivated

COVID‐19 vaccine candidate which has had its safety and potency

validated in both animal models and clinical trials.10,33 However,

current knowledge of the host immune response to the inactivated

COVID‐19 vaccine is still limited, making it difficult to inform and

improve the design of new generations of COVID‐19 vaccines. In

addition, little is known about how this immune response compares

to natural SARS‐CoV‐2 infection.

In this report, we performed scRNA‐seq in PBMCs from six

individuals immunized with CoronaVac and compared these to the

single‐cell profiles in COVID‐19 patients. Overall, both inactivated

SARS‐CoV‐2 vaccine and natural SARS‐CoV‐2 infection altered the

composition of peripheral immune cells, with greater changes

observed in COVID‐19 patients, especially for severe disease. After

CoronaVac injection, the inactivated SARS‐CoV‐2 virus initially

encounters antigen presenting cells (APCs) in the innate immune

system which then triggers the adaptive immune response. Our data

confirmed that the proportion of DCs, one of the main APCs, are

significantly elevated after vaccination (Supporting Information:

Figure S3), thus suggesting that CoronaVac is able to successfully

initiate the adaptive immune response. However in severe COVID‐19

patients, the relative percentage of DCs significantly decreased,

implying a possible subversion of the adaptive immune response in

severe disease. Monocytes are the major source of inflammatory

cytokines in SARS‐CoV‐2 infection,16,29 and were elevated after

immunization with CoronaVac and SARS‐CoV‐2 infection (Supporting

Information: Figure S3). However, the level of monocytes was

significantly greater in COVID‐19 patients (especially for severe

disease) compared to immunization. This implies that CoronaVac

immunization causes a weaker inflammatory response than natural

SARS‐CoV‐2 infection. The relative abundance of γδ T, MAIT,

NK, CD4+ effector memory, and naïve CD8+ T cells decreased with

disease severity while the proportion of cycling CD8+ T cells

increased with disease severity, suggesting that these subsets may

be associated with disease severity. We did not observe significant

changes to these subsets after immunization with CoronaVac

(Supporting Information: Figures S3, 5, 7, S3, S7 and S13).

IFNs are produced during viral infection and has an antiviral role.

However when produced excessively, IFNs can cause immunopatho-

logical damages. Interestingly, “IFN response” was enriched by GO

analysis in different cell subclusters after vaccination in our study

(Figures 3, 6, and 7). Compared to prevaccination samples, the

response to IFN‐α (type I IFN) pathway was also significantly

elevated in most PBMC cell types after vaccination. Together, this

suggests CoronaVac induces IFNs as part of the antiviral response.
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F IGURE 8 Changes inTCR clones and selective usage of V(D)J genes. (A) UMAP projection of T cells derived from PBMCs. Cells are colored
by conditions (Panel 1), T cell subtypes (Panel 2), if TCR detection was successful (Panel 3) and clonotype expansion size (panel 4). (B) Stacked
bar plot shows the TCR detection success rate for each T cell subtype. (C) Histogram shows the negative correlation between the number of T
cell clones and the number of cells per clonotype. Y axis is log10 scaled. (D) Pie graph showing the distribution of TRBC1 and TRBC2 in T cells
under each condition. (E) Stacked bar plots showing the clone state of eachT cell subtype in each condition. (F) Heat maps showing differential
TRBV‐J and TRAV‐J rearrangement. Prevalent TRBV‐J combination pairs (top) and TRAV‐J combination pairs (bottom) are compared across
conditions. Usage percentage are sum normalized by column. (G) Density curve plots showing the distribution shift of TRA and TRB chain CDR3
region length in TCR clone types from each condition. (H) Box plot showing TRBC1 and TRBC2 percentages in NJ, FJ, SJ, Cont, Conv, Mild, and
Seve conditions. (I) Box plot showing the alpha diversity of TCR clonotypes in each PBMC sample. Data points are colored by condition. FJ,
first injection; NJ, no injection; PBMCs, peripheral blood mononuclear cells; SJ, second injection; TCR, T cell receptor; UMAP, uniform manifold
approximation and projection.
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Similarly, “IFN response” was also enriched by GO analysis after

SARS‐CoV‐2 infection (Supporting Information: Figure S5, S8 and

S14). The expression level of IFN‐α was also significantly upregulated

in COVID‐19 patients (Supporting Information: Figure S5, S8 and

S14), suggesting an antiviral role triggered by IFNs. Notably,

COVID‐19 patients showed higher response to IFN‐α than immu-

nized individuals with the strongest response to IFN‐α found in

severe disease (Figures 6, 7). This indicates that the stronger

response to IFNs in COVID‐19 patients may be involved in immune

pathology (e.g., lung injury).34

In this report, we observed broad immune activation after

immunization with CoronaVac. First, the levels of neutralizing

antibodies (anti‐S‐RDB‐specific antibody) significantly increased after

the SJ (Figure 2, Supporting Information: Figure S4, Table S2).

Second, B cell activation in PBMCs postvaccination is supported by

our data and evidenced by: (i) enrichment of genes involving in “B cell

activation,” “adaptive immune response,” and “antigen processing and

presentation”; (ii) significant upregulation of two important B cell

activation pathways (GO:0002312 and GO:0042113); (iii) the

activation of naïve B and memory B cell subsets; (iv) significant

expression of key genes (e.g., PRDM1, XBP1, IFR4, PAX5, IL4R, and

IL21R). Particularly, PRDM1 plays a core role in determining and

shaping the secretory arm of B cell differentiation and in promoting Ig

synthesis. XBP1 is a positively acting transcription factor of the

CREB‐ATF family that is highly express in plasma cells and

is important for increasing protein synthesis in plasma cells.35 IRF4

is crucial for regulating Ig class‐switch recombination, and a previous

study has found that sustained and increased concentration of this

transcription factor promotes the generation of plasma cells.36 Third,

the activation of innate immune cells was observed in our study as

genes associated with “antigen processing and presentation,” “IFNs

response,” “T cell activation” and “immune response‐activating signal

transduction” were enriched by GO analysis (Figure 6). Fourth, the

activation of T cell subsets was also supported by our data as genes

involved in “T cell activation,” “T cell mediated immunity,” “antigen

processing and presentation,” and “IFNs response” were also

enriched by GO analysis (Figure 7). Similarly, broad immune

activation was also observed after SARS‐CoV‐2 infection (Supporting

Information: Figure S5, S8, S14). However, we observed significant

downregulation of some HLA class II genes in B, T, and innate cells in

COVID‐19 patients, especially for severe disease, implying a

dysregulation in crosstalk between adaptive immune cell classes.

Furthermore, some key chemokine receptor genes (e.g., CXCR5)

were also significantly downregulated in the PBMCs of severe

COVID‐19 patients (Supporting Information: Figure S5), which may

impair germinal center reaction, resulting in a dysregulated humoral

immune response.22

We analyzed the apoptosis, migration, cytotoxicity and exhaus-

tion scores in different immune cell subsets from immunized

individuals and compared their expression levels with COVID‐19

patients. Overall, the innate immune and T cell subsets showed

higher apoptosis and migration scores after immunization with

CoranaVac or SARS‐CoV‐2 infection (Figures 6 and 7, Supporting

Information: Figure S8 and S14). However, compared to postvaccina-

tion, SARS‐CoV‐2 infection exhibited higher apoptosis and migration

scores, with severe disease having the highest score. This suggests

that severe patients likely had increased lymphocyte apoptosis and

migration which may be associated with lymphopenia, a clinical

predictor for severe COVID‐19 disease.30 At the bulk level,

postvaccination effector T cell subsets did not display higher

exhaustion scores compared to prevaccination samples. However

for COVID‐19 patients, all samples had higher exhaustion scores

compared to controls, and those with severe disease displayed the

highest exhaustion scores. It is possible that the high exhaustion

status of effector T cell subsets may be associated with functional

impairment.37 Interestingly, the effector T cell subset from post-

vaccination showed lower cytotoxicity scores at the bulk level than

those of prevaccination. In contrast, the cytotoxicity scores of

the effector T cell subset from COVID‐19 patients were higher than

the controls with severe disease having the highest cytotoxic

score. Similarly, we observed that the cytotoxicity scores in each

subset of effector T cells were also significant elevated after

SARS‐CoV‐2 infection.

Although increased expression of proinflammatory cytokine

genes was observed in monocytes postvaccination, this upregulation

may not be adequate to cause a significant increase in systemic levels

of proinflammatory cytokines. This is supported by our immunoassay

results which showed no obvious increase in several key proin-

flammatory cytokines (e.g., IL‐6 and TNF) postvaccination (Support-

ing Information: Figure S12). In addition, the expression level of

proinflammatory cytokine genes after vaccination was significantly

lower than SARS‐CoV‐2 infection. These evidence suggest that

CoronaVac may not lead to acute inflammation or the cytokine

storm commonly observed in severe COVID‐19 patients.29 Among

the monocyte subsets, CD14+ monocytes were identified as the

major contributor to inflammation for both immunization and

SARS‐CoV‐2 infection. This is evidenced by: (i) a large increase in

CD14+ monocytes observed after vaccination and SARS‐CoV‐2

infection (Figure 2 and Supporting Information: Figure S4)29 and (ii)

CD14+ monocytes was the largest contributor to the inflammatory

scores (Figure 6). In addition, due to concerns about the blood

clotting side effect observed in several vaccine types, we also

examined several key genes (e.g., 2RX1, P2RY1, and TBXA2R)

involved in platelet aggregation in megakaryocytes.28 Unlike

SARS‐CoV‐2 infection, our data demonstrated that the expression

level of platelet aggregation‐associated genes were not signifi-

cantly upregulated after immunization with CoronaVac. This may

explain the fewer number of thrombus‐related adverse events

reported for CoronaVac.
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