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Besides overcoming physical constraints, such as extreme temperatures, reduced humidity, elevated pressure, and natural predators,
human pathogens further need to overcome an arsenal of antimicrobial components evolved by the host to limit infection,
replication and optimally, reinfection. Herpes simplex virus-1 (HSV-1) and herpes simplex virus-2 (HSV-2) infect humans at a high
frequency and persist within the host for life by establishing latency in neurons. To gain access to these cells, herpes simplex viruses
(HSVs)must replicate and block immediate host antiviral responses elicited by epithelial cells and innate immune components early
after infection. During these processes, infected and noninfected neighboring cells, as well as tissue-resident and patrolling immune
cells, will sense viral components and cell-associated danger signals and secrete soluble mediators. While type-I interferons aim
at limiting virus spread, cytokines and chemokines will modulate resident and incoming immune cells. In this paper, we discuss
recent findings relative to the early steps taking place during HSV infection and replication. Further, we discuss how HSVs evade
detection by host cells and themolecularmechanisms evolved by these viruses to circumvent early antiviral mechanisms, ultimately
leading to neuron infection and the establishment of latency.

1. Introduction

Herpesviruses are frequently found in humans, although
their prevalence significantly varies depending on ethnicity,
sex, and geographical location of individuals, among others
[1–5]. Currently, eight Herpesviridae family members are
known to infect humans: herpes simplex viruses (HSV) -1
and -2 (HSV-1, HHV-1 and HSV-2, HHV-2, resp.), vari-
cella zoster virus (VZV, HHV-3), Epstein Barr (EBV, HHV-
4), cytomegalovirus (CMV, HHV-5), human herpesvirus 6
(HHV-6), human herpesvirus 7 (HHV-7), and Kaposi
sarcoma-associated virus (KSV orHHV-8). All herpesviruses
harbor large genomes encoding >70 genes and share the
capacity to establish lifelong persistent infections in the host
([6] and NCBI).

Human infection with herpes simplex viruses (HSVs)
traces far back, even before the intercontinental migration

of our ancestors, as proposed by recent phylogenetic anal-
yses [7]. Symptomatic manifestations of HSVs have been
described as early as 400 BC and these viruses are often
considered the oldest viruses to be studied in the history
of science [8]. While HSV-1 is estimated to infect up to
one-third of the world population, HSV-2 infects nearly
500 million people around the globe with more than 20
million new cases occurring every year [4]. Importantly,
HSV-1 is the foremost important cause of infectious blind-
ness in developed countries and has gained importance in
primary genital infection, surpassing in many cases HSV-
2 [9–22]. Nevertheless, because HSV-2 recurs significantly
more often than HSV-1 in the genitalia, HSV-2 remains
overall the most frequent cause of genital ulcers worldwide
[23–26]. It is important to bear in mind that HSV-1 and
HSV-2 also produce several other pathological conditions,
such as encephalitis, conjunctivitis, zosteriform skin lesions,
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pneumonia, and systemic infections that compromise vital
organs [1]. An important concern regarding genital infection
with HSV is its association with increased HIV infection.
Indeed, genital infection with HSV has been suggested to
increase up to 3-4 times the susceptibility of acquiring HIV
[27–29], which has been proposed to be mediated, at least
in part by soluble mediators at the infection site [30, 31].
Furthermore, individuals coinfected withHSV andHIV shed
significantly more these viruses than individuals with single
viral infections [32–34].

Important efforts have been invested in the past 20 years
on the development of a vaccine against HSVs. However,
potential vaccine formulations that have reached the clinic
have proven ineffective at preventing infection or reducing
virus shedding [35, 36]. Discouraging results derived from
the latest HSV-2 vaccine clinical trial, which used a viral
subunit formulation, have led to new debates in the field and
rethinking on the role of neutralizing antibodies in protecting
against HSV-2, as well as the need for correlates of protection
[37–39]. Indeed, somewhat unexpected results were obtained
with a subunit vaccine consisting of HSV-2 glycoprotein D
(gD) plus an adjuvant, whichwas found to bemore efficacious
against HSV-1 than against HSV-2-induced genital disease
[40, 41]. Again, these data are leading to new paradigm shifts
in the field that hopefully will translate into novel vaccine
approaches that could eventually reach the clinic. The lack
of an effective vaccine against HSVs has flourished onto the
development of novel microbicides against these viruses [1].

HSV establishes a lifelong infection in the host by infect-
ing neurons and persisting latently inside these cells [42, 43].
Because sensorial nervous termini innervate the skin and
mucosae, infections at these sites with HSVs can lead to
neuron infection with a significantly high frequency [44, 45].
Indeed, HSVs can readily gain access to neurons somewhat
early after infecting epithelial cells, because these cells interact
closely. Nevertheless, to restrict virus access to neurons and
other tissues, the host has evolved an arsenal of antimicrobial
determinants that aim at blocking infection, progression
of infection, and microbe replication. However, as masters
of immune evasion, HSVs encode molecular determinants
that promote their stealth and overcome host defenses by
overriding several of the antiviral elements of the host.

2. HSV Infectious Cycle

Herpes simplex viruses are enveloped viruses with numerous
proteins and glycoproteins embedded on their exterior;
whether 11 of the viral glycoproteins encoded by the viral
genome are present on the virion surface remains to be
thoroughly defined [46, 47]. Nevertheless, at least five viral
glycoproteins have been implicated in viral entry: glycopro-
tein B (gB), gC, gD, gH, and gL [48, 49]. gB acts both as a viral
attachment protein and fusion protein by binding to heparan
sulfates (HS) on the surface of susceptible host cells [50] and
also is known to bind to paired immunoglobulin-like type 2
receptor (PILR) alpha [51, 52]. A similar function has been
described for gC in virus attachment, although only for HSV-
1 [53]. After gB-mediated attachment, gD binds to either of

its receptors: nectin-1 (PVRL1; poliovirus receptor-related 1)
expressed on the surface of most host cells or alternatively
HVEM (Herpesvirus Entry Mediator, TNFRSF14), mainly
expressed on immune cells [54, 55]. Furthermore, 3-O-sulfate
HS has also been suggested as a potential receptor for
gD, although its physiological relevance requires additional
research [56]. Binding of gD to its receptors is thought to
induce conformational changes leading to the functional acti-
vation of a complex formed by gH/gL [57]. Activated gH/gL
complex would in turn then promote changes in gB that
activate the fusogenic properties of this protein and mediate
the fusion of viral and host cell membranes [58, 59]. As an
alternative pathway, HSVs can enter cells through endocytic
vesicles [60, 61]. In both cases, fusion ofmembranes promotes
the entry of the capsid and accompanying viral proteins
(tegument) into the cytoplasm [62]. The tegument is a com-
plex mesh of >20 proteins beneath the envelope that wraps
the viral capsid and contains molecular determinants that
mediate, among others, the inhibition of cellular translation
and apoptosis [62, 63]. Once released into the cytoplasm, the
capsid associates with microtubules through two tegument
proteins VP1-2 (encoded byUL36) andUL37 and then travels
to the outer nuclear membrane to bind to the host nuclear
pore complex (NPC) to release the viral DNA into the nucleus
[62, 63]. Nucleoporin Nup358 has been associated with this
process by docking VP1-2 onto the nuclear pore complex
and facilitating the release of viral DNA into the nucleus
through this macromolecular complex [64]. Once released
into the nucleus, the viral DNA is transcribed by means of
the host RNA-polymerase II activity [65, 66]. However, not
all HSV genes are expressed synchronously but instead in
four consecutive rounds of transcription. First, immediate
early genes (alpha) are transcribed, many of which encode
for proteins contributing to immune evasion and work as
factors controlling cell translation [67]. Then, follows the
transcription of early genes (beta) that are required for DNA
replication [68]. Finally, early late and late genes (gamma-
1 and gamma-2) are transcribed, which mainly encode for
structural components of virions, such as capsid, tegument,
and surface proteins [69, 70]. These proteins can work as
well as important immune evasion determinants (see below).
To generate new virions, capsid proteins migrate from the
cytoplasm into the nucleus to assemble with viral DNA and
acquire at this location a layer of tegument proteins. Unlike
other viruses, HSVs do not alter nuclear pores on exit but
rather undergo envelopment in the inner nuclear membrane
to form an enveloped capsid [71]. The capsid then travels
through the perinuclear space and immediately fuses with
the outer nuclear membrane thanks to glycoproteins gB and
gH, exposing a tegument-recovered capsid into the cytoplasm
[72]. Once in the cytoplasm, the capsid is further coated with
additional tegument proteins and is once again enveloped in
the trans-Golgi network [73]. From here, virions are exported
in vesicles to the cell surface and secreted. Although host
tetherin (Bst-2 or CD317) has been shown to block the release
of certain enveloped viruses from the cell surface, the HSV
protein vhs (virion host shutoff protein, UL41) can counteract
the antiviral function of this protein by depleting it [74].
Noteworthy, HSVs can also propagate directly onto adjacent
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Figure 1: HSVs interfere with host detection of viral determinants. Immune and nonimmune cells express an array of pathogen recognition
receptors intended to detect microbes, which ultimately lead to NF-𝜅B and IRF translocation into the nucleus and secretion of antiviral
molecules, such as interferons and cytokines. A: Host cells can sense HSV determinants through TLR2, although the specific viral elements
detected by this receptor are currently unknown. Intracellular signaling through TLR2 can occur with the help of integrin 𝛼]𝛽3-binding after
this receptor binds with the HSV complex gH/gL. B: Alternatively, integrin 𝛼]𝛽3 can signal intracellularly on its own after gH/gL binding.
This process can be interfered by ICP0 C: TLR3, D: TLR7, and E: TLR9 engagement by activating ligands, such as polyI:C, imiquimod (IM),
and CpG-ODN, respectively, have been shown to play favorable roles against HSV infection by inducing activating pathways within cells that
lead to the secretion of antiviral molecules. F: Nucleic acids generated during HSV infection can also be detected by host intracellular sensors,
such as DAI, cGAS, and IFI16. G: The RIG-1/MDA5 complex can also detect virus-derived nucleic acids; however its function is blocked by
viral vhs. H: Finally, the inflammasome is activated by HSV determinants, although HSV ICP0 can counteract its activity and negatively
modulate its function.

cells through cell-cell interactions. In these circumstances,
virus components are directed to the interface of cell-cell
regions. This type of infection is used by HSVs to infect
T cells, which has been shown to occur through infected
fibroblasts in vitro [75, 76]. This type of infection is mediated
through a process called virological synapse and provides
the virus a safe haven from neutralization by antibodies or
complement (see below) [77, 78].

3. Evasion of HSV Sensing by Host Receptors

Immune and nonimmune host cells express an array of
surface and intracellular receptors intended to sense micro-
bial elements and initiating local and systemic antimicro-
bial responses. Such receptors, termed pathogen recognition
receptors (PRRs), recognize Pathogen Associated Molecular
Patterns (PAMPs), which consist among others of microbe-
derived molecules, such as lipids, proteins and nucleic acids

[79]. An important family of PRRs is Toll-like receptors
(TLRs), which upon binding with microbe elements lead to
intracellular signaling cascades that promote early antiviral
cellular responses and the secretion of soluble mediators that
activate infected and noninfected neighboring cells, as well as
the immune system [80–84].

It has been shown that HSVs induce the activation of
TLR2 in primary vaginal epithelial cells and also immune
cells, such as dendritic cells (DCs). Interestingly, it has been
suggested that in keratinocytes, neural cells, and epithelial
cells TLR2-mediated effects after virus infection require the
cooperation of 𝛼]𝛽3-integrin, likely due to the binding of the
HSV gH/gL complex to this integrin, leading to NF-𝜅B acti-
vation, interferon production, and IL-10 secretion (Figure 1)
[85, 86]. In DCs, the activation of TLR2 induces a cell
response that leads to the downstream activation of NF-
𝜅B and the transcription of immunomodulatory cytokines,
such as IL-6, IL-8, IL-10, IL-12, and TNF-𝛼 [87]. Another
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study with DCs also showed that HSV recognition by
TLR2 promoted IL-6 and IL-12 secretion and proposed that
this cytokine outcome was mediated, at least in part, by
TLR9 modulation, suggesting a previously uncharacterized
mechanism for sequential recognition of viruses via TLR2
through TLR9 [88]. Consistent with this notion, TLR2−/−
knockout mice secrete low levels of MCP-1, a chemokine
generally induced after TLR9 engagement [89]. Importantly,
TLR2−/− knockoutmice display prolonged survival afterHSV
infection, as compared to wild-type and TLR4−/− knockout
mice. Despite reducedmortality, viral loads remained similar
in TLR2-knockout and wild-type animals [90]. On the other
hand, microglia from TLR2−/− mice display delayed and
attenuated production of reactive oxygen species (ROS)
following viral infection and suffer lesser neuronal oxidative
damage in mixed neural cell cultures, as compared to HSV-
infected cells from wild-type animals [91].

TLR3 has also been described to play a role in HSV
infection, especially for neurons and during viral brain infec-
tion. For instance, it has been shown that TLR3 deficiencies
(TLR3−/−) render astrocytes permissive to HSV infection,
facilitating the establishment of CNS infection in animals.
Consistently, it was shown that TLR3 expressed in astrocytes
provided early control of HSV infection after viral entry
into the central nervous system and induced type-I IFN
responses in these cells. Remarkably, this TLR3 deficiency
did not seem to affect innate immune responses [92]. Other
studies have shown that astrocyte infection with HSV leads
to TLR3 engagement and NF-𝜅B activation, upregulating
the expression of TNF-𝛼 and IL-6 with antiviral functions
attributed to these twomolecules (Figure 1) [93].On the other
hand, studies performed in humans carrying mutations that
negatively modulate TLR3-mediated immunity have shown
that these individuals are more prone to HSV encephalitis
[94–96]. Consistent with these findings, a study with ex
vivo differentiated neurons, astrocytes and oligodendrocytes
derived from pluripotent stem cells from individuals with
TLR3 deficiencies were shown to be more susceptible to
HSV infection in vitro than control cells and displayed
compromised interferon secretion. Interestingly, these effects
depended significantly on the cell types analyzed [97]. On
the other hand, mice pretreated either intravaginally or
intraperitoneally with agonists for TLR3, such as polyI:C,
suffer significantly less virus burden upon intravaginal viral
challenge than nontreated animals, suggesting that activating
this pathwaywould play favorable roles againstHSV infection
(Figure 1) [98].

As with TLR3, pretreating animals with TLR7 agonists,
such as imiquimod, has also been shown to significantly
reduce HSV burden in the genital tract after viral infection
(Figure 1) [99]. Because of these results, imiquimod has been
tested in humans, particularly against HSV strains that are
resistant to acyclovir in immunocompromised patients, with
favorable results [100–102]. However, it is important to note
that another study found that imiquimod produced IFN-
independent anti-HSV effects in nonimmune cells, which
was independent of TLR signaling and IFN production,
suggesting that TLR7 is likely not the only activation pathway

involved in the favorable results observed against HSV in
other studies [101].

TLR9 has also been shown to play roles in HSV infection,
although similar to TLR3 and TLR7, because TLR9 agonists
can positively influence the antiviral response against this
pathogen. Indeed, mice pretreated intranasally with TLR9
agonists, such as CpG-oligodeoxynucleotides (CpG-ODNs),
show reduced secretion of inflammatory cytokines, such as
CCL2, IL-6, and CCL5, and reduced viral loads in the brain,
resulting in mild encephalitis and increased survival rates, as
compared to nontreated mice (Figure 1) [103]. Additionally,
treatment with CpG-ODN containing unmethylated CpG
provides protection against lethal vaginal challenge with
HSV that was probably mediated by an intricate crosstalk
between plasmacytoid DCs (pDCs) and vaginal stromal cells,
as well as type-I IFNs [104–106]. Similar to the findings
described with TLR3 and TLR7, these results suggest that
modulating TLR9 signaling could be a promising strategy
for limiting HSV infection in the host, although results from
another group suggest that the antiviral effects mediated
by TLR9 antagonists might not necessarily be mediated
uniquely by intracellular events linked to TLR9 signaling
[107]. Nevertheless, the results obtained with TLR9 agonists
suggest that activating this TLRmight be a useful strategy for
controlling pathological responses induced by HSVs [108].
When combined with antivirals, such as acyclovir or anti-
inflammatory molecules, this strategy could improve current
therapies against these viruses [103, 109].

Importantly, HSVs also induce the activation of non-TLR
sensors in target cells. Namely, primary vaginal epithelial
cells display increased activation of DNA sensors, such as
DAI (DNA-dependent activator of interferon) and IFI16
(interferon-inducible 16), which trigger the secretion of IL-
6 (Figure 1) [110]. Another non-TLR host sensor includes
𝛼V𝛽3-integrin, mentioned above with TLR2, which was also
recently described to function as a major sensor of HSVs
per se and activator of innate immunity by relocating the
viruses’ nectin-1 receptor to cholesterol-rich microdomains,
thus, enabling virus uptake into dynamin 2-dependent acidic
endosomes [111]. 𝛼V𝛽3-integrin interacts with HSVs gH/gL
complexes and is thought to signal at least through two
pathways, one mediated by TLR2 with the activation of NF-
𝜅B and consequently induction of type-I interferons and
another involving sarcoma- (SRC-) spleen tyrosine kinase-
(SYK-) caspase recruitment domain-containing protein 9-
(CARD9-) TRIF (TIR-domain-containing adapter-inducing
interferon-𝛽), which affects interferon regulatory factor 3
(IRF3) and IRF7 (Figure 1) [85, 86]. Importantly, the HSV
viral protein ICP0 can counteract these 𝛼V𝛽3-integrin sig-
naling pathways to impair sensing of HSVs by infected
cells [86]. A recent study suggests that TLR signaling via
MyD88 andTRIF is expendable for controllingHSV infection
and spread. Indeed, MyD88−/−, TRIF−/−, and MyD88−/−-
TRIF−/− double knockout mice displayed similar levels of
HSV replication, when compared towild-typemice, although
this particular study was focused on HSV corneal infection.
Importantly, the DNA sensor IFI-16/p204 was identified here
to be key for the activation of IRF3 and IFN-𝛼 production
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for viral containment [112]. Consistently, silencing the genes
that encode for IFI16/p204 inhibits the activation of IRF3
and NF-𝜅B in response to HSV DNA [113]. Furthermore, a
recent study showed that IFI16 depletion was associated with
increased HSV yield, while its overexpression reduced the
amount of virus obtained in cell cultures. ChIP assays found
that IFI16 binds to HSV promoters and that cells devoid of
this protein display increased amounts of host proteins that
promote viral gene transcription at these locations. These
findings suggest that IFI16 possesses antiviral functions and
negativelymodulates HSV transcription after binding to viral
DNA [114]. Another intracellular, non-TLR receptor involved
in the detection of HSV determinants is cyclic guanosine
monophosphate-adenosine monophosphate (cGAMP) syn-
thase (cGAS), a novel cytosolic DNA sensor (Figure 1). This
protein has been shown to detect HSV DNA leading to type-
I IFN (IFN-I) production in fibroblasts, macrophages, and
dendritic cells and mice deficient for cGas succumb to death
after infection with this virus [115]. Intracellular nucleic acid
sensors RIG-I and MDA5 (retinoic acid-inducible gene 1
and melanoma differentiation-associated protein 5) also play
antiviral roles in infected cells, yet vhs can selectively inhibit
the expression of these molecules and prevent downstream
IRF3 dimerization, aswell as the translocation of this complex
into the nucleus (Figure 1). By doing so, vhs can block
signaling mediated through non-TLR pathways [116].

Another mechanism by which host cells can sense and
initiate antiviral responses is through the activation of the
inflammasome.The inflammasome is amultiprotein complex
involved in translating pathogen recognition events into the
secretion of inflammatory molecules, such as IL-1𝛽. Relevant
inflammasome sensors include NLRP3 and AIM2 in the
cytoplasm of cells and the nuclear sensor IFI16, discussed
above. Recent studies have shown that HSV can induce early
activation of the inflammasome and then, later on, inhibit
its function during active infection [117]. Indeed, fibroblasts
infected with HSV display activated IFI16 and NLRP3 and
secrete IL-1𝛽 early after infection, although later on IFI16
is targeted to the proteasome by ICP0, likely releasing the
break that IFI16 imposes on the transcription of HSV genes
[114, 117]. Subsequently, NLRP3 and AIM2 remain unaltered
in cells with an inhibited inflammasome and little secretion
of mature IL-1𝛽 [117].

4. Modulation of Cell Viability and Early
Antiviral Response

Sensing of microbial components by immune and nonim-
mune cells can lead to cell apoptosis, as a host strategy to
block virus replication and spread within cells. Importantly,
HSVs encode viral determinants that block or delay the onset
of apoptosis in infected cells, likely as a mechanism to extend
the viability of its substrate for replication. This process has
been proposed to be mediated by viral glycoproteins such as
gJ and gD, as virus mutants lacking each one of these proteins
initiated apoptotic cascades in epithelial cells (Figure 2(a))
[118]. Furthermore, the viral proteins ICP10PK andUL14 have
also been shown to prevent apoptotic processes triggered in

neurons and epithelial cells after viral infection (Figure 2(a))
[119–121]. Finally, US3 an HSV protein kinase conserved
throughout alphaherpesviruses has also been shown to play a
key role in blocking apoptosis induced by viral gene products
and exogenous agents in epithelial cells. The antiapoptotic
effects of US3 would be mediated through its interaction
with programmed cell death protein 4 (PDCD4), which is
retained in the nucleus of infected cells (Figure 2(a)) [122].

Nevertheless, other HSV proteins have been proposed
to induce apoptosis and necrosis in host cells. For instance,
HSV has been shown to induce necrosis in mouse fibroblast
cells (L929 cells) mediated by the interaction between the
viral ribonucleotide reductase large subunit ICP6 and RIP3
(receptor-interacting kinase 3) through RHIM domains,
which activate MLKL (mixed lineage kinase domain-like
protein). Consistently, anHSV ICP6 deletionmutant failed to
cause effective necrosis of HSV-infected cells and mice lack-
ing RIP3 exhibited severely impaired control of HSV repli-
cation and pathogenesis, highlighting the importance of the
latter in limiting virus pathology [123]. Noteworthily, another
study showed that early after HSV infection, natural killer
cells (NK cells) suffer apoptosis through Fas/FasL when these
cells interact with HSV-infected macrophages (Figure 2(b))
[124].

Similarly, HSV infection of dendritic cells induces apop-
tosis early after virus entry, particularly after the release of
immunomodulatory cytokines [125, 126], and the viral pro-
tein 𝛾34.5 can interfere with DC autophagosomematuration,
which is thought to play antiviral functions in these cells
by degrading virus determinants (Figure 2(b)) [127, 128].
A similar role for autophagy has been proposed in the
context of HSV infection in neurons as an alternative to IFN
responses, which would likely result in the death of these
cells or detrimental outcomes for the host. Indeed, neurons
from dorsal root ganglia require autophagy to limit HSV
replication in vivo and in vitro [128].

Antiviral functions in host cells are also mediated by
Protein Kinase R (PKR), which phosphorylates the trans-
lation initiation factor EIF2A as a mechanism to inhibit
the translation of RNA messengers upon viral infections.
Importantly, this host protein has been shown to play a key
role in controlling HSV replication in vitro and in vivo [129,
130]. However, HSVs have evolved molecular determinants
that negatively modulate PKR function. For instance, viral
𝛾34.5 and US11 have been proposed to inhibit the activity of
PKR to promote the translation of viral proteins (Figure 3)
[131, 132]. Furthermore,HSVs have evolved determinants that
preferentially block the translation of host molecules over
viral genes, in such a way to impair their antiviral activity.
Indeed, HSVs vhs protein can mediate the degradation of
host messenger RNA through their ribonuclease activity
(Figure 3) [133]. The spatial-temporal delivery of vhs has
evolved in such a way to display optimal activity early after
infection for hampering host mRNA transcription and not to
alter viral mRNAs transcribed later on [134].

Early sensing of viral determinants by host PRRswill gen-
erally lead to the activation of interferon pathways that aim at
impairing virus replication and its shedding within the host
[135]. Although cells in the genital tract infected with HSV-2
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produce interferons in response to this virus, the magnitude
of this response is generally hampered in the infected tissue,
suggesting that these molecules likely play favorable antiviral
roles [136]. Indeed, biopsies obtained from individuals
infected with HSV show extremely low levels of type-I IFNs
(IFN-𝛼 and IFN-𝛽), despite the presence of a large number
of cells capable of synthesizing these mediators, which
suggests alterations in the host interferon response during
HSV infection [137]. Consistent with this notion, type-I IFN
receptor (IFNAR) knockout mice inoculated in the footpads
with HSV manifest systemic viral infections that affect
the lungs, liver, and spleens, although disease is nonlethal

[138]. Interference with host interferon pathways would be
mediated, at least in part by the early viral protein ICP0,
which can impair IRF3 function and block the transcription
of genes regulated by this transcription factor [137]. Addi-
tionally, HSV ICP27 also inhibits type-I IFN signaling and
interferes with nuclear accumulation of STAT-1 (Figure 3)
[139]. Furthermore, the HSV Ser/Thr kinase US3 can hamper
IFN-𝛽 production by hyperphosphorylating IRF3 and by
blocking the dimerization and nuclear translocation of this
factor (Figure 3) [140]. Similarly, the tegument protein VP16
can also abrogate IFN-𝛽 expression by inhibiting NF-𝜅B
and IRF3 activation by impairing the recruitment of the
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coactivator CBP, without interfering with IRF3 dimerization,
nuclear translocation, or its DNA binding activity (Figure 3)
[141]. Yet, another mechanism by which HSV inhibits IFN-𝛽
expression is through the deubiquitination of TRAF3 by
the viral ubiquitin-specific protease UL36, which inhibits
stimuli-induced IRF3 dimerization, promoter activation, and
the transcription of IFN-𝛽 (Figure 3) [142]. As noted, HSVs
have evolved redundant and nonredundant mechanisms to
specifically impair the function of host molecules that are key
for the expression of antiviral molecules, namely, interferons.

The importance of IFNs in controlling infection by HSVs
is highlighted by the fact that the frequency of genital herpetic
recurrences can be reduced in patients by applying topical
IFN-𝛼, which also reduces viral dissemination [143]. More-
over, the recently described interferon IFN-𝜀, characterized as
a type-I IFN constitutively expressed by epithelial cells in the
female andmale reproductive tract, is proposed to be a potent
antiviral host mediator that likely contributes to control of
HSV infection [144, 145]. However, the exact mechanism
by which IFN-𝜀 exerts its anti-HSV effects remains to be
determined. Importantly, expression of IFN-𝜀 varies with
the female hormonal cycle and seems to be limited to cells
belonging to reproductive organs [145, 146].

5. Secretion of Immunomodulatory Mediators
Early after HSV Infection

After HSV has blocked immediate host antiviral responses,
which rely on the sensing ofmicrobe elements and early inter-
feron responses, cell damage resulting from virus replication
likely spreads virus-elicited danger signals and damage-
associated molecular patterns (DAMPs) onto other nonin-
fected cells [117].These neighboring cells, as well as patrolling
immune cells, may sense these danger elements and initi-
ate cytokine and chemokine responses that will modulate
the milieu and other immune components [126, 147, 148].
Whether the solublemediators produced in response to these
danger signals or HSV itself promote the clearance of the
virus or favor its persistence and spread in the host is largely
unclear.

Because cytokine secretion is generally dependent on
the canonical activation of NF-𝜅B, HSVs have evolved
several molecular mechanisms to modulate the activity of
this transcription factor. A recent report showed that the
viral DNA polymerase processivity factor UL42 interacts
with p65/RelA and p50/NF-𝜅B1 to block the translocation
of NF-𝜅B to the nucleus in response to stimuli, such as
TNF-𝛼 [149]. Consistently, another study found that HSV
ICP0 inhibits TNF-𝛼-induced NF-𝜅B activation, interacting
similarly with p65/RelA and p50/NF-𝜅B1 [150]. US3 has also
been shown to significantly inhibit NF-𝜅B activation and
decrease the expression of inflammatory chemokines, such
as IL-8 [151]. Furthermore, HSV VP16 also inhibits NF-𝜅B
activation and blocks IFN-𝛽production [141].However, other
HSV proteins, such as tegument protein UL37, have been
shown to promote NF-𝜅B activation and IL-8 secretion in
keratinocytes [152]. Activation of NF-𝜅B after cell infection
has also been reported to facilitate viral replication [153, 154].

Taken together, HSVs have evolved strategies to both block
and promote the activation of NF-𝜅B within infected cells.
Whether these opposing effects depend on the cell types
targeted by these viruses or different stages of the infectious
cycle requires further study. Nevertheless, these findings
highlight the importance ofNF-𝜅Bmodulation byHSVs after
infection.

Despite interference with NF-𝜅B activity, cells infected
with HSV nonetheless secrete numerous modulatory
cytokines and chemokines after infection or at the site
of inflammation. For instance, HSV has been shown to
induce the secretion of CCL2, IL-8, IL-6, and TNF-𝛼 in
primary endometrial genital epithelial cells [155]. In vivo,
HSV promotes CXCL9 expression in the cervical mucus of
HSV-positive women [156]. Importantly, this chemokine
and CXCL10 have been shown to play important roles
against HSV in CNS infection in the mouse model, likely
by recruiting NK and cytotoxic T cells to the infected tissue
[157]. Similarly, a recent study proposed that CXCL10 is
needed for establishing protective immunity against HSV-2
genital infection after vaccination with an attenuated HSV
strain [158]. CCL2 induced upon HSV infection has been
attributed a favorable role in corneal infection in the mouse
model. Indeed, CCL2−/− mice were unable to contain the
virus and failed to recruit inflammatory monocytes to
the infection site [159]. Furthermore, CCL2 expression
driven by IFI16 recognition of HSV has been described to
facilitate the recruitment of inflammatory monocytes to the
infection site, as silencing of p204/IFI-16 resulted in the loss
of CCL2 production and significantly more HSV shedding
[159]. As indicated above, another cytokine induced after
HSV infection is IL-6. Noteworthily, a protective role
has been attributed to this cytokine in microglia, likely
through downstream signaling of Signal Transducer and
Activator of Transcription 3 (STAT3), although the precise
mechanism leading to its protective role is unclear [160, 161].
Mast cells have also been shown to secrete IL-6 early after
HSV infection, as well as TNF-𝛼, yet these cytokines were
not induced directly by HSV in this study but depended
on supernatants from HSV-infected keratinocytes and
the IL-33 receptor on the former cells. Importantly, mice
lacking TNF-𝛼 or IL-6 succumbed to death, consistent with
a protective role for these cytokines [162]. Contrarily, a
recent study suggested that treating mice with anti-TNF-
𝛼 in combination with the antiviral valacyclovir could
significantly improve the prognosis of encephalitis caused by
HSV [109].

One aspect that has brought important attention onto
cytokines and chemokines produced after HSV infection is
that some of the molecules secreted in the genital tract can
favor host infection by other sexually transmitted pathogens,
such as the human immunodeficiency virus (HIV) [30].
Indeed, infection with HSV-2 increases 3-4 times host sus-
ceptibility of acquiring HIV and, furthermore, coinfection
increases the shedding of both viruses [27–29, 163]. These
findings have been corroborated in a murine infectionmodel
[31]. The increased susceptibility to acquire HIV after HSV-
2 infection has been suggested to result, within others, by an
increased recruitment of target cells forHIV, such as dendritic
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cells and T cells to the site of infection [164, 165], increased
expression of HIV-receptor molecules at the surface or
specific cell populations [166, 167], and reduced expression
of cell surface molecules that actually promote the capture
and degradation of HIV [168]. Furthermore, immune cells
such as dendritic cells infected with HSV have been shown
to produce soluble mediators that promote the reactivation
of HIV from cells latently infected with the latter virus
[126]. Regretfully, the identities of the soluble molecules that
account for the observed effect have not been identified so far.

Besides upregulating the expression of certain cytokines
and chemokines, HSVs can also reduce the expression of
certain antiviral molecules, such as the secreted leucocyte
protease inhibitor (SLPI). Indeed, HSV-infected cells secrete
less SLPI, which reduces the infectivity of HSV in vitro [169].
Furthermore, a decrease in the expression of SLPI would
likely promote an increase in the secretion of proinflamma-
tory cytokines, which are associatedwith exacerbated damage
to the infected tissues [169]. Nevertheless, virus-mediated
inhibition of other chemokines could favor the host, such as
CXCL2 which is secreted by monocytes in response to HSV
which is known to recruit neutrophils that elicit damaging
inflammatory immune responses to host cells and tissues,
namely, neurons [170].

Despite the fact that HSVs have been extensively stud-
ied, it is surprising to note how little we know about the
contribution of cytokines and chemokines induced upon
infection by this virus to infection and pathology. Cytokines
and chemokines induced by HSV infection will likely play
different roles for the host, either favorable or antagoniz-
ing, depending on the tissue infected, whether it is skin,
genitalia, eyes, or the central nervous system. Furthermore,
differences in the nature and amounts of the cytokines and
chemokines secreted upon viral infection, as well as the roles
of these molecules on virus clearance and disease, will likely
depend on whether infection is mediated by HSV-1 or HSV-
2. High throughput techniques such as multiplex cytokine
arrays and the availability of numerous knockout mice for
these molecules should provide new insights and valuable
information on the role of these soluble mediators in HSV
infection in the near future.

6. HSV Interferes with Innate
Immune Functions

Innate immunity has evolved soluble components and spe-
cialized cells to block microbe infection, replication, and
shedding. One such element is the complement. The com-
plement is composed of serum proteins that, once triggered
by microbial determinants or antibody bound to ligands,
interact with each other in a cascade of events that lead to
the damaging of the surfaces of the pathogen or cells infected
with the microbe. However, HSVs have evolved molecular
determinants to interfere with the function of complement
protein C5 and block its downstream activating properties;
this process is mediated by glycoprotein C [78, 171]. By doing
so, the virus likely extends its lifespan in the serum and that
of the cells it infects.

NK cells play important roles against several viral
pathogens; however their role in HSV infection is frequently
debated. Although some studies propose key roles for these
cells, others have underestimated their importance at con-
trolling HSV infection [172, 173]. HSV can directly activate
NK cells through TLR2; whether this interaction promotes
viral clearance or not in vivo is still unclear [174]. HSV can
also decrease the expression of NK-activating ligands such
as MICA (MHC class I polypeptide-related sequence A) on
the surface of infected cells, thus interfering with the effector
activity of these cells.This processwould bemediated by a late
HSV gene product, which would mask, internalize, or retain
MICA intracellularly [175, 176].

Natural killer T (iNKT) cells are CD1d-restricted T cells
that express invariant TCR chains, as well as NK surface
markers, and are specialized in recognizing polar lipids
presented on the surface of CD1d molecules [177]. Although
variations can be observed in the amount of iNKT cells
present after HSV infection, changes in the number of cells
and expression of markers on their surface are somewhat
discrete when compared to patients in the steady state,
suggesting potential modulation of these cells by HSVs [178].
Furthermore, infection with HSV has been described to
negatively modulate the activity of NKT cells by simply
directing CD1d molecules from the cell surface of infected
cells into intracellular compartments, thus blocking antigen
presentation [179, 180].

7. Concluding Remarks

World prevalence for HSVs is a truthful testimony of the
success of these viruses in establishing latent infection in
the host. Successful infection with HSVs is likely the result
of a wide array of viral determinants encoded by these
viruses with the capacity to interfere with multiple host
factors intended to control early infection by pathogenic
microbes. Indeed, HSVs effectively block early cellular antivi-
ral mechanisms by extending the survival of cells that serve
as substrates, hence favoring virus production and killing
cells that initiate and modulate effective antiviral immune
responses, such as DCs. Additionally, these viruses promote
their stealth by interfering with their sensing by infected
cells and by mounting somewhat modest interferon and
cytokine responses that favor their replication and shedding.
These phenomena will ultimately allow these viruses to reach
cells needed for establishing latency: neurons. Noteworthily,
important progress has been made in the last years in
identifying early antiviral components elicited and blocked by
HSVs. These studies will hopefully lead to the identification
and development of drugs that specifically interfere with viral
processes. Noteworthily, findings, such as those related to the
activation of particular TLRs that favor host responses against
these viruses, will undoubtedly contribute to the develop-
ment of novel antiviral therapies. Indeed, potentiating early
antiviral functions in the host before exposure could be as
effective as novel anti-HSV microbicides currently under
development, while an effective vaccine against these viruses
reaches the clinic.
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