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Abstract: Somatostatin (SST)/somatotropin release-inhibiting factor (SRIF) is a well-known neu-
ropeptide, widely distributed in the central and peripheral nervous systems, that regulates the
endocrine system and affects neurotransmission via interaction with five SST receptors (SST1-5).
In the gastrointestinal tract, the main SST-producing cells include intestinal enteroendocrine cells
(EECs) restricted to the mucosa, and neurons of the submucosal and myenteric plexuses. The action
of the SRIF system is based on the inhibition of endocrine and exocrine secretion, as well as the
proliferative responses of target cells. The SST1–5 share common signaling pathways, and are not
only widely expressed on normal tissues, but also frequently overexpressed by several tumors,
particularly neuroendocrine neoplasms (NENs). Furthermore, the SRIF system represents the only
peptide/G protein-coupled receptor (GPCR) system with multiple approved clinical applications
for the diagnosis and treatment of several NENs. The role of the SRIF system in the histogenesis
of colorectal cancer (CRC) subtypes (e.g., adenocarcinoma and signet ring-cell carcinoma), as well
as diagnosis and prognosis of mixed adenoneuroendocrine carcinoma (MANEC) and pure adeno-
carcinoma, is poorly understood. Moreover, the impact of the SRIF system signaling on CRC cell
proliferation and its potential role in the progression of this cancer remains unknown. Therefore, this
review summarizes the recent collective knowledge and understanding of the clinical significance of
the SRIF system signaling in CRC, aiming to evaluate the potential role of its components in CRC
histogenesis, diagnosis, and potential therapy.
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1. Introduction

Colorectal cancer (CRC) is one of the most common human malignancies worldwide,
with more than 1.9 million new cases and 935,000 deaths in 2020. Overall, CRC ranks
third in term of incidence, and second in terms of mortality [1,2]. The majority of CRCs
arise from precursor lesions such as adenoma, which later develop into adenocarcinoma.
Adenocarcinomas originating from epithelial cells of the colorectal mucosa account for
more than 90% of CRC cases [3–5].

A combination of genetic/epigenetic and environmental factors, widely described in
the available literature, contribute to the onset and development of CRC [6,7]. However,
there are still many open questions regarding, e.g., the initiation of neoplastic lesions [4].
An attractive hypothesis for the initiation and growth of CRC is “the cancer stem cell
(CSCs) concept hypothesis”, based on the presence of a small subpopulation of cells with
embryonic stem cell (ESC) characteristics. Most research work focuses on the identification
of genes involved in the induction and pluripotency of stem cells (SCs) and shows the
markers of CRC CSCs (reviewed in [5]). However, a significant difficulty in these studies
relates to the fact that CRC cells not only exhibit multi-endocrine features, producing dif-
ferent types of neurohormonal polypeptides, but also amphicrine characteristics (epithelial
mucin-positive cells) of different grades. In addition, most of the cells in the intestinal
crypts adjacent to the tumor also exhibit the described features [8,9]. There are suggestions
of close cooperation between CSCs and neuroendocrine cells (NCs), which reside adjacent
to colonic SCs in the crypt SC niche [10,11].
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Furthermore, the somatotropin-release inhibitory factor/somatostatin (SRIF/SST) sys-
tem plays a major role in the maintenance of CSCs in a quiescent state [10,12]. In the central
nervous system (CNS), SST serves the role of a typical neurotransmitter/neuromodulator,
regulating locomotor and cognitive functions. In turn, in peripheral tissues, mostly the
gastrointestinal (GI) tract, it serves as a pan-inhibitory peptide in processes of endocrine
and exocrine secretion. It also affects the motility, blood flow, and intestinal absorption,
and exhibits anti-inflammatory activities [13–15].

Furthermore, the SRIF system is characterized by a strong antiproliferative activ-
ity, increasing cell apoptosis and inhibiting angiogenesis in most of the cancerous tis-
sues [12,16–20]. This property is already used in clinical practice [20–26]. SST acts through
the activation of five membrane receptors (SSTRs/SSTs), belonging to the G protein-coupled
receptor (GPCR) family [12,16,19,24,27,28].

The most abundant source of SST in the GI tract is a group of highly specialized
intestinal endocrine cells, known as enteroendocrine cells (EECs) restricted to the mucosa,
termed D cells in the stomach [29–33], as well as delta (δ) cells in Langerhans islets of the
pancreas [34–37]. SST in the GI tract is also produced by neurons of the enteric nervous
system (ENS) [24,29,30,36,38–41]. However, the majority of the circulating SST is secreted
by gastrointestinal D cells (~65%), ~30% by the CNS, and ~5% by pancreatic D (δ) cells [37].

SST is a peptide that assumes two forms (SST-14 and SST-28), secreted mostly in a
paracrine/neurocrine fashion, released in a pulse manner as a very short-lived peptide of
about 3 min bioactive half-life in circulation, where it is degraded rapidly by ubiquitous
peptidases [12,22,24,37]. In CNS, the peripheral nervous system (PNS) and pancreas SST-14
is the dominating form, while SST-28 is secreted by D cells in the GI tract [42].

Differential and often very strong expression of SSTRs (mRNA, protein) has been
detected in a number of solid tumors in humans [43–49]. This mostly concerns gas-
troenteropancreatic neuroendocrine tumors/neoplasms (GEP-NETs/NENs) or mixed ade-
noneuroendocrine carcinomas (MANECs) [50–52]. However, more studies are needed
to determine the role of the SRIF system and the mechanism of its action in the patho-
genesis of non-NETs in the GI tract, including sporadic CRC [49,53,54]. The remaining
questions include, e.g., the role of the SRIF system in histogenesis of colorectal adenocarci-
noma cells [8,9,52,55,56], as well as the origin of signet-ring cells in mucinous adenocarci-
noma [57] and SC overpopulation [10]. Furthermore, the diagnostic/prognostic role of the
tissue expression of SRIF system components in sporadic CRC is still subject to discussion.
Similarly, the mechanisms of immune system control via SRIF system in colorectal cancers
are also poorly understood [20,58]. In the most recent literature, the participation of the
epigenetic mechanisms in the modification of the expression of the SRIF system factors
is often discussed, as there is a possibility that the knowledge of such could result in
improvements in cancer therapy [49,59]. Methylated SST is one of the biomarkers of early
CRC detection [59].

This review summarizes the recent collective knowledge and understanding of the
clinical significance of the SRIF system signaling in colorectal cancer, aiming to evalu-
ate the potential role of this system’s components in CRC histogenesis, diagnosis and
potential therapy.

2. The SRIF System—General Comments

The SRIF system comprises seven genes encoding two peptide precursors, somato-
statin (SST/SRIF) and cortistatin (CST), as well as five receptors [12]. The human SST gene
contains a singular intron, interrupting the coding sequence in the propeptide region of
the molecule [60,61]. This gene is localized on chromosome 3 and has one transcript and
262 orthologs [62]. SST protein has two biologically active forms: 14 amino acid (AA)
form (SST-14) and a 28 AA form, derived from the larger precursor preprosomatostatin
of ~120 AA [63]. It is not clear whether the two peptides are co-expressed by the same or
separate cells [12].
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2.1. Somatostatin (SST) Localization and Role in Physiology

SST was first described over 50 years ago in rat [64] and sheep hypothalamus ex-
tracts [65], and was known since then as the somatotropin release-inhibiting factor/hormone
(SRIF, SRIH) or growth hormone release-inhibiting factor/hormone (GHIF, GHIH). In turn,
first isolation and characterization of this tetradecapeptide with a sequence of H-Ala-
Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Trh-Ser-Cys-OH was performed on material
derived from sheep hypothalamus [65]. Both of the mentioned studies related to the SST-14
form of this protein, with the N-terminally extended version SST-28 described later [66].
Isolation and sequencing of the gene encoding human SST [60,61] allowed the discovery of
the biochemical and biological properties of this peptide, as well as the regulation of its
gene expression in cells of different tissues and organs.

Moreover, the presence of SST was detected in the anterior and posterior lobes of
the pituitary gland, cerebral cortex, spinal cord, and PNS [12,34]. It was detected in the
auditory and visual sensory neurons, and nerves of the sympathetic and parasympathetic
nervous system [34,67]. Moreover, a recent paper confirms the broad distribution of SST
in the CNS and describes the role of this peptide in local synaptic transmission and in
spreading into the extracellular space via volume diffusion (reviewed in [68]).

The ultrastructural characteristic of SST-producing cells in the nervous system is
their round shape, electron dense secretory granules, cytoplasmic elongations, flocculent
matrix, and closely apposed limiting membrane. Nerves characterized by SST presence
contain large, dense P-type neurosecretory granules, distinct from those storing other
peptidergic neurotransmitters [69]. In neurons of rat dorsal root ganglia, co-localization of
SST with other peptides has been described, e.g., calcitonin gene-related peptide (CGRP)
and tachykinins in the same secretory granules, suggesting that SST cooperates with other
peptides in neural stimulation at the synapse level [70].

In the GI tract, the majority of SST production occurs in mucosa (>90%), mostly of the
stomach, the duodenum, and the jejunum, with <10% taking place in the submucosal and
muscle layers. In the mucosa, SST is localized in epithelial endocrine cells/enteroendocrine
cells (EECs) [24,29,30,36,38–41]. The most abundant sources of SST in the GI tract are
intestinal EECs, termed δ- or D cells in the antral and the fundic mucosa of the stom-
ach. D cells are described as of a “closed type” in the fundic mucosa, not showing any
luminal contact, and “open type” in the antrum, as their apical membrane is fused with
the gastric lumen. SST regulates intragastric pH via restriction of acid secretion from
parietal cells [29–31,33], inhibiting gastrin production in the G cells and histamine secretion
from enterochromaffin-like (ECL) cells [33], as well as delaying gastric emptying [32].
SST-producing cells also include δ-cells, constituting around 5% of endocrine cells in
Langerhans islets in the pancreas [34–37]. Pancreatic δ-cells are neuron-like, forming a
network for intra-islet communication. In humans, they are scattered throughout the islets
and are intermingled with α- and β-cells, with a relatively small number of axon-like
projections [71]. Morphological descriptions of these SST-producing cells are available in
the literature [41,69,72]. Negative feedback between δ- and β-cells in the pancreas affects
glycemic control, and any disruption of these interactions plays a role in the pathogenesis
of diabetes [41,71]. In recent years, the possibility of converting non-β islet cells (includ-
ing δ-cells) into β-cells to replenish β-cell mass has also been explored as a way to treat
diabetes [73]. Apart from D cells in the GI tract, SST can also be produced by other EECs,
known as the K cells in the jejunum, in which it is co-expressed with glucagon-like peptide
1 (GLP-1), secretin, cholecystokinin (CCK), and peptide YY (PYY) [32,74–76]. The weak-
nesses of letter classification are highlighted when it comes to EECs (e.g., D and K cells)
that produce SST in the GI tract. According to some authors, alternative names should
include the site of hormone secretion, species, and detected peptides/hormones [75,76].

In one of the more recent taxonomies of small intestinal cell subtypes, SST was specific
for the cellular SAKD subset [77]. The cells that produce SST in the intestine (K cells)
are “flask-shaped”, with apical membranes exposed to the lumen [75]. In mice, K-cells
located in the upper small intestine were described to overlap in 10% with GLP-1 and in
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6% with SST [74]. However, the intestinal SST, as opposed to stomach SST, is produced
mostly in ENS structures of the submucosal and myenteric plexuses (in Dogiel type II
neurons) [38–40]. In the human colon, similarly to the small intestine, co-localization of
SST and calretinin (CALR) indicates type II neurons as a primary source of SST. However,
around half of SST(+)/CALR(−) cells was also made up of neurofilament-reactive, multi-
axonal type II neurons [40].

While SST expression was also detected in rectal mucosa, it was present in a smaller
number of endocrine cells compared to bovine pancreatic polypeptide (BPP)-, human PP-,
and glucagon-like immunoreactive cells [78]. In turn, other authors consider SST as one of
the four most common hormones produced in EECs, next to 5-hydroxytryptamine (5-HT,
serotonin), GLP-1, and PYY. Furthermore, among the 5-HT cells, the most common cell
type in normal human colon, some also exhibited co-expression of SST and PYY, more
rarely GLP-1 [79]. The cells producing 5-HT, as the most widespread EECs of the GI
tract, are often referred to as enterochromaffin cells (ECs). They are also among the most
common subtypes in the colon and rectum [80]. Moreover, there is currently some proof
of a significant heterogeneity of these cells, characterized by co-localization of 5-HT and
several peptide hormones [81].

Further locations of SRIF system component production include endocrine and non-
endocrine cells, such as thyroid C cells [82–86], granulosa cells of the corpus luteum, tubular
and Leydig cells of the testis, adrenal gland cells of the cortex and medulla [86], human
tubular epithelial cells, and glomerular cells in the kidney [86,87].

SST produced in peripheral tissues has no relation to GH secretion but exhibits a
superior function (mainly inhibitory) in the regulation of the secretion of hormones of the
GI tract and pancreas (e.g., gastrin, secretin, CCK, gastric inhibitory polypeptide (GIP),
vasoactive intestinal peptide (VIP), enteroglucagon, motilin, insulin, and glucagon). It reg-
ulates gastric acid, digestive enzymes, bile, and colonic fluid [12,37,41,88]. Furthermore,
it suppresses gallbladder contraction, small intestinal segmentation, and gastric empty-
ing [12,32]. In the pancreas, SST acts locally, within the islets, as a paracrine inhibitor of
insulin and glucagon secretion [12,37,41]. In the model of mouse pancreatic islets, a cycle
of mutual feedback loop in the expression of SST and glucagon was described. Thus, SST
inhibits glucagon secretion at low and high glucose levels, and glucagon stimulates SST
secretion via glucagon and GLP-1 receptors. Therefore, glucagon is essential for normal
physiological SST secretion. Additionally, it was demonstrated that while SST strongly
inhibits insulin secretion, insulin has no direct effect on the secretion of SST in mouse
islets [89]. During paracrine action, SST is an inhibitor of other EECs and excitatory cells, as
well as affects colonic motility [88,90,91]. It also exhibits local immunomodulatory action
in the gut [75].

While autocrine effects of SSTs are also reported in the literature, the detailed mech-
anisms are still unclear [28]. Furthermore, SST can be secreted directly into the GI tract
lumen [31,37,67,91].

2.2. SST Secretion Control in the Gastrointestinal Tract

Although the sites of SST secretion and release in physiology are well described,
their mechanisms are less understood (reviewed in [28]). SST is produced as a precursor
preprosomatostatin, in rats and mice processed enzymatically at its C-terminal site in
the secretory granules by a proprotein convertase (PC), most probably PC2 [92], to yield
several mature products. Three widely distributed peptides, namely SST-14, SST-28, and
SST-28(1-12), are derived from prosomatostatin, more specifically from its C-terminal
precursor. In the antrum of rat stomach, an additional decapeptide derived from the
NH2 end of the prohormone was identified and named as antrin. It was described to be
present in the secretive granules of the pyloric D cells, together with SST-28(1-12), both in
humans and animals [93]. Human prosomatostatin is a protein build from 92 AAs, and is
proteolytically cleaved at the arginine–lysine and arginine processing sites. Partial micro-
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sequencing of prosomatostatin-(1-63)-peptide demonstrated that the site of the cleavage of
the signal peptide was located at the Gly24-Ala25 bond [94].

Regulation of SST secretion in the GEP system is affected by three groups of factors:
(1) intraluminal, (2) neural, and (3) endocrine. The first group includes nutritional factors
and acid (low pH) in the stomach, and duodenum, which promote the antral D cell to
secrete SST (the negative feedback regulatory loop). However, the control of gastric SST
secretion is influenced by both nutritional components and stimulation of the vagus nerve
and ENS structures with the neurotransmitters/peptides it secretes [31,73].

Release of gastric SST via a neural mechanism was linked to an opposite activity
on the sympathetic (stimulates) and parasympathetic nervous system (inhibits). Locally
secreted neurotransmitters/peptides include, e.g., VIP, CGRP, and pituitary adenylate
cyclase-activating peptide (PACAP). Moreover, a stimulating activity of incretin hormones,
cholecystokinin (CCK), acetylcholine, oligopeptides, and amines was demonstrated on SST
secretion by stomach D cells [31]. In the same study model, the stimulatory effect of ghrelin
was demonstrated on SST secretion by pancreatic islet δ cells [95]. Glucose stimulated
SST expression by the δ-cells of the pancreas is also promoted by urocortin3, produced by
β-cells [96]. Furthermore, the process of SST expression in human pancreas cells occurs in
a Ca2+-dependent manner [97].

In turn, endocrine factors that stimulate SST release in GI tract include hormones such
as gastrin, CCK, bombesin/gastrin-releasing peptide (GRP), oxyntomodulin, GLP-1, and
CGRP, while inhibiting factors consist of, e.g., substance P, insulin, glucagon, and pancreatic
polypeptide. According to the study of Salehi et al. conducted on rat pancreas, the release
of SST is slightly delayed in relation to insulin, and anti-synchronous to glucagon [98].
Pulse secretion of all three hormones occurs due to the activation of P2Y(1) receptors and is
modulated by extracellular ATP. It was also proven that the A(1)R adenosine receptor is
important both for the amplitude (insulin) and duration (glucagon and SST) of the pulse
secretion of hormones from the Langerhans islets [99].

In contrast, the molecular mechanisms of regulation of SST secretion particularly
emphasize the role of enhancers and silencers in the promoter region of the gene, as well
as the binding of modulatory transcription factors to these elements. The roles of pre-
translational mechanisms regulating the expression of this peptide (e.g., methylations and
polymorphisms within the promoter region, activity of various transcription factors) and
post-translational mechanisms (e.g., proteolytic cleavage of preprosomatostatin to SST-14
and SST-28, peptide secretion) were also confirmed [18,28]. However, more studies are
needed to fully elucidate other mechanisms of SST regulation (e.g., miRNAs, alternative
splicing, autocrine feedback, and protein modification) [28].

2.3. Somatostatin Receptor Localization and Role in Physiology

All five somatostatin receptors (SSTRs) with seven transmembrane-spanning domains
are prototypical class A GPCRs that belong to the rhodopsin-like family of receptors
(reviewed in [12]). Human SSTRs are encoded on five different chromosomes and only
one of the receptors undergoes alternative splicing (SST2), generating two isoforms known
as SST2A and SST2B [16,27,100,101]. SSTRs have affinity for both forms of SSTs (SST-14 i
SST-28) [27,100,102–104]. Each receptor subtype is coupled to different signal transduction
pathways through G-protein-dependent and -independent mechanisms [12,27,100]. The re-
ceptors share common pathways involving G-protein-dependent mechanisms of adenylate
cyclase (ACL) inhibition, activation of protein phosphotyrosine phosphatases (PTPs), and
modulation of mitogen-activated protein kinase (MAPK, ERK) [100,105]. The SRIF signal
pathways are well described in the literature [16], prompting the author to attempt to
provide a different scope of information. However, it is worth highlighting that the main
pathways regulated by the activation of SST1–5 lead to the inhibition of secretion (e.g., other
neuropeptides, hormones, growth factors, and cytokines), cell proliferation, migration, and
angiogenesis [12,16,27,100,106,107] (Table 1).
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Table 1. Molecular characteristics of the human SRIF system components and the major biological effects in the gastrointestinal (GI) tract.

SRIF System Member Gene Location and Size (kb) No. of Transcripts Protein Mechanisms of Action/Biological Effects in
GI Tract Ref.

SST SS1 gene,
3q27.3; size: 1483 bases

pre-mRNA contains an intron
flanked by two exons;

1 transcript (splice variant) and
262 orthologues

preprosomatostatin (116 AA) and
prosomatostatin (92 AA), which in
turn is C-terminally processed to

generate the cyclic peptides SST-14
AA and SST-28 AA (N-terminal

extension);
m.m. 12736 Da; q.s.: nd

(+)SST1–5 (GPCRs family);
(−)several hormones secretion;

(−)exocrine secretion;
(−)gallbladder contraction;

(−)small intestinal segmentation;
(−)gastric emptying;regulation of gastric acid,

digestive enzymes, bile, colonic fluid, and
motility; local immunomodulatory actions

[12,28,32,37,41,60–63,65,66,75,88,90,91]

CST CORT gene; 1p36.3–1p36.2; size:
1968 bases

cleavage of preproCST (112 AA)
gives rise to multiple mature

products, CST-14, CST-17 and CST-29;
m.m. 11532 Da, q.s.: nd

CST may activate SST1–5 and GPCRs other
than SST1–5; share several biologic properties

with SST
[12]

SST1 14q13;
Size: 5164 bases an intronless gene 391 AA; m.m. 42686 Da; q.s.: interacts

with SKB1

binds both form of SST, with slightly higher
affinity for SST-14;

(−)proliferation; (−)secretion;
(−)intestinal Cl− secretion

[12,27,62,106,107]

SST2 17q25.1;
size: 11,624 bases consists of two exons

369 AA; spliced into SST2A and 2B;
human tissues exclusively contain the

unspliced SST2A variant; m.m.
41333Da; q.s.: homo- and

heterodimer with SST3 and SST5

binds both forms of SST, with slightly higher
affinity for SST-14;

(−)proliferation; (−)secretion;
(+)apoptosis; (−)exocrine secretion: gastric

acid and intestinal Cl− secretion

[12,27,62,106,107]

SST3 22q13.1;
size: 16,215 bases spreads over eight exons

418 AA; m.m. 45847 Da; q.s.:
homodimer and heterodimer

with SST2

binds both forms of SST, with slightly higher
affinity for SST-14;

(−)proliferation; (−)secretion;
(+)apoptosis;

gastric and intestinal relaxation

[12,27,62,102,103,106,107]

SST4 20p11.2; size: 3926 bases 388 AA; m.m. 42003 Da; q.s.: nd
binds both forms of SST, with slightly higher

affinity for SST-14;
(−)proliferation; (−)secretion

[12,27,62,104,106,107]

SST5 16p13.3; size: 8708 bases 364 AA; m.m. 39202 Da;
q.s.: heterodimer with SST2

binds both forms of SST, with a 10-fold higher
affinity for SST-28;

(−)proliferation; (−)secretion, e.g., amylase
secretion; (−)colonic contraction

[12,27,62,104,106,107]

Legend: (+)/(−)—activation/inhibition; AA—amino acid; CST—cortistatin; GPCR—G protein-coupled receptors; m.m.—molecular mass; nd—no data available; q.s.—quaternary structure; ref.—number of
references; SKB1—protein arginine N-methyltransferase skb1; SST/SRIF—somatostatin/somatotropin release–inhibiting factor; SSTRs/SST1–5—somatostatin receptors 1–5.
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SST1–5 localized on cell membranes are connected to transmembrane K+ channels
(also known as G-protein gated inwardly rectifying potassium channel (GIRK1), Ca2+

channels (also known as voltage-operated calcium channel, VOCC), as well as intracellular
enzymes, mostly ACL and PTPs. Among PTPs, the most important intracellular SSTR
effectors are Src homology 2 (SH2)-containing tyrosine phosphatase-1 (SHP-1), SHP-2,
and phosphotyrosine phosphatase DE-1/PTPeta [12,105]. Upon binding to SST, intracel-
lular pathways are activated by SST1–5, leading to antiproliferative and anti-secretory
effects. In addition, activation of SST2 and SST3 also exerts pro-apoptotic effects [106,107].
Recent studies on human brain extracts indicate that SST binds primarily to several mem-
bers of the P-type ATPase family. Subsequent validation experiments confirmed the inter-
action between SST and the sodium–potassium pump (Na+/K+-ATPase) and identified the
tryptophan group in SST as a critical component of the binding. Functional analyses in
three different cell lines showed that SST can negatively modulate the rate of K+ uptake by
the Na+/K+-ATPase [108].

A characteristic property of SSTRs is also absolute or relative subtype selectivity, re-
lated to its inhibiting influence on various biological processes, e.g., hormone and mediator
secretion, exocrine secretion, motility, and cell proliferation [12,19,27]. As an example,
inhibitory effect on GH secretion occurs mainly via SST1, SST2, and SST5; insulin secretion
via SST2 and SST5; glucagon secretion via SST2; and cytokines, i.e., interleukin 6 (IL-6) and
interferon γ (IFN-γ), histamine and immune responses, through SST2 [27,100]. In turn, the
inhibitory effect on colonic contraction occurs mainly through the activation of SST5 [27].

SST1–5 expression of varying intensity is demonstrated in numerous normal hu-
man tissues and organs, encompassing both NCs and many non-neuronal and non-
endocrine cells [24,27,86,100,109–111]. Furthermore, many immune cells (e.g., mono-
cytes/macrophages, B and T lymphocytes, and dendritic cells) show expression of
SSTRs [14,110,112]. The most detected subtype is SST2, with a mostly membranous im-
munohistochemical (IHC) reaction, while SST4 is the least functionally described [12].

SST-14 binds with higher affinity to SST1-4, whereas SST-28 mainly interacts with
SST5 [16,100]. Two subfamilies of SST receptors have been described on the basis of
chemical structure identity and pharmacological characteristics: the first class, comprising
SST2, SST3, and SST5, binds synthetic SST analogues (SAAs), such as octreotide (OCT)
and lanreotide, while the second-class receptors, SST1 and SST4, do not interact with
these agonists [113]. The basic signaling pathways in the action of SST are also known,
ultimately exerting anti-secretory, anti-proliferative, and pro-apoptotic effects (via SST2
and SST3) [12,107].

Upon binding, SSTRs are phosphorylated, internalized into clathrin-coated vesicles,
and directed to endosomes. Receptors can then be directly returned to the cell membrane
or targeted by the proteasome pathway [101,114]. The particular receptor types differ in
internalization rates (internalization is higher for SST2, SST3, and SST5 than for SST1 and
SST4). This property affects the fates of the receptors, with SST2 and SST5 recycled more
rapidly, while SST3 is commonly degraded [114].

The role of the SRIF system in the GI tract is widely described in a recent
review [24]. The presence of SSTRs has a potential role in cancer pathogenesis (including
CRC) [52,54,115–120], as well as in non-somatostatin receptor-related diseases (e.g., inflam-
mation, the granulomatous diseases; reviewed in [111]). Inhibition of cell proliferation in
tumor cells occurs with the participation of all SSTRs.

3. The SRIF System and Different Tumors

Apart from normal tissues, the expression of SRIF system components concerns a
range of human cancers [16,17,19,48,53], mainly NENs/NETs of GI tract [45,107,121–123].
SST-producing NETs are derived mostly from the pancreas, duodenum, and small intes-
tine [124–126]. Most of well-differentiated gastroenteropancreatic endocrine carcinomas
(WDEC) also demonstrate the presence of SSTRs, mainly SST2 (including SST2A) and
SST5 [121,122,126,127]. However, the most prominent SST subtype, detected in GEP-NETs,
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is SST2/SST2A, identified in >70% of cases at a high expression intensity [45,47,121,122,128,129].
The occurrence of a high density of SSTRs has prognostic significance and may be used in
the therapy of these cancers [45,47,126,127,129].

Production of SST and SSTRs was also detected in thyroid medullary carcinomas, both
in vivo and in vitro [130–133], pituitary adenomas [134,135], as well as tumors of adrenal
glands [136] and ovaries [137]. SSTR expression was also described in non-endocrine
neoplasms, such as breast cancer [138] or pancreatic ductal adenocarcinoma (PDAC) [139].
In breast cancer, the dependence of SST expression on the status of estrogen and pro-
gesterone receptors was observed [138]. In the case of PDAC, it was shown that the
methylation of SST promoter is a sensitive and promising molecular biomarker of this
cancer [139].

4. The SRIF System and Large Intestine in Physiology

Although the main source of SST in the GI tract is the stomach [31], using various assay
techniques, SST expression was also demonstrated in the human colon [30]. In the latter
location, it mainly occurs in ENS structures, which include neurons of the intramuscular
plexuses, external and internal, submucosal plexuses, intra-ganglionic nerve fibers and
nerve fibers in mucosa and muscularis propria (reviewed in [39]). SST is counted as one of
three neuropeptides also produced by EECs in the human colon alongside glucagon and
BPP [11,80]. According to the proper nomenclature, these cells are termed D cells [88,91],
which make up ~3–5% of the EEC population and form the seventh cluster of the EEC
population in the lower GI tract in humans and various animal species [91]. In IHC analysis
of normal colonic crypts for neuroendocrine markers, the highest number of SST-positive
cells was detected in the bottom half crypt region. However, the proportion of these cells
in the total number of crypt epithelial cells is very low, lower than chromogranin-positive
cells. Moreover, a similarly low amount of SST receptor type 1 (SST1) is observed in this
location [11].

In the case of normal human colon epithelial cells, IHC positivity was demonstrated
for all SSTRs except SST4. In contrast, normal rectum epithelial cells showed the presence
of only SST1 and both SST2 subtypes (A and B), while SST3, SST4, and SST5 were not
detected [110].

Little work has addressed the role of the SRIF system in physiological colorectal
function. In this regard, mainly the inhibitory influence of SST is described via SST5 on
colonic contraction [12,27]. However, studies of the effect of this peptide on the spinal
defecation center in an animal model (rat) showed the opposite effect (enhancement of
colonic motility). This could explain the simultaneous occurrence of chronic abdominal
pain and colonic motility disorders in IBS patients [140]. Interestingly, in the context of
SST function in normal human colon, there are descriptions of SST-immunoreactive fibers
on submucosal, but not mesenteric vessels, which suggests the role of this peptide in the
control of blood flow to the human gut [141]. In rats, SST2 was shown to mediate the
anti-secretory effects of SST in colonocytes [142]. In an in vitro model (HT-29cl.19A colonic
cells), inhibition of chloride secretion by SST was described [143]. The motor and sensory
effects of SST in the colon are likely mediated by SST1 and SST2, with SST1 and SST2
localized in the longitudinal and circular colonic smooth muscle, respectively [144].

Recent in vivo (mice) and in vitro studies (human goblet-like cell line LS174T) with
administration of exogenous SST (octreotide, OCT) indicate that SST could promote the
expression of mucin 2 (MUC2) and secretion of mucus by these cells. This action occurs
through binding of SST to SST5 and suppression of Notch-Hes1 signaling [145].

5. The SRIF System and Inflammatory Bowel Diseases

SST, as an inflammatory inhibitory peptide, has potential importance in the patho-
genesis of inflammatory bowel diseases (IBDs) (reviewed in [146,147]). These conditions,
which include ulcerative colitis (UC), Crohn’s disease (CD), and microscopic colitis, are
risk factors for ~3% of CRC [148]. The involvement of multiple neuropeptides (including
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SST) and mechanisms of action in pre-cancerous alterations and colonic inflammation were
described in an earlier publication [149]. On one hand, correlations are observed between
the expression of neuropeptides from GI tract and changes in immune cells during inflam-
matory process [146,147]; on the other hand, special attention is paid to the interactions
between GI tract neuropeptides/amines and gut microbiota, a crucial component in the
pathophysiology of IBD [20,147]. The anti-inflammatory effects of SST include stimulation
of B-lymphoblast proliferation with increased immunoglobulin production [15], inhibi-
tion of T-lymphocyte and granulocyte proliferation, and reduction of proinflammatory
cytokines, such as IFN-γ [13,14,30].

Because the GI tract is a major source of the circulating form of SST, as early as the
1990s, plasma SST levels in patients with various GI tract diseases were studied. These lev-
els ranged between 46 and 73 pg/mL. A post-prandial increase in SST was observed in all
patients but was significantly higher in patients with duodenal ulcers (159 ± 20 pg/mL),
active UC (176 ± 17 pg/mL), and irritable bowel syndrome (194 ± 20 pg/mL). Moreover,
the postprandial elevation of plasma SST concentrations was suggested to be influenced by
vagotomy, with the particular increased elevation occurring due to gastric hyperacidity,
acute lesions of the colonic mucosa, and hypermotility of the GI tract [150].

Relatively little is known about the role of tissue expression of the SRIF system compo-
nents in IBD pathogenesis. There are differences regarding SST expression in IBD patients
and animal models of colitis [151–153]. The most often used models of colitis include dex-
tran sodium sulfate (DSS)-induced colitis and trinitrobenzene sulfonic acid (TNBS)-induced
colitis, which can mimic human IBD, including UC [154] or CD, respectively [155]. In IBD
patients, the main form of SST detected using specific radioimmunoassay was SST-28.
A fall in expression of this peptide was observed in mucosa submucosa and muscularis
externa layers in UC and in CD vs. normal colon. The reduction in SST detection was
greater in more severe forms of colitis compared to minimal lesions, possibly due to a
decrease in EECs with the severity of inflammatory lesions [151]. Similarly, in another
study, the number of SST-secreting EECs was reduced in IBD patients compared with
controls. This reduction was related to the level of inflammation in CD—the higher the
degree of inflammation, the lower the number of SST-positive cells [156]. Interestingly,
a reduction in SST-immunoreactive nerve fibers was also observed in IBD. Changes in
perivascular nerves may account for the congestion and ulceration characteristic of IBD.
Moreover, neural changes may be the underlying source of pain [157].

When it comes to animal colitis models, an increase in the number of SST-producing
cells in the colon tissues was described in TNBS-induced colitis compared with healthy
controls. Furthermore, the density of SST-immunoreactive cells positively correlated with
the number of macrophages/monocytes and mast cells [152]. In turn, in DSS-induced
colitis in rats, a lower density of PP- and SST-positive cells was detected compared to
control group, similarly to the results of IBD patients. These changes in all EECs were
accompanied by an increase in the densities of mucosal leukocytes, T and B lymphocytes,
macrophages/monocytes, and mast cells vs. control. Regardless of the IBD model, these
studies support the theory of a cooperative relationship between EEC-produced peptides
(including SST) and immune cells in IBD [153].

Nevertheless, the results of studies on tissue expression of SSTRs in IBD are sparse
and concern practically only SST2 [158,159]. A predominantly membranous pattern of
IHC reaction was detected on NCs. The number of SST2-positive cells was significantly
lower in patients with CD than those with unchanged mucosa and unclassified colitis.
Cells with cytoplasmic expression comprised intraepithelial T cells, while cells with mem-
brane cytoplasmic expression included both NCs and epithelial cells [158]. Moreover, in an
available case report of a CD patient, SST2A expression was observed in a pathological
lesion composed of a fibrillar network of fine nerves, extending deep into the inflamed
area of the subepithelial portion of the mucosa [159].
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6. The SRIF System and Colorectal Cancer

The vast majority of histological CRC subtypes are adenocarcinomas [3–5], among
which moderately differentiated adenocarcinomas are the most prevalent (~70%). Well and
poorly differentiated carcinomas account for 10% and 20%, respectively. Furthermore,
other rare types of CRC include neuroendocrine, squamous cell, adenosquamous, spindle
cell, and undifferentiated carcinomas [3].

6.1. Somatostatin Tissue Expression In Vivo

Studies regarding tissue expression of SST in CRC are few and inconsistent. Moreover,
only some of them involve simultaneous examination of cancer tissue and normal colonic
mucosa from the same patient (control). Immunoreactive structures include cancer cells,
EECs, tumor-neighboring colon crypt cells [9,18,55,160,161], as well as neurons and nerves
present in the colonic ENS [162]. In the case of NETs of the rectum (n = 32), SST was the
most commonly detected neuropeptide (in 35% of tumors) [163]. In turn, another study
of large intestine carcinoids (n = 84), SST-positive IHC reaction showed only in 3% of
tumors [164].

SST expression of varying proportions is described in normal human colon mu-
cosa [8–10,18], as well as sporadic CRC tissues [8,9,55,160–162,165]. In these studies, the
frequency of detection of SST in tumor and control tissues was similar [8,9,162] or reduced
in CRC vs. control [18]. Moreover, in two studies based on mRNA assessment of SST
(qRT-PCR), levels of this protein were reduced in CRC compared to control [18], or not
detected at all [10]. Negative reactivity to SST (but positive for bombesin and VIP) in a
patient with signet-ring cells adenocarcinoma was also demonstrated [57] (Table 2).

Regarding the prognostic aspect of SST expression in CRC, only one study highlighted
lower levels of this neuropeptide that correlated with grading, with lower SST expression
detected in poorly differentiated tumors. The relationship between SST expression and
CRC metastatic potential was not investigated [161].

In vivo SST expression studies show that most SST-immunoreactive cells were a com-
ponent of the altered glandular structures of CRC. The mention of D cells within the colon
also appears sporadically in literature that used electron microscopy to evaluate subpopu-
lations of immunopositive cells [161]. Some of the studies demonstrated co-localization of
SST with other GI tract endocrine neuropeptides/markers (e.g., chromogranin A, serotonin,
glucagon) within single cells [55,160].

In summary, the above results are difficult to comment on due to the heterogeneity
of the tissues of the CRC itself, significant differences in the amount of tissue tested from
patients, the absence of control groups in some studies, and methodological differences
(e.g., type and dilutions of anti-SST antibodies, scales for quantifying IHC reactions).
In general, the presence of SST in CRC cells from corresponding fragments of the normal GI
tract and other GI tract adenocarcinomas was confirmed [24,29,30,36,39,41]. However, SST
expression appears to decrease with tumor grading and is lower in poorly differentiated
CRC or mucinous subtype of CRC with signet-ring cells.

In turn, our studies, based on immunohistochemistry assays, demonstrated individual
scattered SST-immunoreactive cells located between the epithelial cells lining the normal
colon mucosa. The latter were EECs, morphologically similar to serotonin-positive cells
(ECs) (unpublished data) (Figure 1A,B). In contrast, CRC tissues showed multiple cancer
cells with a cytoplasmic pattern of IHC reaction distributed throughout the cell or a granular
IHC reaction predominant in the apical portion of the cancer cells (Figure 1C,D).
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Table 2. Tissue expression of somatostatin (SST) and its receptors (SST1–5) in different subtypes of colorectal cancer (CRC).

SRIF System Member Cellular Localization The Main Results Material and Methods Ref.

SST

tumor cells (+)in 18/23 tumors n = 32 NETs of rectum (n = 27 as typical carcinoids); IHC [163]

tumor cells (+)in 3% tumors n = 3 carcinoids of the distal sigmoid colon, and n = 81 of the
rectum; IHC [164]

tumor endocrine cells (+)in 10% of chromogranin A-positive CRC n = 350 CRC; IHC [160]

carcinoma cells (+)in 82% CRC vs. 90% tumor-neighboring mucosa n = 100 CRC (39 colonic and 61 rectal), and surrounding
mucosa; IHC [8]

tumor cells; normal colonocytes (+)in 84.6% CRC vs. 88.5% tumor-neighboring mucosa n = 53 advanced CRC, and tumor-neighboring mucosa; IHC [9]
tumor EECs in glandular

structures
(+)in 4/57 CRC; in 2 cases co-expressed with serotonin and

glucagon n = 57 CRC; IHC [55]

carcinoma cells ↑in well-differentiated vs. poorly differentiated tumors;
♣(↓expression) n = 35 CRC; n = 25 LM; IHC [165]

D cells low expression n = 90 mirror biopsies of CRC; iEM [161]
carcinoma cells (−)expression n = 1 mucinous CRC with signet-ring cells (stage D); IHC; iEM [57]
ENS structures frequency of (+)neurons/fibers in the intact vs. CRC areasNS n = 15 CRC; IHC; IF [162]

D cells; tumor cells ↓mRNA in CRC vs. C (adults);
↑ratio of (+)cells in C (children) vs. CRC

n = 34 CRC, n = 6 C (children), n = 41 C (adults) (TMA); n = 13
CRC, n = 14 C (children), n = 20 (adults) (IHC); n = 12 CRC, n = 12

C (children), n = 12 C (adults) (RT-PCR)
[18]

(+)in all the C; (−)in matching CRC samples 5 samples of C, and matched CRC; RT-PCR [10]

SST1

heterogeneously expressed in both C and CRC; (+) in liver M n = 47 CRC and C; RT-PCR [166]
tumor cells; normal colonocytes expressed infrequently n = 32 pairs of CRC and C; RT-PCR; ISH [167]

(+)mRNA frequently expressed in C and CRC CRC and C; RT-PCR [115]
immune cells of the lp close to the

tumor; stromal cells;
epithelial cells

(+)mRNA expressed in C and CRC CRC and C; ISH; image analysis system [116]

tumor cells; normal colonocytes the predominant subtype in CRC and C; �↑(Dukes stage);
�↑(lymph node M) n = 127 CRC and n = 40 C; IHC [118]

(+)in all the C; (+)in 3/5 CRC 5 samples of C and matched CRC tumor tissue; RT-PCR [10]

SST2

(+)mRNA (50% in Dukes stage B, and 20% in Dukes stage C),
(−)in stage D CRC n = 47 CRC and controls, RT-PCR [166]

tumor cells; normal colon
crypt cells (+)in nearly 90% CRC and C n = 32 pairs of CRC and C; RT-PCR; ISH [167]

(+)mRNA frequently expressed in C and CRC; no loss in
advanced CRC stages CRC and C; RT-PCR [115]

tumor cells; immune cells;
epithelial cells; stromal cells low mRNA expression in C and CRC CRC and C; ISH; image analysis system [116]

(+)in 100% tumors; CRC vs. CNS; loss of SST2 mRNA in
patient’s tumor with ↑CEA level vs. patients with low CEA;
normal/tumor mRNA ratio inversely related to CEA levels

n = 26 CRC and corresponding C; qRT-PCR [138]

(+)in 100% tumors; CRC vs. CNS; loss of SST2 mRNA in
tumor in patients with ↑CEA level vs. C

n = 100 CRC and corresponding C; RT-PCR; ISH [117]
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Table 2. Cont.

SRIF System Member Cellular Localization The Main Results Material and Methods Ref.

↑mRNA; # (↑CRD and shorter DFS) qRT-PCR [54]
tumor cells; normal colon

crypt cells
the second subtype in C and CRC; ↑in moderately to well vs.

poorly differentiated CRC; ↓in the ulcerative type of CRC n = 127 CRC and n = 40 C; IHC [118]

tumor cells ↑in lower-grade and rectum located tumors; �, #, (+) (longer
survival rate); �,↓liver M n = 81 CRC; IHC [119]

tumor cells (+)in 100% tumors n = 3 rectal NETs; IHC [120]

(−)SST2A n = 19 colorectal MANECs and n = 8 CRC poorly differentiated
NETs; IHC [52]

tumor cells (+)expression n = 1 small cell anal NEC; IHC [168]

SST3

rarely or not expressed n = 47 CRC and C; RT-PCR [166]
tumor cells; normal colonocytes expressed infrequently n = 32 pairs of CRC and C; RT-PCR; ISH [167]

tumor cells; transformed epithelial
cells; stromal cells low mRNA expression in C and CRC CRC and C; ISH; image analysis system [116]

tumor cells; normal colon
crypt cells �,↓(Dukes stage) n = 127 CRC and n = 40 C; IHC [118]

SST4

heterogeneously expressed in C and CRC; (+) in liver M n = 47 CRC and C; RT-PCR [166]
tumor cells; normal colonocytes expressed infrequently n = 32 pairs of CRC and C; RT-PCR; ISH [167]

stromal cells; immune cells in CT
close to the tumor; epithelial cells low mRNA expression in both CRC and C CRC and C; ISH; image analysis system [116]

tumor cells; normal colonocytes ↑in moderately to well vs. poorly differentiated CRC;
↑frequency in tumor cells (18.9%) vs. C (2.5%) n = 127 CRC and n = 40 C; IHC [118]

SST5

heterogeneously expressed in C and CRC n = 47 CRC and C; RT-PCR [166]

tumor cells; normal colonocytes
(+)in 46% CRC and 45% C; (+)in 75% (Dukes A and B stage)

vs. 31% (Dukes C and D); ↓in M (11%) vs. all tumor
samples (56%)

n = 32 pairs of CRC and C; RT-PCR; ISH [167]

(+)mRNA very frequently expressed in C and CRC; no loss in
advanced CRC stages; ↑frequency in the left CRC vs. C CRC and C; RT-PCR [115]

tumor cells; epithelial cells;
stromal cells

(+)the mRNA was the predominant subtype expressed in C
and CRC; ↑in CRC vs. C CRC and C; ISH; image analysis system [116]

tumor cells; normal colonocytes the second subtype in C and CRC; ↑in moderately to well vs.
poorly differentiated CRC; �,↓(Dukes stage) n = 127 CRC and n = 40 C; IHC [118]

tumor cells (+)(longer survival rate); ↓, #, liver M n = 81 CRC; IHC [119]
tumor cells (+)in 66.6% tumors n = 3 rectal NETs; IHC [120]

Legend: (+)/(−)—positive/negative expression/correlation; ↑/↓—significant increased/decreased expression; ♣—significant association between SST/SSTRs expression and degree of cancer differentiation;
�—association between SST/SSTRs expression and more advanced clinical stage of cancer (Dukes stage, TNM, tumor size, venous infiltration, microsatellite nodules, metastases, etc.); #—significant correlation
with poor prognosis (CRD, DFS); C—control, normal colon mucosa; CEA—carcinoembryonic antigen; CRC—colorectal carcinoma; CRD—cancer-related death; CSS—cancer-specific survival; DFS—disease
free survival; EECs—enteroendocrine cells; ENS—enteric nervous system; iEM—immunoelectron microscopy with immunogold staining; IF—immunofluorescent microscope; IHC—immunohistochemistry;
ISH—in situ hybridization; lp—lamina propria; MANEC—mixed adenoneuroendocrine carcinoma; M—metastasis; n—number of cases; NE(C,T)—neuroendocrine (cancer, tumor); NS—non significant;
nt—not tested; PD—paraformaldehyde; qRT-PCR—quantitative real-time PCR; ref.—number of references; RIA—radioimmunoassay; SST/SRIF—somatostatin/somatotropin release–inhibiting factor;
SSTRs/SST1–5—somatostatin receptors 1-5; TMA—tissue microarray; TNM—tumor, node, metastasis.
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Figure 1. (A) Representative image of the immunohistochemical (IHC) detection of human
5-hydroxytryptamine (5-HT, serotonin) in individual enterochromaffin cells (ECs) in normal colon
mucosa (arrows). (B) Somatostatin-immunoreactive endocrine cells located between the epithelial
cells lining the normal colon mucosa in the same patient (arrows). (C,D) Somatostatin expression in
colorectal adenocarcinoma tissue samples. Worth noting is the homogeneous IHC reaction pattern
in the whole cytoplasm of the cells (C) and a granular IHC reaction in the apical part of the cell
(arrow) (D). New polymer-based immunohistochemistry with DAB staining. Hematoxylin counter-
stained. Original magnification ×400 (own unpublished observations).

6.2. Somatostatin Receptor Tissue Expression In Vivo

SSTR presence (mRNA, peptide) was investigated in neuroendocrine tumors, MANECs,
and pure colorectal adenocarcinoma (Table 2). This expression affects both normal colon
mucosa and primary and/or metastatic tumor tissues, regardless of histologic subtype.
The cells with positive expression included both normal absorptive cells (colonocytes) and
tumor cells. SSTR expression was also described in immune cells in lamina propria and
tumor-adjacent stroma. Most studies attempted to simultaneously study all five subtypes of
SSTRs. However, there are large differences in the frequency of individual SSTR expression
and its intensity in literature sources.

In the case of SST1, heterogenous [166] and quantitatively differentiated expression
of this receptor was described, from rare [10,167] to common [115] to even dominating
receptor type in CRC and control tissues [118]. Only one group of authors described
a positive correlation of this receptor’s expression with tumor stage and lymph node
metastasis [118].

Observations on tissue expression of SST2 are also varied. However, most
authors described a frequently detected type of SSTR both in CRC and control
samples [115,117,118,138,166,167]. SST2 production in the tumor correlated, according
to some observations, with tumor staging [166], tumor type [118], localization [119], or
serum concentration of carcinoembryonic antigen (CEA) [117,138]. Lower or no SST2
expression was described at higher tumor stages (Dukes’ C, D) [166], ulcerative CRC
type [118], or increased patient CEA levels [117,138]. Higher expression was also noted
in tumors located in the rectum [119]. Raggi et al. observed a correlation between higher
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SST2 mRNA expression and an increase in cancer-related death and shorter disease-free
survival (DFS) [54]. In turn, Evangelou et al. reported opposite findings. They observed
that while SST2 (and SST5) expression is a good prognostic when it comes to survival rates,
they were not independent predictors of survival [119].

In contrast to the lack of SST2A expression in colorectal MANEC and poorly dif-
ferentiated NETs [52], positive IHC reaction for SST2 was described in a patient with
poorly differentiated anal neuroendocrine carcinoma (ANECs) with regional lymph node
metastases [168].

SST3 and SST4 expression in CRC and normal mucosa were generally low or rarely
detected. In one of the papers, quantitative differences were described in the frequency of
SST4 expression in tumor cells (more) vs. normal mucosa cells (less) (Table 2). In the case
of SST3, a correlation of this receptor’s expression with stage was observed, with similar
dependency described between SST4 and grade [118].

In the case of SST5, the frequency of this receptor’s expression in CRC and control
tissues was generally high, sometimes occurring more frequently in CRC vs. control
tissues [116]. This expression was indicated as dominating among other receptors [115] or
“second” SSTR subtype [118]. Furthermore, both a decrease in expression with an increase
in stage [118,167] and lack of such correlation were described in the literature [115]. It was
observed that while SST5 (and SST2) expression could be good prognostics when it comes
to survival rates, they were not independent predictors of survival [119].

Interesting studies conducted in submucosal and subserosal vessels showed 3–5-fold
overexpression of SSTRs and substance P receptors in the host veins within a close area
(2 cm wide) surrounding the human CRC, as compared with veins located at a greater
distance (5–10 cm) in control tissue. These results suggest the presence of a regulatory
mechanism in the tumor vascular bed, which could be key for the development of CRC
metastasis mechanisms [109].

In conclusion, studies on the expression of SSTRs in pure CRC adenocarcinoma are
characterized by the great heterogeneity of the results obtained. However, it appears that
the most abundantly represented subtypes of SSTRs in this tumor are SST2 and SST5.
The highest correlation with clinical data was shown for SST2, followed by SST5. As for
the prognostic value of receptor expression, however, the results are surprisingly divergent
and also mainly involve SST2 and SST5.

Own study showed membranous expression of SST2, and cytoplasmic pattern of
positive IHC reaction for SST3 and SST5 in normal colon and colorectal cancer tissue
samples from the same patient. More numerous immunoreactive cells were observed in
CRC as compared with adjacent normal mucosa (unpublished data) (Figure 2).

A summary of data regarding cellular sources of somatostatin (SST) and SST1–5
in colorectal cancer (CRC) indicates that effector cells of the SRIF signaling system are
specific for various SSTRs (Figure 3). As mentioned, the local effects (paracrine, autocrine)
of endogenous SST mostly involve inhibition of cell proliferation versus promotion of
apoptosis, and inhibition of production and secretion of many other tumor growth factors.
All mechanisms leading to reduced or absent SST expression in CRC in vivo may result in
impaired anti-tumor effects of this neuropeptide.

The potential role of SRIF system components produced by immune cells has been
studied in pathogenesis of IBDs (as noted in Section 5). In patients with CRC, expression
of some SSTRs (e.g., SST1, SST2, and SST4) on immune cells was confirmed in tumor
stroma [116], but the exact role of SRIF system components has not yet been fully elucidated
and requires further research.

Epigenetic alterations (mainly SST methylations) present in a high percentage of CRC
contribute to a decrease in expression and impaired protective function of SST in CRC, as
is described later.
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immunohistochemistry with DAB staining. Hematoxylin counterstained. Original magnification
×400 (own unpublished data).
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6.3. The SRIF System Component Expression in Colorectal Cancer In Vitro

CRC cell line studies (HT-29, Caco-2, HCT-15, HCT-116, SW480 cells) demonstrated
differential expression of SST and SSTRs [10,11,116,169–171]. Vuaroqueaux et al. detected
major expression of the SST5 protein in the HT29-D4 cell line [116]. In turn, Hohla et al.
demonstrated the expression of mRNA encoding SSTRs and high affinity binding sites for
SST in all three of the analyzed cell lines (HT-29, HCT-15, and HCT-116) [170]. Furthermore,
an increase in SST1, SST2, and SST5 mRNA expression was observed in Caco-2 and
HT-29 cells. Additionally, the expression of both SST2 isoforms (A and B) and SST4 on cell
membranes of these cell lines was demonstrated using the IHC method [171]. Other authors
observed that both HT-29 and SW480 cells express SST, SST1, SST2, and SST4, but the
transcript level is more abundant in HT29 than SW480 cells [10].

Although few in number, in vitro studies have firstly demonstrated the antiprolifer-
ative effect of SST and its synthetic analogue (OCT), and revealed some mechanisms of
this effect on CRC cells [169,171–174]. Thus, HT29 cell growth was inhibited by SST-14
only in the presence of serum, with a maximal and significant response at a concentra-
tion of 10(−7) M [172]. In turn, Colucci et al. demonstrated that SST-14 inhibited basal
cyclooxygenase-2 (COX-2) expression, prostaglandin E(2) (PGE(2)) production, DNA syn-
thesis, and growth in Caco-2 cells. Downregulation of COX-2 expression and function
in CRC cells by SST is thought to occur through activation of SST3 or SST5, and these
effects contribute to the antiproliferative effects of SST on tumor cells [169]. In a SW480 cell
model, it was demonstrated that OCT inhibited growth, induced apoptosis, and arrested
the G1 cell cycle of colon cancer cells in a dose-dependent manner. It was also proven that
OCT inhibits human colonic cancer cell growth through the inhibition of the Wnt/beta-
catenin signaling pathway [173]. In the same in vitro model (SW480 cells), OCT increased
cell apoptosis through SST2 and SST5 activation, promoted β-catenin accumulation in
plasmalemma, inactivated T-cell factor-dependent transcription, and downregulated Wnt
target genes (e.g., cyclin D1 and c-Myc). Moreover, OCT treatment mediated the activation
of glycogen synthase kinase 3 (GSK-3) [174]. In in vitro studies, a potential role of cells
exhibiting the expression of selected SSTRs (e.g., SST1) was indicated in the process of
inhibition of SC maturation into NCs and overpopulation of SCs. This dysregulation of
NC maturation was suggested to be caused by sequential inactivation of adenomatous
polyposis coli (APC) alleles in human colonic crypts with SC niche, in which SCs mature
into NCs [11].

7. The SRIF System and Colorectal Cancer Histogenesis
7.1. New Nomenclature of Neuroendocrine Neoplasms

The neuroendocrine neoplasms (NENs) of the GEP system are a histologically, bio-
logically, and clinically heterogenous group. They are derived from the endocrine organs,
NCs, and dispersed ECs of GI tract and respiratory system. These tumors usually lack
necrosis and are built up of cells rich in cytoplasmic secretory granules and filled with
neuroendocrine markers. They produce, store, and secrete biogenic amines and peptide
hormones, including SRIF system components [175–177]. Poorly differentiated neuroen-
docrine carcinomas have a particularly poor prognosis [123,176,178].

The most common NENs among this entire heterogeneous group of tumors are GEP-
NETs (70% of all neuroendocrine tumors, 2% of all GI tract tumors) [179–181]. While the
overall diagnosis frequency of GEP-NETs is relatively low, they are still the second most
prevalent GI malignancy after CRC in the USA [180,182]. Moreover, the mechanisms of
how NE differentiation affects the prognosis of these cancers are still an open question [183].
The classification of NENs originally included (1) well-differentiated NENs, referred to
as neuroendocrine tumors (NETs; grade (G) 1 (Ki-67 < 2%) and G2 (Ki-67 2–20%)), and
(2) poorly differentiated NENs, referred to as neuroendocrine carcinomas (NECs, G3)
(Ki-67 > 20%) [177,184]. G3 tumors were further subdivided into well-differentiated NET
G3 and NECs [185].
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The term “carcinoid” (or “karzinoide”, introduced in 1907) has often been used to
describe GI tract tumors originating from NCs forming the so-called dispersed endocrine
system (DES). These tumors were less aggressive compared to carcinomas. The current
classification does not prohibit the use of the term “carcinoid”, but indicates it as a synonym
for highly differentiated NET. In turn, the term “atypical carcinoid” can be used for NEC
with a high degree of differentiation [180,181].

In the current WHO classification (2019), NECs are all considered high-grade tumors.
Separate subgroups of NET G3 and NECs are not anymore distinguished because they are
genetically unrelated. There are also so-called mixed neuroendocrine–non-neuroendocrine
neoplasms (MiNENs) or MANECs (old terminology), in which each component is arbi-
trarily assumed to account for at least 30% of the tumor [123,186–188]. MiNENs rarely
contain a well-differentiated NET component in association with a non-neuroendocrine
component [189].

7.2. Enteroendocrine Cells in Colorectal Cancer Histogenesis

Stem cells are among the intestinal crypt epithelial cells involved in the initiation of
carcinogenesis, with their phenotypic characteristics in human colorectal cancer still under
investigation [5,190]. In normal colonic crypts, SCs at the crypt bottom generate rapidly
proliferating cells, which undergo differentiation during migration up the crypt [191,192].
The normal intestine shows a low number of SCs in the S phase of the cell cycle. During the
development of CRC, it was first shown that it is the increase in the number of these cells,
rather than changes in the rate of cell cycle proliferation, differentiation, or apoptosis of non-
SCs populations, that are important in the initiation of carcinogenesis through an increase in
the labeling index rate, i.e., the distribution of crypt cells in S phase in familial adenomatous
polyposis (FAP) patients [191]. Furthermore, dysregulation of mechanisms controlling
proliferative fraction and S phase probability is thought to explain how germline APC
mutations in FAP patients induce an increase in SC population at the bottom of the crypt,
shift the population of rapidly proliferating cells upward, and initiate tumorigenesis [192].

Other cells important in histogenesis, particularly of colorectal neuroendocrine neo-
plasms (C-NENs), are EECs (NC or APUD/DNES cells), which reside adjacent to colonic
SCs in the crypt SC niche [10]. There are approximately 17 different types of NCs in
the GEP system, but neither the precursor cell nor the biological basis of GEP-NETs are
fully understood [182]. In non-neoplastic and neoplastic GI tract tissues and ENS struc-
tures, NCs express a panel of identical antigens that are used as neuroendocrine markers.
Their presence, even without hormone production, is sufficient to reveal neuroendocrine
differentiation [193].

In sporadic CRC, NCs have been identified in a few to >77% of cases (reviewed
in [193]). Studies indicate that neuroendocrine differentiation is frequently observed in
small cell undifferentiated CRC, which correlates with more aggressive disease progres-
sion [194]. Neuroendocrine differentiation is also present in >50% of cases of hereditary
non-polyposis CRC (HNPCC) [183]. More NCs also occur in metastatic CRC than in the
primary tumor [195]. Furthermore, an increase in the number of NCs is also observed
after chemotherapy and radiotherapy treatment [195,196]. The number of tumor cells
immunopositive for typical NE markers (chromogranin A, synaptophysin, and CD56)
also appears to depend on anatomical location (higher in the right than in the left sided
colon) and is similar to the preferred sites of NECs themselves. In normal colonic mucosa,
more chromogranin A- and synaptophysin-positive cells were observed in the rectum and
the left-sided colon than in the right-sided colon. Hence, the authors suggest that NEC
may arise from preceding adenocarcinoma [56]. Previous studies indicate that adenoneu-
roendocrine carcinomas and neuroendocrine carcinomas are genetically closely related to
colorectal adenocarcinomas, suggesting their common intestinal origin [52].

NENs of the colon and rectum have been the subject of intense research, especially in re-
cent years. However, because of differences in epidemiology, prognosis, and treatment prin-
ciples, tumors in the colon and rectum are usually considered separately [123,176,186,197,198].
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Neuroendocrine tumors of the rectum have been diagnosed more frequently since the
introduction of screening colonoscopy in the year 2000 [179]. A large US study involving
over 13,000 NETs found that one of the three most common locations of carcinoid tumors in
the GI tract was the rectum (>27%). Furthermore, 13% of patients affected with such tumors
develop a secondary malignancy. The associated non-carcinoid tumors were frequent in
conjunction with 20% colonic carcinoids [199]. The most recent works report that colonic
and rectal NETs in the USA occur in 0.2 and 1.2 new cases per 100,000 persons/year, re-
spectively [197]. Moreover, pure NECs in the large intestine are diagnosed relatively rarely
(0.6–3.9% of all CRC). However, NCs can form mixed tumor fragments with colorectal
adenocarcinoma, reaching up to 30% of the entire tumor cell population [52,56,200].

The histologic features of colorectal NETs and NECs are similar to those found in
other organs. Colorectal MiNENs consist of a poorly differentiated component and an
adenocarcinoma component. Moreover, MiNENs with a low-grade NET component can
rarely occur in the background of idiopathic inflammation [181,201]. In turn, when it comes
to colorectal NECs, their molecular features are more similar to those of adenocarcinoma
than NET [202]. A significantly higher prevalence of abnormal p53 expression (88%),
nuclear β-catenin expression (48%), and high cyclin E expression (84%) was described in
NEC compared to NET (0%, 5%, and 5%, respectively). The IHC findings of NECs and
poorly differentiated adenocarcinoma were similar [202]. In a recent retrospective study
from five European Institutions (United Kingdom, France), MiNEN was most commonly
present in the large intestine (more than 40% of cases) and the esophago-gastric junction
(approximately 16%). The neuroendocrine component was confirmed to be grade 3 in most
cases and predominated in both the primary tumor and distant metastases. Moreover, the
non-neuroendocrine component was present in histological evaluation in most cases of
adenocarcinoma [203].

The study by Watanabe et al. showed the presence of MANECs of the colon and
rectum in 3.2% of patients. The presence of this tumor had a worse prognosis for DFS
and overall survival (OS) after curative resection compared with adenocarcinoma [204].
Studies also indicate that the presence of even less than 30% neuroendocrine component
in colorectal tumors of a mixed glandular–neuroendocrine subtype can have a negative
impact on the clinical course and patient outcomes, which makes the occasional finding
of isolated NCs in CRC especially important [205]. In another study on the relatively
large study population, adenocarcinoma with mixed subtypes was indicated as a rare
(1.4%) but very aggressive histological subtype in CRC. Its prognosis was significantly
worse than that of mucinous adenocarcinoma, but comparable to signet-ring cell carcinoma
(SRCC). Mucinous adenocarcinoma, SRCC, and adenocarcinoma with mixed subtypes
showed significantly poor survival rates compared with classical adenocarcinoma [206].
Colorectal MANEC is often diagnosed at an advanced stage when it is unresectable, and
chemotherapy plays a major role in its treatment [207].

An interesting concept regarding the development and growth of CRC is the recogni-
tion of aberrant mechanisms in tissue dynamics of intestinal crypt epithelium understood
as a polymer of cells. In steady state, they are maintained by an autocatalytic mechanism
of polymerization. It is suggested that in patients with FAP and sporadic CRC, mutation in
the APC gene increases autocatalytic colon tissue polymerization. It is hypothesized that
when the autocatalytic polymerization reaction in colorectal tissues is enhanced, it may
lead to progressive tissue growth and cancer development [208].

7.3. The SRIF System and Sporadic Colorectal Cancer Histogenesis

The association of the SRIF system with the histogenesis of sporadic CRC is also
considered in research. It is known that APC mutations lead to CRC development by
increasing the population of SCs. As it was mentioned, SCs and NCs are present in the
SC niche of the colonic crypts, where the former mature into the latter. Thus, a possible
mechanism for CRC initiation may be based on dysregulation of colonic NC maturation
caused by APC mutations [11]. Computational analyses showed that APC mutations



Biomedicines 2021, 9, 1743 19 of 35

lead to reduced maturation of aldehyde dehydrogenase positive (ALDH)(+) SCs into
progenitor NCs (rather than progenitor NCs into mature NCs) and reduced feedback
of mature NCs. Moreover, it has been reported that mature NCs (GLP-2R(+)/SST1(+)),
through their signaling peptides, exert opposing effects on the maturation rate of NCs via
feedback regulation of progenitor NCs. However, this does not fully explain the delay in
maturation, as both progenitor and mature NC numbers are lowered in CRCs. According to
authors, CRC development results from an imbalance between Wnt signaling and retinoic
acid (RA) signaling (with ALDH being a key component of the RA signaling). Generally,
compared to normal colonic crypts, the number of NCs with specific markers (including
SST) was reported to decrease in adenomas and carcinomas [11]. The interaction between
SCs and NCs was also investigated, assuming that SST1 maintains SCs in a quiescent state.
The authors tried to determine the way in which NCs affected by impaired SST signaling
participate in SCs overpopulation. The lack of SST and SST1 expression on ALDH(+) stem
cells suggested that SST signaling controls the maturation rate of NCs, as SCs mature
into the NC lineage, which contributes to silencing of SCs and inhibition of proliferation.
However, expression of both SST and SST1 was demonstrated in normal colorectal tissue,
while only SST1 was expressed in CRC. In contrast, in CRC cell lines, the proportion of
ALDH(+) cells was inversely correlated with the proportion of SST1(+) cells, as well as the
rate of proliferation and sphere formation. Furthermore, each CRC cell line had a unique
ALDH(+)/SST1(+) ratio that correlated with its growth rate. This suggests the existence of
feedback mechanisms between SCs and NCs that participate in SC regulation [10].

8. Epigenetic Alterations of the SRIF System Components in Colorectal Cancer

Epigenetic regulatory mechanisms of SSTs and SSTR genes have been described pri-
marily in NETs but are also relevant in other GI tract cancers, e.g., PDAC [139] and sporadic
CRC [18,209–212]. Findings on epigenetic mechanisms in CRC suggest that hypermethyla-
tion of SST and SSTR genes may be a critical regulator in cancer development [18,209,211].
On the other hand, when it comes to the epigenetic machinery, special attention has re-
cently been paid to the enzymes involved in modification of the expression of the entire
SRIF system, with the results of such studies aiming to improve therapeutic approaches
(reviewed in [49]).

Mori et al. demonstrated methylation of the SST gene in 88% of cases of CRC, and its
severity was significantly higher in cancers with low-level microsatellite stability (MSI-L)
than those without MSI-L. Moreover, this methylation was accompanied by a reduction
in SST mRNA expression [209]. Interesting results were obtained by Leiszter et al., who
showed a gradual increase in SST gene promoter methylation starting from juvenile colonic
epithelium (3.5% ± 1.9%), through colonic epithelium in healthy adults (approximately
10%) up to developed CRC (30.2% ± 11.6%). These results suggested that an absence
of local SST production may result in increased and unconstrained cell proliferation in
CRC [18]. Subsequent studies have confirmed that increased gene methylation of both
SST and SSTR2 is associated with their reduced expression in CRC. Furthermore, the SST
gene was indicated as one of five hub genes, after constructing protein–protein interactions
network for hypermethylation/low expression genes [211].

The role of the methylated SRIF system genes as epigenetic biomarkers in CRC has
begun to be investigated and confirmed. Liu et al. demonstrated that methylation of
serum SST gene can be an independent prognostic marker (for cancer-specific death and
recurrence) in patients before tumor surgery [210]. Significant methylation of three other
genes, including SST2, was also demonstrated in CRC tissues compared to adjacent normal
colorectal tissue. The receiver operator characteristic (ROC) curve (AUC) value of SST2
was 0.74, while a combination of three genes (CMTM3, SST2, and MDFI) produced an AUC
value of 0.9 with a sensitivity of 81% [212]. Thus, in general, biomarkers based on aberrant
methylation of genes belonging to the SRIF system, mainly SST and SST2, can be used to
accurately diagnose and treat CRC.
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In a taxonomy based on gene expression analysis, four “consensus molecular sub-
types” (CMS) of CRC were distinguished: CMS1 (MSI Immune, 14%), CMS2 (Canonical,
37%), CMS3 (Metabolic, 13%), and CMS4 (Mesenchymal, 23%). Samples with mixed charac-
teristics were also observed (13%). The latter may have represented a transient phenotype
or heterogeneity within the tumor [213]. None of the identified molecular subtypes of CRC
were clearly related to the SRIF signaling pathway, but the search for optimal markers
for early diagnosis, prognosis, and more effective therapies for CRC, are still a challenge
for science.

9. Clinical Application of the SRIF System Components
9.1. Diagnostics

The diagnosis and treatment of neuroendocrine tumors (especially well-differentiated
NETs) with synthetic somatostatin analogues (SAAs) takes advantage of the fact that
SSTRs (especially SST2, SST3, and SST5) are highly expressed in a high percentage of
tumors [58,180,200,207,214–217]. The best target for the visualization of NETs is SST2 [215].
Diagnostic methods targeting this characteristic fall under the broader term of nuclear
medicine. Nowadays, this approach bases on somatostatin receptor scintigraphy (SRS) and
positron emission tomography/computed tomography (PET/CT) with 68Ga-labeled SSAs,
which largely replaced SRS [175]. Overall, improvements in SSR (SSR/PET/CT) have
increased the detection rate of NETs and led to the inclusion of this diagnostic method in
an international strategy for patient management, from initial staging, through recurrence,
to palliative care for almost all NETs [218].

A range of SAAs was described in detail, including their pharmacokinetic properties
and therapeutic indications [216]. Many radioelements are used to label SSAs, such as
indium-111 and technetium-99 m, and more recently, gallium-68, fluorine-18, and copper-
64. Moreover, iodinated SST analogues, e.g., (111)-Indium (In)-labelled DTPA-octreotide,
and (111)-In-pentetreotide (octreoScan) in SRS, were used for in vivo visualization of SSTR-
positive tumors [111,214,215,219–224]. Octreotide scintigraphy is particularly useful for
determining the status of SST2 and SST5 in diagnosed NET, aiding metastatic disease
therapy targeting [200]. A positive correlation of 68Ga-DOTATOC uptake on dedicated
PET/CT scanners with SST2 gene expression was demonstrated in NEC. Furthermore, a
stronger correlation was demonstrated by SST2 than SST5 [225]. Recent studies in GEP-
NETs indicate that imaging of SSTRs can be improved by administering an initial dose
of unlabeled OCT just prior to radiotracer injection, simplifying the patient examination
protocol [226].

A new dual classification scheme was also developed for diagnostic purposes—
SomatoSTatin Receptor Imaging/Fluorine-18 (18F) deoxyglucose (SSTRI/FDG) (the NET-
PET grade)—allowing the characterization of the most metabolically active tumor based on
FDG avidity relative to SSTRI avidity. The SSTRIs uptake was higher in well-differentiated
than poorly differentiated NETs, strongly correlating with SST2A expression. The NETPET
classification has been shown to be a promising prognostic biomarker in NETs. It captures
the complexity of imaging with two radiotracers in a single disease-describing parameter
and is easy to apply to patient management [227]. Others have confirmed the correlation
between SSTR, FDG-PET, and tumor cellular differentiation, emphasizing that combined
imaging is particularly useful in patients with a Ki-67 proliferation index >10% [228].

In turn, when it comes the clinical utility of SRS in the diagnosis of colorectal tu-
mors (sporadic CRC, colorectal NETs, and mixed CRC), there are relatively few litera-
ture reports. OctreoScan seems to be particularly useful for evaluation of disease dis-
semination (detection of primary foci within the rectum is difficult) [222]. In Poland,
[99mTc-EDDA/hydrazinonicotinyl (HYNIC)]Tyr(3)-octreotide or 99mTc-tectrotid, 99mTc-
EDDA/HYNIC-TOC or 99mHYNIC-TOC, and [99mTc-EDDA/HUNIC]Tyr(3)-octreotate
(99mTC-HYNIC-TATE) were also applied in this method [229–232]. In some European cen-
ters, gallium-labeled SAAs, 68Ga-[68Ga]DOTA-D-Phe1-Tyr3-Octreotide 68Ga-DO-TATOC,
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have been used for the diagnosis of highly differentiated lesions. However, this method
had significant downsides (limited availability, high cost) [199,233].

Some studies using (111)-In-labelled DTPA-octreotide scintigraphy failed to demon-
strate the receptor status of liver metastases in 10 CRC patients. This examination was
not useful in planning therapeutic regimens, but the authors believe it may be helpful
in histological differentiation of metastases of this tumor [214]. In contrast, in another
study involving a case of a rectal carcinoid tumor, SRS was very useful in identifying the
presence of lymph node metastases that were not captured by CT scanning [234]. The role
of the fluorescent SSTR-specific conjugate 3207-86 in potential detection of CRC was also
investigated. The study was conducted on human HT-29 cells induced in nude mice
(mouse xenograft model of CRC). Increased detection of colorectal tumors by fluorescence
imaging has been demonstrated, with a 5–8-fold increase in contrast between malignant
and normal tissues [235]. Finally, according to Liepe et al., 99mTc-TOC is a useful radio-
tracer in SSTR-expressing tumor lesion imaging, exhibiting marginally higher sensitivity,
higher quality of imaging, and decreased patient radiation exposure compared to (111)-In-
octreotide. However, false positive findings most probably resulted from the presence of
colonic adenoma [232].

9.2. The SRIF System Components in Therapy of Cancers

Clinical application of somatostatin has been limited by its very short half-life (<3 min),
necessitating continuous intravenous infusion. Hence, a number of SAAs with a longer
half-life (1.5–2 h) are applied in radiolabeled somatostatin analogue/peptide receptor
radionuclide therapy (PRRT) [23,25,26,58,217,236–238]. Moreover, while the native SST
binds to all SSTRs, OCT binds with high affinity to SST2 and SST5 [239].

The most frequently used SSAs in PRRT clinical practice are OCT and octreotate
(TATE). The latter has a higher affinity and selectivity towards SST2. Conjugation of both
these peptides was performed to the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic
acid (DOTA) bifunctional chelator, for either 177Lu or 90Y chelation [23,224,239,240].

Treatment with SSAs has become the gold standard therapy for primarily highly differ-
entiated NENs of the GI tract, and other tumors that express SSTRs [45,107,214,217,241,242].
However, potential targets for molecular imaging and treatment in SSTR-negative NET are
also reviewed [242]. Optimal therapy in NETs usually depends on the primary location
and classification, morphologic features of differentiation, and tumor proliferation rates.
Patients with highly differentiated (G1) hormonally active and hormonally inactive NENs,
and/or slow rates of disease progression, and patients with high SSTR expression and low
Ki-67 index are characterized with more favorable outcomes [107,123,187,243].

Therapy with SSAs takes advantage of both the multidirectional effects of SAAs
on the GI tract (e.g., reducing secretion of hormones and biologically active substances)
and their antiproliferative effects to reduce tumor mass, delay disease progression, and
prolong life [26]. Long-acting release (LAR) OCT has been considered a breakthrough in
the treatment of all NENs for about two decades [244,245]. It is a suitable first-line drug or
maintenance therapy and can be used in combination therapy in advanced forms of NENs,
and to delay disease progression. The demonstration of the antiproliferative effect of OCT
LAR has led to its approval for the treatment of patients with NENs of unknown primary
location (reviewed in [26]). Another long-acting SSA is lanreotide Autogel, whose use in
the CLARINET trial significantly prolonged progression-free survival (PFS) in patients with
metastatic pancreatic/intestinal NETs. The study proved that the antiproliferative effect
was independent of liver metastasis [246]. In turn, results of the phase-three NETTER-1 trial
determined high efficiency (longer PFS and a significantly higher response rate) and safety
of 177Lu-DOTATE compared to high-dose OCT LAR in patients with advanced, progressive,
SSTR-positive midgut (defined as jejunoileum and the proximal colon) NETs [236,247].

SAAs labeled with therapeutic radionuclides provide an overall response rate of
approximately 30%. Hence, this treatment method continues to be improved by modifi-
cations of SSAs to increase blood circulation half-life and targeted accumulation in the
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tumor. One such modification was the use of DOTA-octreotate with Evans blue analogue.
Using cell lines with different levels of SST2 expression, e.g., HCT116 (human colon can-
cer cells), HCT116/SSTR2, AR42J (rat amphicrinic pancreatic cells), and mice bearing
SST2 xenografts, improved tumor response and survival rates and long-term efficacy was
demonstrated compared to DOTA-octreotate itself [248]. Recently, action of nonpeptide
3,4-dihydroquinazoline-4-carboxamides as SST2 agonists was also described. This class of
molecules exhibits high human SST2 potency and selectivity towards SSTRs. Hence, it can
be used in carcinoids and NETs [249]. New therapeutic strategies consider the use of SST
antagonist analogues, e.g., STT2-ANT (BASS), LM3, JR10, and JR11 (Satoreotide) [216,250].
Antagonist derivatives have been shown to be more effective compared with agonists,
which may broaden the group of applications of these therapeutics (reviewed in [216]).
The most current research findings and treatment guidelines for GEP-NETs are the subject
of numerous publications [180,187,217].

Somatostatin Analogues in Neuroendocrine and Sporadic Colorectal Cancer Therapy

While NENs of colon and rectum (C-NENs and R-NENs) are generally rare, the
frequency of their diagnosis is significantly increasing [198,200]. According to WHO classi-
fications (2010, 2019), both these NENs are classified as Well-Differentiated Neuroendocrine
Tumors (WD-NETs) that contain NET G1 and NET G2, and Poorly Differentiated Carcino-
mas (PD-NECs) comprising only G3 neoplasms (carcinomas) [123,186,198]. Colonic NETs
occur in similar percentage of cases in the United States, Europe, and Asia (~7.5% of all
NETs). Rectal lesions account for 18% of all NETs in the United States and 27% of all GI
tract NETs, with slightly lower percentages reported in Europe (5–14% of the total GI tract
NETs). Rectal NETs are more prevalent in Japan, making up 60–89% of all NETs of the
GI tract [200].

High efficacy and morphologic responses with minimal toxicity and longer survival
after PRRT were demonstrated in patients with metastatic NEN of the rectum, despite the
unfavorable prognostic features of this cohort [251]. Interestingly, the use of OCT LAR
and lanreotide Autogel in the above-label doses, in a group of 105 patients with various
GEP-NETs, significantly prolonged the PFS of these patients. Additionally, patients with
primary small intestine/colorectal cancers, Ki-67 index <5%, and no or limited extrahepatic
metastases, benefited better from this therapy [217].

So far, it has been thought that SAAs may be difficult or even impossible to treat in
sporadic CRC. Some authors have observed a loss of SST2 expression in more advanced
stages of some CRC cases, or even in tumors of patients with higher CEA level, as com-
pared with control or with patients with lower CEA levels, which could be associated
with a loss of cellular regulation and subsequent excessive proliferation [117,138,166].
However, not all authors confirm the absence of SST2 expression in advanced morpholog-
ical changes in CRC [115]. The presence of SST2 in CRC adenocarcinoma is also shown
by own data (Figure 2). Demonstration of this SSTR subtype in CRC mostly bears signif-
icance due to OCT exhibiting high affinity for SST2, and lower for SST3 and SST5 [252].
Some published results also report antiproliferative and pro-apoptotic effects of OCT in col-
orectal carcinoma [171,174,214,217]. Recently, these effects of OCT, as well as better efficacy
of cetuximab (CTX) combined with OCT, have been confirmed in the treatment of CRC.
Furthermore, CTX–OCT conjugate was loaded onto Ca–alginate beads (CTX–OCT–Alg)
and compared with single drug treatment. CTX was coated with alginate to enable its
delivery into the GI tract [253]. According to other authors, an indirect antiproliferative
effect of SSAs is also possible in tumors lacking SSTR expression. Hence, these peptides
are most likely able to downregulate other growth promoting factors of the tumor (e.g.,
gastrin and insulin-like growth factor 1 (IGF-1)) [241].

Furthermore, different therapeutic options based on SSAs were tried in in vitro CRC
models. Assuming that resistance of advanced forms of CRC to chemotherapy is often asso-
ciated with the presence of TP53 mutations in the tumor, the AN-238 analogue, consisting
of 2-pyrrolinodoxorubicin (AN-201) linked to octapeptide SRIF carrier RC-12, was tested



Biomedicines 2021, 9, 1743 23 of 35

in CRC cell lines with wt p53 (HCT-116, LoVo cells), and p53 mutation (HCT-15, HT-29
cells). This therapeutic inhibited the growth of experimental colorectal cancers that express
SSTRs, regardless of their p53 status [254]. Another experimental CRC model (HT-29,
HCT-15, and HCT-116 cells) demonstrated the effect of a targeted cytotoxic SST analogue,
AN-162, consisting of doxorubicin (DOX) conjugated to the SST carrier RC-121. In contrast
to DOX alone, AN-162 blocked HCT-116 cells in the S/G2 phase and increased the number
of apoptotic cells. In vivo, AN-162 reduced CRC xenograft volume more effectively than
its non-conjugated components [170]. Promising results of in vitro studies conducted on
HCT116 cells were also obtained during the evaluation the 64Cu-CB-TE2A-Y3-TATE SST2
agonist in p53- and SST2-positive tumors [255]. Recently, the mechanisms of action of
newer forms of therapy, based on SST radio antagonists (177Lu-labeled SST), have been
investigated in similar in vitro models (HT-29 cells). 177Lu-DOTA-Peptide 2 exhibited high
stability in vitro and good SSTR affinity. The acceptable uptake of this SSA by tumors and
the high tumor-to-blood ratio of 177Lu-DOTA-Peptide 2 may allow the introduction of this
radiopeptide as a therapeutic agent for colorectal adenocarcinoma in humans [256].

In summary, SSAs are the subject of intense research. They are a good therapeutic
option in NENs (including colorectal NENs) compared to other more toxic anti-cancer
therapies. Novel peptide and non-peptide SAAs with a binding profile similar to native
SST are sought [257]. It is also a challenge to describe the crystal structure of the five
SSTRs to facilitate the discovery of new, safe, and effective agonists and antagonists of
SRIF system components [12,180,255]. Furthermore, non-peptide agonists of SSTRs may
provide the basis for the development of novel oral antidiarrheal therapies [257].

The challenge in NENs therapy is also to determine the optimal forms of combined
therapies, integrating SAAs with chemotherapy or molecular therapies, and expanding the
indications for SAAs in other cancers. Which of these SRIF property-based therapy systems
will be able to be used in sporadic CRC will most likely become clear in the near future.

10. Conclusions and Future Challenges

There are many excellent and accessible literature positions on the role of the SRIF
system in GI tract in physiology and disease. However, this manuscript aims to present the
lesser known role of the SRIF system in histogenesis, diagnosis, prognosis, and therapeutic
approaches in neuroendocrine and sporadic CRC.

In the GI tract, most studies have investigated the role of SRIF system in the physiology
and pathology of various NENs (including colon and rectum NENs). The contribution
of the SRIF system to the development, diagnosis, and prognosis of sporadic CRC is still
being studied and discovered. It is suggested that neuroendocrine carcinoma (NEC) may
arise from preceding adenocarcinomas. In CRC histogenesis, the role of the SRIF system
(mainly SST and SST1) is linked to APC gene mutations and could involve dysregulation
of feedback mechanisms between cancer stem cells and neuroendocrine cells present in
the niches of intestinal crypts. Epigenetic changes (mainly methylations) of SRIF system
components (mainly SST and SST2) may be helpful in the diagnosis and prognosis of
CRC, as well as serve in better treatment qualification. It was demonstrated a progressive
increase in SST gene promoter methylation starting from juvenile colonic epithelium and
ending on tumor-transformed epithelium in CRC. SST methylation is described in nearly
90% of CRC patients. This is accompanied by a loss of antiproliferative function of the SRIF
system and tumor growth. On the other hand, the methylated forms of SST and SST2 were
determined as sensitive prognostic markers.

Determination of serum SST levels as a potential marker of endocrine tumor differen-
tiation (including CRC) does not provide conclusive results. A recent retrospective audit of
fasting gut hormone profile indicates that elevated SST levels (a concentration >150 pmol/L
was considered abnormal) were observed in 5 out of 231 patients with suspected NENs,
of which only two patients were diagnosed with pancreas NET. Three patients had false
positive elevated plasma concentrations of fasting SST. The reasons for these abnormal
results are discussed [258].
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In the diagnosis of colorectal tumors (including sporadic CRC), the use of somatostatin
receptor scintigraphy (SRS) can be useful to assess disease dissemination, histologically
differentiate tumor metastases, and identify nodal metastases not visible by other meth-
ods. However, its widespread use still applies almost exclusively to tumors with an
endocrine component.

It remains to be seen whether the treatment of sporadic CRC based on SRIF sys-
tem components (SST agonists or antagonists) will be clinically effective. So far, vari-
ous therapeutic options are being evaluated using different colon cancer cells in vitro.
Potential therapeutics with promising anti-tumor effects include targeted cytotoxic SSAs in
combination with chemotherapeutics, SST2 agonists, and SST antagonists.

There are still many questions in the research on the biological role of the SRIF system.
In the context of the contribution of the SRIF system in CRC pathogenesis, progression, and
therapy, several questions can be highlighted: (1) Which factors regulating somatostatin
secretion in the GI tract (intraluminal, neural, and endocrine) predominate in healthy
colon, and which are dysregulated in CRC? (2) What is the potential relationship between
the number of colorectal EECs, hormonal spectrum (including SRIF system), and dietary
nutrient exposure in CRC pathogenesis? (3) What are the molecular mechanisms regulating
the differentiation of CRC subtypes involving the SRIF system? (4) What are the precise
mechanisms of immune system regulation in CRC? (5) What exactly is the significance of
SST secreted by enteric nerve system elements in the course of CRC? (6) Which peptide
derivatives are effective in the treatment of sporadic CRC with lower SSTR expression?
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Abbreviations

AA amino acid
ACL adenylate cyclase
ALDH+ aldehyde dehydrogenase
APC adenomatous polyposis coli
APUD (DNES) cells amine precursor uptake decarboxylation; diffuse neuroendocrine system cells
CGRP calcitonin gene-related peptide
CD Crohn’s disease
c-Met tyrosine-protein kinase Met or hepatocyte growth factor receptor
CMTM3 CKLF-like MARVEL transmembrane domain containing protein 3
CRC colorectal cancer
CNS central nervous system
CSCs cancer stem cells
CST cortistatin
DAB 3,3′-diaminobenzidine
DFS disease-free survival
DSS dextran sodium sulfate
ECL enterochromaffin-like
EECs enteroendocrine cells
ENS enteric nervous system
ERK1/2 extracellular signal-regulated kinase 1/2
ESCs embryonic stem cells
FAP familial adenomatous coli
GH growth hormone
GIP gastric inhibitory peptide
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GLP-1/-2/R glucagon-like peptide-1, -2/Receptor
GPCR G protein-coupled receptors
5-HT 5-hydroxytryptamine (serotonin)
IBD inflammatory bowel diseases
IHC immunohistochemistry
IL-6 interleukin-6
IFNγ interferon γ

ISH in situ hybridization
MANEC/MiNENs mixed adenoneuroendocrine carcinoma/mixedneuroendocrine–non-neuro-

endocrine neoplasms
MAPK mitogen-activated protein kinase (originally called ERK)
MDFI MyoD family inhibitor
MSI-L low-level microsatellite stability
NCs neuroendocrine cells
NEN neuroendocrine neoplasm
NET neuroendocrine tumor
OCT octreotide
OS overall survival
PACAP pituitary adenylate cyclase-activating peptide
PDAC pancreatic ductal adenocarcinoma
panNET/pNET pancreatic NET
PC2 proprotein convertase 2
PFS progression-free survival
PNS peripheral nervous system
PP pancreatic polypeptide
PTP protein phosphotyrosine phosphatase
P2Y(1) purinoceptor 1; belongs to GPCR
PYY peptide YY
RA retinoic acid
SCs stem cells
SH2 Src homology 2
SRCC signet-ring cell carcinoma
SRIF/SRIH/SST somatotropin-release inhibitory factor/hormone/somatostatin
SSAs somatostatin analogues
TNBS trinitrobenzene sulfonic acid
UC ulcerative colitis
VIP vasoactive intestinal peptide
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