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Abstract 

Introduction: Severe COVID‑19 leads to important changes in circulating immune‑related proteins. To date it has 
been difficult to understand their temporal relationship and identify cytokines that are drivers of severe COVID‑19 out‑
comes and underlie differences in outcomes between sexes. Here, we measured 147 immune‑related proteins during 
acute COVID‑19 to investigate these questions.

Methods: We measured circulating protein abundances using the SOMAscan nucleic acid aptamer panel in two 
large independent hospital‑based COVID‑19 cohorts in Canada and the United States. We fit generalized additive 
models with cubic splines from the start of symptom onset to identify protein levels over the first 14 days of infec‑
tion which were different between severe cases and controls, adjusting for age and sex. Severe cases were defined as 
individuals with COVID‑19 requiring invasive or non‑invasive mechanical respiratory support.

Results: 580 individuals were included in the analysis. Mean subject age was 64.3 (sd 18.1), and 47% were male. Of 
the 147 proteins, 69 showed a significant difference between cases and controls (p < 3.4 ×  10–4). Three clusters were 
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Introduction
COVID-19 is characterized by a complex immune 
response which explains some of the observed variation 
in patient outcomes. In patients with a severe clinical 
course, some may develop a “COVID-19 cytokine storm” 
[1], though this term has been challenged due to a poor 
understanding of this response [2]. While previous pub-
lications found multiple cytokines and other immune-
related proteins associated with COVID-19 outcomes 
[3–8], these associations were measured in small sample 
sizes, assessed a limited set of proteins, or did not pro-
vide a temporal analysis of the changes in cytokines dur-
ing severe versus mild disease. These limitations may 
have contributed to contradicting results [9–11].

Similarly, it remains unclear if the host immune 
response explains a large proportion of differences in 
COVID-19 outcomes between males and females. While 
reports previously suggested that these differences were 
correlated with differential levels of cytokines (e.g. IL-8 
and IL-18 [12]), these also suffered from small sample 
sizes and limited adjustment for temporal changes. These 
studies also likely contained many false positive associa-
tions due to multiple comparisons, as most of the sex-
related differences were not replicated in other larger 
cohorts [13].

One way to address some of these limitations is by 
using high-throughput oligonucleotide-aptamer pro-
tein measurement technology [14]. These panels reli-
ably measure thousands of blood circulating protein 

simultaneously, allowing for comprehensive measure-
ments on larger number of subjects. The increase in sam-
ple size allows for better adjustments for time dependent 
changes in protein levels, providing a more granular 
understanding of their dynamics during infection. Here, 
we use the SOMAscan aptamer panel [15] (SomaLogic, 
Boulder, USA) in two prospectively enrolled cohorts 
from Canada and the United States (n = 580) to meas-
ure 147 proteins associated with the immune response 
over the first 14  days of COVID-19. This allowed us to 
clearly describe the temporal pattern of cytokines during 
COVID-19 disease progression.

By using large-scale protein measurement and account-
ing for temporal changes over the course of infection, we 
describe which proteins are likely associated with severe 
COVID-19, and which ones also underlie sex differences 
in outcomes.

Methods
Overview of study design
We used the SomaScan assay to measure 147 cytokines 
and other immune-related proteins in cases and con-
trols in the Biobanque Québécoise de la COVID-19 [16] 
(BQC19) in Montreal, and in the Mount Sinai Biobank 
(MSB) at Icahn School of Medicine in New York City. We 
then combined those results using generalized additive 
models to identify proteins temporally associated with 
severe COVID-19.

formed by 108 highly correlated proteins that replicated in both cohorts, making it difficult to determine which pro‑
teins have a true causal effect on severe COVID‑19. Six proteins showed sex differences in levels over time, of which 
3 were also associated with severe COVID‑19: CCL26, IL1RL2, and IL3RA, providing insights to better understand the 
marked differences in outcomes by sex.

Conclusions: Severe COVID‑19 is associated with large changes in 69 immune‑related proteins. Further, five proteins 
were associated with sex differences in outcomes. These results provide direct insights into immune‑related proteins 
that are strongly influenced by severe COVID‑19 infection.

Keypoints 

• COVID-19 is associated with changes in cytokines, interleukins, and other immune-related proteins. However, 
previous research has failed to account for the dynamic nature of these changes over the course of infection, 
leading to often contradictory results.

• We measured 147 immune-related protein in 580 individuals in three large academic centers to precisely map 
the evolution of these proteins during acute COVID-19.

• COVID-19 was associated with a clear change in 69 proteins. More importantly, 3 of them may also help explain 
sex-differences in COVID-19 outcomes.

• These results provide greater insight into the COVID-19 immune response, and how it leads to severe illness.

Keywords: COVID‑19, Proteomics, SOMAscan, Immunity
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Population
The BQC19 and MSB are hospital-based prospective 
cohorts enrolling subjects with PCR proven SARS-CoV-2 
infections, as well as individuals who presented with 
signs or symptoms consistent with COVID-19, but with-
out a microbiological diagnosis of COVID-19. For this 
study, the BQC19 cohort was limited to subjects enrolled 
at the Jewish General Hospital and Centre Hospitalier de 
l’Université de Montréal, both university affiliated hospi-
tals. Demographic characteristics and clinical risk factors 
were obtained by medical chart review or subject inter-
view performed by clinicians or trained research coor-
dinators in all cohorts. Specifically, time from onset of 
symptoms used for all analyses were recorded by trained 
clinical assistants or physicians based on medical records 
review or patient or relatives interview.

COVID‑19 case/control outcome definitions
Severe COVID-19 cases were defined as subjects with a 
positive SARS-CoV-2 PCR test result who either died or 
required invasive or non-invasive mechanical respiratory 
support. Mechanical respiratory support was defined as 
any one of the following: intubation, new positive air-
way pressure (CPAP) or bilevel positive airway pressure 
(BiPAP) ventilation, or high-flow nasal cannula. Controls 
were defined as any subjects with a positive PCR test who 
did not require invasive ventilation, or any subject with 
signs or symptoms consistent with COVID-19, but who 
had negative PCR tests for the virus. However, we also 
excluded participants who with severe non-COVID-19 
disease (i.e. participants with respiratory support as 
defined above, but not due to COVID-19). This control 
definition was chosen to emphasize severe COVID-19 
specific immune responses, as compared to a general 
hospital population.

Protein measurements
We used the SOMAscan (v4) platform to measure 5284 
circulating proteins from each participant, and then pri-
oritized 147 immune-related proteins for the analysis. 
These proteins were selected to include all available inter-
leukins (n = 38), CC motif chemokines (n = 23), CXC 
motif chemokines (n = 14), interferons (n = 17), toll-like 
receptors (n = 6), and immunoglobulins (n = 5) available 
from the SOMAscan panel, as well as 6 other proteins 
(G-CSF, GM-CSF, M-CSF, MIF, TNF-α, TNF-β) known 
to be involved in viral immune responses [17–19]. We 
also included all 38 soluble interleukin receptors meas-
ured by SOMAscan. These soluble receptors act as decoy 
receptors for their respective interleukins. Biologically, 
they bind to their interleukins in the circulation, pre-
venting them from binding membrane-bound receptors, 
and having their usual biological effect. Their action may 

predict the effect of pharmacologic interleukin receptor 
blocking agents [20]. Owing to differences in the choice 
of aptamers in each SOMAscan panel, of the 147 proteins 
available in the BQC19 cohort, 15 were not available in 
the MSB cohort (IL-2, IL-7, IL-9, IL-34, IL-37, IL-12RB2, 
CCL1, CCL3, CXCL2, IFNB1, TLR2, IgD, IgE, IgG, and 
IgM). The full protein list in each cohort is available in 
Additional file 1.

To reflect acute illness, we limited this study to sam-
ples collected within 14 days of symptom onset (i.e. one 
sample per participant). To better control for the effect 
of COVID-19 treatment on circulating protein levels, we 
limited our analysis to only the first measurement of cir-
culating proteins per subject, since these samples were 
less likely to be collected from individuals already start-
ing therapy for severe COVID-19.

Samples were obtained and processed as per the man-
ufacturer’s instructions. Briefly, blood samples were 
collected in acid-citrate-dextrose tubes (to prevent coag-
ulation) and frozen at − 80 °C until analysis. Protein lev-
els were measured using resonance fluorescence units, 
and further normalized and calibrated by SomaLogic to 
remove any systematic bias (e.g. batch effects). For the 
statistical analysis, we further standardized protein levels 
by subtracting their mean and dividing by their standard 
deviation to allow for easier interpretation and analysis.

Statistical analysis
To find clusters of proteins that varied together, we first 
drew Spearman’s correlation heatmaps within cases and 
within controls separately. This was also done in both 
cohorts separately (i.e. 4 times in total). To better visu-
alise Spearman correlation clusters, the proteins were 
ordered using a hierarchical clustering algorithm with 
the “complete linkage” method (implemented with the 
hclust base function in R [21], with default settings).

Second, to adjust for the time of onset of symptoms, 
which is expected to affect protein levels, we fit gen-
eralized additive models [22] (GAMs) on each protein 
levels during the first 14  days since symptom onset 
in cases and controls. In short, this analysis aims to 
model the natural history of protein levels by using 
measurements done at clinical presentation on differ-
ent subjects (which have different time from onset of 
symptoms on presentation). GAMs fit spline between 
different immunity related proteins from days 1 to 14, it 
is therefore uniformly more powerful than dichotomiz-
ing protein levels in two time periods and comparing 
their levels. The GAMs were fit using cubic regression 
splines, the restricted maximum likelihood (REML) 
method, and with up to 15 knots allowed (the model 
chooses the optimal number of knots). All models 
were also adjusted for subjects’ age and sex. The GAMs 
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obtained in the two cohorts were de-identified and 
meta-analyzed (if measured in both cohorts) using the 
metagam package [23] (v0.2.0). The resulting meta-ana-
lyzed models were then plotted for a 65-year-old male 
and female (65 was chosen because it was the mean age 
in the BQC19 cohort).

To check if the protein levels were different between 
cases and controls, we used GAM ANOVA using a 
model without case/control status as predictor of pro-
tein level as the nested model. Similarly, we used GAM 
ANOVA with nested models with and without sex vari-
ables to check for difference in cytokine levels between 
sexes. Approximate p-values for this null hypothesis of 
no difference between cases and controls were obtained 
using GAM ANOVA. GAMs were fitted using the mgcv 
package [22] (v1.8–33). Sample code is available in 
Additional file 2. Finally, GAM ANOVA p-values were 
meta-analyzed across cohorts using the logistic method 
with the metap package [24] (v1.4). We considered that 
protein levels differed between cases and controls if 
the resulting p-value was below Bonferroni correction 
(alpha = 0.05/147 = 0.0003). We acknowledge that this 
correction is overly conservative due to the correlated-
ness of protein levels.

All analyses were done using R [21] (v4.0.3).

Results
Population
Table 1 shows basic characteristic of the participants in 
each cohort.  Mean age was similar between cases and 
controls in the BQC19 (67.2 vs 66.2 year-old), but cases 
were slightly older in the MSB (64.8 vs 59.2  year-old). 
In both cohort, there were less females amongst cases 
compared to controls: 38.5% vs 55.0% in the BQC19, and 
41.2% vs 44.5% in the MSB. There were more diabetic 
cases than controls in the BQC19 (41.8% vs 29.3%) but 
a similar proportion in the MSB. In both cohorts, there 
were more cases with chronic obstructive pulmonary dis-
ease: 17.6% vs 11.2% in the BQC-19, and 11.8% vs 6.3% in 
the MSB. There were also more heart failure diagnoses in 
cases in both cohorts: 14.3% vs 11.6% in the BQC-19, and 
11.8% vs 8.6% in the MSB. Finally, there were less never-
smokers amongst cases: 42.9% vs 71.1% in the BQC-19, 
and 39.5% vs 50.8% in the MSB. These values are compa-
rable to other reported large COVID-19 cohorts [25].
Immune‑related protein levels dynamics over time
Many cytokines and related proteins showed statistically 
significant time-dependent differences between cases 
and controls (Bonferroni threshold 0.05/147 = 0.00034): 
17 of the 38 interleukins, 24 of the 38 soluble interleukin 
receptors, 11 of the 23 CC chemokines, 6 of the 14 CXC 
chemokines, 8 of the 17 interferons related proteins, and 
3 of 17 other immune-related proteins (Table 2).

Table 1 Subject characteristics in the two participating cohorts. Numbers presented as count (percentage) except where otherwise 
570 noted. Hypertension information was not available for the Mount Sinai Biobank cohort.

BQC19 (n = 333) Mount Sinai Biobank (n = 247)

Cases (n = 91) Controls (n = 242) Cases (n = 119) Controls (n = 128)

Age in years (mean) 67.2 66.2 64.8 59.2

Female sex 35 (38.5%) 133 (55.0%) 49 (41.2%) 57 (44.5%)

Hospital site – – – –

 Centre Hospitalier de l’Université de Montréal 32 (35.2%) 22 (9.1%) – –

 Jewish General Hospital 59 (64.8%) 220 (90.1%) – –

 Mount Sinai Hospital – –

COVID‑19 positive 91 (100%) 202 (83.5%) 119 (100%) 128 (100%)

Diabetes 38 (41.8%) 71 (29.3%) 30 (25.2%) 32 (25.0%)

Chronic obstructive pulmonary disease 16 (17.6%) 27 (11.2%) 14 (11.8%) 8 (6.3%)

Chronic kidney disease 16 (17.6%) 24 (9.9%) 15 (12.6%) 26 (20.3%)

Congestive heart failure 13 (14.3%) 28 (11.6%) 14 (11.8%) 11 (8.6%)

Hypertension 60 (65.9%) 134 (55.4%) – –

Liver disease 2 (2.2%) 4 (1.7%) 6 (5.0%) 4 (3.1%)

Smoking status

 Current smoker 5 (5.5%) 6 (2.5%) 10 (8.4%) 9 (7.0%)

 Ex‑smoker 11 (12.1%) 30 (12.4%) 32 (26.9%) 35 (27.3%)

 Never smoker 39 (42.9%) 172 (71.1%) 47 (39.5%) 65 (50.8)

 Don’t know 36 (39.6%) 34 (14.0%) 30 (25.2%) 19 (14.8%)
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Hierarchical clustering and Spearman correlation 
delineated clear clusters of proteins that varied together 
over the course of infection (Fig. 1 and Additional file 3). 

Visual inspection of the BQC19 with the MSB heatmaps 
reveals three large protein clusters whose members show 
similar changes in levels. Importantly, the cluster with 
the highest proportion number of proteins showing an 
association with case and control status (cluster A; 31 
out of 49 proteins) is also the one with the highest mean 
absolute Spearman correlation in both cohorts. Clus-
ter A also showed a clear increase in Spearman correla-
tions between cases and controls (mean increase of 0.163 
across cohorts), supporting the fact that an immune 
overactivation underlies severe COVID-19 (Additional 
file  3). Proteins in this cluster show increasing levels in 
cases over the first 14  days of symptoms, whereas they 
remain stable in controls. In contrast, clusters B and C 
showed a negative correlation with cluster A, with higher 
but slowly tapering protein levels in controls. These clus-
ters did not replicate as clearly between cohorts and have 
a lower proportion of proteins associated with case and 
control status.

Each cluster contained a heterogeneous set of pro-
teins (Additional file 4), with many replicating previously 
published findings [3–7], supporting the robustness of 
our results. Of note, many of the interleukin-10 family 
cytokines (IL19, IL20, IL24) or their soluble receptors 
(IL10RB, IL20A, IL22RA1 and IL22RA2) were present 
in cluster A. Other notable proteins found in cluster A 
include two members of the IL1 family (IL1B and IL36B), 
IL11 (a member of the IL6 family which both act on the 
same receptor [26]), multiple members of the IL17 fam-
ily (IL17A, IL17B, IL17D, IL17F, and IL25), and IL4 and 
IL13 which both act on the same receptor to drive severe 
asthma [27]. Interestingly, clusters B and C contained 
some proteins related to those in cluster A which still 
showed significant differences between cases and con-
trols. These included IL1A, IL4R (the soluble receptor 
for IL4), and IL10RA (a component of the soluble recep-
tor for IL10) in cluster B, and IL1R1 (a soluble receptor 
for IL1) in cluster C. Figure 2 shows some representative 
proteins from each cluster and from the rest of the pro-
teins, and all protein level plots are shown in Additional 
file 5.

Differences in cytokine levels between sexes in cases 
and controls over time
Of the 147 proteins, 5 showed a difference between males 
and females: TLR5, CXCL17, CCL28, CCL26, IL1RL2, 
and IL3RA. However, only the last three were also asso-
ciated with case and control status (Fig.  3). CCL6 was 
found in the previously described cluster A of highly 
associated proteins, while IL3A was in cluster C. Both 
proteins had slightly different levels on the first day of 
symptoms (higher in females for CCL26, lower in females 
for IL3RA) but trended similarly afterwards. ILRL2 

Table 2 Immune‑related proteins with differences between 
severe COVID‑19 cases and controls in our meta‑analysis of 
the BQC‑19 and MSB results (Bonferroni adjusted threshold 
0.05/147 = 0.00034)

a For IL37 and IFNB1, the p‑values from the BQC‑19 p‑value are shown (protein 
not available in the MSB panel)
b For IL10RB and IL15RA.soma2, the p‑value from the MSB p‑value is shown 
(GAM ANOVA approximation failure)

Proteins P‑values Proteins P‑values

Interleukins Soluble interleukin receptors
IL1A 9.04 ×  10–6 IL1R1 1.50 ×  10–8

IL1B 1.21 ×  10–6 IL1R2 1.91 ×  10–7

IL3 2.34 ×  10–4 IL1RAPL2 4.23 ×  10–11

IL4 1.35 ×  10–11 IL1RL1 2.90 ×  10–12

IL6 9.50 ×  10–10 IL1RL2 1.45 ×  10–4

IL11 1.14 ×  10–10 IL1RN 2.89 ×  10–6

IL12 1.26 ×  10–4 IL2RB 1.04 ×  10–4

IL13 3.04 ×  10–7 IL3RA 4.37 ×  10–7

IL17D 1.66 ×  10–8 IL4R 1.67 ×  10–8

IL17F 2.14 ×  10–10 IL7R 5.12 ×  10–11

IL18 8.26 ×  10–7 bIL10RB 6.18 ×  10–5

IL19 2.32 ×  10–4 IL10RA.soma2 5.17 ×  10–8

IL24 1.52 ×  10–11 IL11RA 1.64 ×  10–6

IL25 2.76 ×  10–7 IL12RB1 5.46 ×  10–13

IL36B 1.52 ×  10–9 IL13RA1 5.15 ×  10–7

IL36G 1.28 ×  10–6 bIL15RA.soma2 1.10 ×  10–7

aIL37 3.17 ×  10–4 IL17RB 1.22 ×  10–4

Interferons IL17RC 1.02 ×  10–4

IFNA4 9.47 ×  10–8 IL18RAP 1.50 ×  10–5

IFNA6 1.09 ×  10–7 IL21R 1.28 ×  10–11

IFNA8 2.43 ×  10–5 IL22RA1 1.66 ×  10–14

IFNA10 4.74 ×  10–4 IL22RA2 1.10 ×  10–5

aIFNB1 1.80 ×  10–4 IL23R 5.80 ×  10–5

IFNL1 6.53 ×  10–5 IL27RA 2.11 ×  10–6

IFNL2 3.01 ×  10–11 CXCL chemokines
IFNL3 3.60 ×  10–5 CXCL5 4.53 ×  10–8

CCL chemokines CXCL10 3.22 ×  10–9

CCL7 5.21 ×  10–10 CXCL12 1.21 ×  10–4

CCL8 4.14 ×  10–5 CXCL13 1.01 ×  10–5

CCL11 5.23 ×  10–6 CXCL14 5.42 ×  10–10

CCL13 4.01 ×  10–11 CXCL16 2.26 ×  10–5

CCL19 1.93 ×  10–6 Others
CCL20 1.30 ×  10–6 M‑CSF 1.60 ×  10–13

CCL22 8.84 ×  10–10 TLR1.soma1 2.62 ×  10–4

CCL23 8.15 ×  10–6 LT‑α / TNF‑β 2.08 ×  10–10

CCL24 3.50 ×  10–10

CCL26 2.78 ×  10–8

CCL27 3.27 ×  10–13
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Fig. 1 Spearman correlations for three clusters (A, B and C) of proteins in the BQC (left) and the MSB (right). Only correlations with p‑values less 
than 0.05 shown. Proteins with asterisks (***) showed a statistically significant differences between cases and controls (Bonferroni threshold 
0.05/147). Full spearman correlation heatmap available in Additional file 3



Page 7 of 11Butler‑Laporte et al. Clinical Proteomics           (2022) 19:34  

did not cluster well with other proteins and decreased 
towards normal levels more rapidly in females. Of note, 
IL3RA is the only one of these proteins for which the cor-
responding genes is located on a sex chromosome (chro-
mosome X).

Discussion
In this study, we used two large prospective cohorts and 
a panel measuring 147 circulating immune-related pro-
teins and found that severe COVID-19 was associated 
with a clear activation in many immune-related proteins, 
with most protein levels varying together closely overt 
time. These results also provided three proteins that were 
importantly different between the sexes: CCL26, IL1RL2 
and IL3RA. These 3 sex-specific protein findings were 
not found in previous reports, which is partly explained 
by the fact that our panel included more proteins than 
other studies, but this could also suggest false positive 

associations due to multiple testing. Hence, while most 
of the changes in immune-related proteins observed in 
severe COVID-19 are shared across sexes, it remains 
possible that disparity in outcomes between sexes may 
be mediated by differences in immune-related proteins 
levels.

Our study’s main strengths include its large sample 
size with strong replication between the two independ-
ent cohorts, the large protein measurement panel and 
the fact that proteins were measured at different times 
during infection, a feature that was explicitly modelled 
into our analysis. These provided a granular depiction of 
time-dependent immune responses to COVID-19 and 
explain previously discordant reports on the association 
between different immune proteins and COVID-19. For 
example, visual inspection of the interferon level dynam-
ics will often reveal that the differences in measurement 
timing can easily explain previously reported differences 

Fig. 2 Smoothed curves for cluster‑representative immune‑related proteins, as a function of days since symptoms onset (x‑axis), and separately for 
severe COVID cases and controls. Estimated curves are shown for 65‑year‑old. Y‑axis is standardized to a mean of 0 and standard deviation of 1. Full 
results are shown in Additional final 5. Blue: controls. Red: severe COVID‑19. Asterisks (***): p < 3.4 ×  10–4 for case–control difference in protein levels
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in direction of associations [11]. Our large sample and 
careful adjustments for multiple comparisons also likely 
avoided spurious associations.

Other studies have assessed at protein levels in acute 
COVID-19, and we share many of the same observations 
already made. For example, severe COVID-19 was linked 
to changes in IL-13 [3], IL6 and IL-1B [4], and multiple 
chemokines (e.g. CCL20, CCL27, CXCL10 [28]). Hence, 
while it is clear that immune-related proteins levels are 
associated with outcomes, differences in methodology 
led to varying observations. For example, Lucas et al [3] 
observed differences in IL-1B, IL-6, IL-18, and TNF-α 
between severe and non-severe individuals using the 
Eve Technologies (Calgary, Alberta, Canada) Luminex 
based HD71 assay. However, using a different Luminex-
based assay, Wilson et al [29] found no such difference in 
these 4 cytokines between severe COVID-19 cases and 

non-COVID-19 sepsis controls. Different results were 
again obtained from Filbin et al [30] who used the Olink 
(Uppsala, Sweden) multiplex antibody-oligonucleotide 
assay to highlight IL6, IL-1RL1, and IL-1RN’s role in 
severe COVID-19. As mentioned above, these differences 
can likely be explained by either small sample sizes, insuf-
ficient control for time of onset of symptoms, and differ-
ent choices of cases and controls. Indeed, we replicated 
the IL6, IL-1RL1, and IL-1RN results from Filbin et  al. 
which is to our knowledge the previously largest prot-
eomics study on acute Covid-19. This study used similar 
methods to ours but adjusted for day of hospitalization 
rather than onset of symptoms. Comparisons to other 
studies should therefore also keep these methodological 
differences in mind.

Less is known about the role of immune-related pro-
teins in COVID-19 outcome sex differences. A previous 

Fig. 3 Smoothed protein level curves showing time‑related and sex‑related differences as a function of days since symptoms onset (x‑axis) in a 
65‑year‑old patient (p < 3.4 ×  10–4 for sex differences in cytokine levels). Y‑axis is standardized to a mean of 0 and standard deviation of 1 F: female. 
M: male. Blue: controls. Red: severe COVID‑19
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report [12] suggested a role for IL8 and IL18, but these 
were not replicated in other studies [13]. Our study is the 
first to report on difference in TLR5, CXCL17, CCL26, 
IL1RL2, or IL3RA levels in sexes during infection. While 
the mechanism by which they could influence outcomes 
is unclear, it is worth noting that the gene encoding for 
IL3RA is located on the X chromosome, providing a 
plausible explanation for the observed difference. Further 
CCL26 (also known as eotaxin-3) is known to induce 
eosinophils tissue infiltration [31], which could influ-
ence COVID-19 outcomes [32]. However, multiple stud-
ies have shown differences in cellular immune responses, 
COVID-19 specific antibody levels, and many commonly 
measured inflammatory markers in clinical practice (e.g. 
C-reactive protein) [12, 33]. Hence, it remains possible 
that another immune pathway that was not measured by 
our panel might be involved in the observed sex differ-
ences in outcomes. However, our observations on TLR5, 
CXCL17, CCL26, IL1RL2, and IL3RA provide clear pro-
teins to explore to explain sex differences in COVID-19 
outcomes.

Nevertheless, our study still has limitations. First, 
while we assayed proteins in the first collected samples, 
it remains possible that some subjects received immu-
nomodulatory drugs (e.g. dexamethasone) which would 
have affected protein levels. However, this would likely 
attenuate the differences between the cases and the con-
trols, and our results would therefore be biased towards 
the null hypothesis. Second, given that protein time 
trends were obtained using multiple different subjects, 
unmeasured confounders could explain some of our find-
ings. While these cannot be easily measured, it is reas-
suring that our results replicated across two cohorts, 
arguing against the presence of confounders with large 
effect sizes. Third, the control group made up of non-
severe COVID-19 participants as well as non-COVID-19 
disease may have biased some of our results towards the 
null. However, this specific choice of control arm made 
our results more specific for severe COVID-19, rather 
than critical illness in general, and we still found clear 
associations with many immune-related proteins. Fourth, 
the use of SOMAscan may make comparisons difficult 
with other studies using different protein measurement 
technologies. Despite this, SOMAscan showed great 
sensitivity, specificity, and reproducibility when bench-
marked against mass spectrometry [34], and our con-
clusions are unlikely to be greatly biased by the choice 
of protein measuring platform. Lastly, while this is one 
of the largest panels of immune-related proteins studied 
for COVID-19, there are multiple proteins that were not 
measured, and we cannot assess whether other unmeas-
ured proteins may also have important effects on the 
outcomes.

In conclusion, using two large independent cohorts 
with broad protein measurements, we showed that severe 
COVID-19 was associated with clear time-dependent 
changes in multiple immune-related proteins, and that 
these may in part explain difference in COVID-19 out-
comes between sexes.
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