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Abstract

Objective: Texture analysis is an alternative method to quantitatively assess MR-images. In this study, we introduce dynamic
texture parameter analysis (DTPA), a novel technique to investigate the temporal evolution of texture parameters using
dynamic susceptibility contrast enhanced (DSCE) imaging. Here, we aim to introduce the method and its application on
enhancing lesions (EL), non-enhancing lesions (NEL) and normal appearing white matter (NAWM) in multiple sclerosis (MS).

Methods: We investigated 18 patients with MS and clinical isolated syndrome (CIS), according to the 2010 McDonald’s
criteria using DSCE imaging at different field strengths (1.5 and 3 Tesla). Tissues of interest (TOIs) were defined within 27 EL,
29 NEL and 37 NAWM areas after normalization and eight histogram-based texture parameter maps (TPMs) were computed.
TPMs quantify the heterogeneity of the TOI. For every TOI, the average, variance, skewness, kurtosis and variance-of-the-
variance statistical parameters were calculated. These TOI parameters were further analyzed using one-way ANOVA
followed by multiple Wilcoxon sum rank testing corrected for multiple comparisons.

Results: Tissue- and time-dependent differences were observed in the dynamics of computed texture parameters. Sixteen
parameters discriminated between EL, NEL and NAWM (pAVG = 0.0005). Significant differences in the DTPA texture maps
were found during inflow (52 parameters), outflow (40 parameters) and reperfusion (62 parameters). The strongest
discriminators among the TPMs were observed in the variance-related parameters, while skewness and kurtosis TPMs were
in general less sensitive to detect differences between the tissues.

Conclusion: DTPA of DSCE image time series revealed characteristic time responses for ELs, NELs and NAWM. This may be
further used for a refined quantitative grading of MS lesions during their evolution from acute to chronic state. DTPA
discriminates lesions beyond features of enhancement or T2-hypersignal, on a numeric scale allowing for a more subtle
grading of MS-lesions.
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Introduction

The search for novel imaging biomarkers in multiple sclerosis

(MS) has modified the concepts of neuroimaging from identifying

imaging sequelae of demyelination on conventional MR-images

towards strategies capable of examining functionality and patho-

physiology of the MS brain. A recent technique that contributed to

a better understanding of vascular changes in MS, is dynamic

susceptibility contrast enhanced (DSCE-) MRI. DSCE-MRII

identifies various patterns of impaired perfusion, either in non-

enhancing MS lesions or NAWM, compared to healthy controls.

On the other hand, inflammatory activity is accompanied by

increased perfusion in lesions during the acute phase of the disease,

compared to NAWM [1–3].

Local perfusion changes in MS lesions are currently interpreted

as a consequence of local inflammation-mediated vasodilatation –

a phenomenon secondary to hyperemia and blood congestion

within the brain parenchyma [4,5]. However, different observa-

tions in perfusion imaging studies in MS have challenged the

interpretation of abnormal perfusion as a reactive phenomenon to

inflammation. The occurrence of demyelinating lesions is not

inevitably coupled to the presence of a local preceding inflamma-

tory reaction [6,7], and diffuse NAWM changes in the absence of

structural lesions may be the consequence of a down-regulation in

cerebral micro-circulation due to astrocyte dysfunction, or

secondary axonal damage in the NAWM [8]. Recently, some

authors suggested a formation of new outflow routes along plaque

formation bypassing obstructed pathways as the reason for local

perfusion changes [9].

The contribution of vascular changes to the generation of MS

lesions in MS is still a matter of debate. Currently, it remains to be
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elucidated whether alteration in CNS perfusion in MS is a cause or

rather a consequence of disease pathogenesis. From a methodo-

logical point of view, current concepts of perfusion imaging have

mainly addressed vascular changes that are described either by the

time needed for a contrast agent to pass the vasculature (MTT),

the total volume of blood within the cerebral vasculature during

the passage of a contrast bolus (CBV), or the amount of blood that

perfuses the brain per time unit (CBF) [10]. Calculation of CBV,

CBF, and MTT from concentration-time curves is based on the

indicator dilution methods for non diffusible tracers [11]. While

this technique has been clinically applied for more than a decade

to investigate perfusion deficits in acute stroke [12] and altered

microcirculation in brain tumors [13,14], its application in MS is

still new and MS-related perfusion characteristics has not yet been

evaluated. A principal limitation of model-based perfusion

imaging in MS is the variable blood-brain barrier disruption in

active MS lesions requiring complex pharmacokinetic modeling to

correct for extravasation of contrast medium from the plasma to

the extracellular space.

A potential alternative to leakage modeling is the analysis of the

tissue of interest by means of texture analysis of the MR-images at

different time points along with the bolus passage of Gadolinium.

Texture parameters [15–17] enable quantitative analyses of MR-

images. Although no strict definition of image textures exists, they

are described as complex visual patterns which are composed of

spatially organized, repeated fingerprints characterized by indi-

vidual brightness, size, shape, etc. [18]. In recent years, software

developments facilitated the study of texture parameters of

medical images, e.g. the MaZda package [19,20]. Texture analysis

has been applied for structural imaging in MS [21,22] in breast

cancer, liver cirrhosis, brain tumors, epilepsy or acute ischemic

stroke [23–25]. Kassner et al. demonstrated that statistical or

spectral textural features outperformed visual assessment in

discriminating between tumors, as well as in discerning subtle

anatomic changes associated with a high risk of seizures in patients

with epilepsy [23–25].

Recently a novel approach has been proposed, namely

Dynamic Histogram Analysis (DHA) where a simple form of

texture analysis is applied to a time series of DSCE-MRII-images

[14]. DHA investigates the time dependency of mean and

standard deviation parameters of the voxel intensity values of

the tissue of interest. This DHA approach has been successfully

applied to differentiate cerebral gliomas in accordance with their

histological classification [14]. In this study, a further extension to

DHA is proposed, the DTPA. DTPA investigates MR difference-

images, calculated by subtraction of the first steady state baseline

image from images during bolus passage and reperfusion. In this

paper, we extend the focus of texture analysis to quantitative

studies of changes in micro-structural perfusion and leakage. This

explorative study aims for investigating the differences in

dynamical texture parameters between NELs, ELs, and NAWM

during contrast agent passage. We hypothesized that: (a) texture

parameters show characteristic tissue- and time-dependent

(dynamic) behavior of MS plaques during bolus passage that

differ from NAWM; and (b) statistically significant differences in

texture parameters can be detected between NAWM, ELs and

NELs, sufficient to discriminate the three tissue types from each

other.

Methods

2.1. Patients
Patients with clinical isolated syndrom (CIS) or MS diagnosed

according to the 2010 McDonald’s criteria, with or without

immunomodulatory therapy, were included if at least one EL was

present on MRI [26]. In equivocal cases, the inflammatory/

demyelinating origin of the disease had to be demonstrated via

biopsy and/or MR spectroscopy. Besides the clinical evaluation

and MR imaging, lumbar puncture and blood tests were

performed in all patients to exclude alternative diagnoses. Main

exclusion criteria were any other diseases that could better explain

the patient’s symptoms and signs. Patients gave written informed

consent prior to the study entry and the study was approved by the

local cantonal ethics committee Bern, Switzerland.

Figure 1. Exemplary EPI MR-images of a RRMS-patient. Data recorded: (a) at baseline; (b) at perfusion maximum; (c) at early-reperfusion, and
(d) at late-reperfusion. The MS lesion shows a non-uniform structure that varies during bolus passage; (e) Concentration curves were computed
within 3 TOIs; the first within the brightest circular part of the MS-lesion, the second TOI in the edema surrounding the enhancing part of the lesion;
the third TOI in the NAWM on the contralateral site. The concentration curve of the EL reaches its maximum slightly earlier in time than the NAWM
due to BBB disruption. Interestingly, the contrast time curve of edema reaches less high concentrations, indicating hypoperfusion of the edema.
doi:10.1371/journal.pone.0067610.g001
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2.2. MRI parameters
DSCE- imaging was performed on our institutes’ Siemens MR-

scanners using standard echo planar imaging (EPI) sequences at

1.5 T and 3.0 T. For our 1.5T scanner a TE of 47 ms and a TR of

1440 ms was used. For our 3T scanner we had a TE of 32 ms and

a TR of 1500 msec. At both field strengths a FOV of

230 mm6230 mm was used with a slice thickness of 5 mm. A

total of 19 parallel images with a time resolution of 1500 ms were

acquired on our 3.0T system, and a total of 12 parallel images with

a time resolution of 1440 ms were acquired on our 1.5T scanner.

At 3.0T a total of 80 different time points were acquired, whereas

on 1.5T a total of 40 different time points were sampled after bolus

application. All patients received Gadobutrol (GadovistTM) 0.1 ml

kg–1 bodyweight. Patients were positioned comfortably in the head

coil and padding on either side of the head was used to help

immobilization. Further the intravenous line with a long tube was

put before acquisition to avoid unnecessary MRI table moving

during examination.

2.3. Image Processing
The image analysis method we applied focuses on DSCE-

difference images: These difference images are computed from the

difference between the first steady state EPI image and images

recorded during bolus arrival, passage and reperfusion. In

mathematical terms, let Im½x,y,tn� (1ƒmƒN; 1ƒnƒN;
0ƒxƒ256; 0ƒyƒ256)be the n-th image of the image time series

at slice location m. The difference images Dm½x,y,tn� are

computed as follows: Dm½x,y,tn�~Im½x,y,t0�{Im½x,y,tn�. In case

of a non-leaky blood brain barrier (BBB), the contrast of

Dm½x,y,tn� is such that the brighter the voxel of Dm½x,y,tn�, the

more contrast agent there is in the voxel at that time point tn.

From Dm½x,y,tn� all time dependent texture parameter maps

(TPMs) are computed, resulting in TPMm½x,y,tn�. The rationale

for the computed texture maps in this study is given in section

‘‘Computed TPM types during BLP, IFP, OFP and RFP’’ below.

To illustrate the time-dependent perfusion behaviour in a EL,

figure 1 a–d display typical DSCE EPI images during the four

time-intervals that are investigated in this study.

2.3.1. Analysis of texture parameter maps. Figure 2 shows

schematically a 11|9 voxel region detail of an MR-image I ½x,y,tn�
at a time point t~tn during bolus passage. Each voxel ½x,y� is

assigned with a specific voxel intensity distribution; e.g. a voxel ½x,y�
in the center of NAWM will have a different voxel intensity

distribution compared to a voxel ½x,y� centered in the gray matter

(see Figure 1b). Gray matter, due to its strong vascularisation, will in

general be more hypointense during in-, out- and reperfusion-

phases compared to voxels within NAWM. Furthermore, NAWM

constitutes a smaller range of voxel intensity distribution than voxels

closer to the interface between two tissue types. This results in a

highly variable voxel intensity distribution. The statistical properties

of regions with variable center points ½x,y� strongly differ within an

image as a function of tissue type, and of the position within a tissue

(e.g. representing a voxel at the periphery or in the center of the

tissue). Extending our previous work [14], we now incorporated

further histogram based texture parameters in the analysis of voxel

intensity distributions computed from the DSCE-EPI images.

Texture parameters computed as a function of the location ½x,y�
can be used to characterize these (non-) Gaussian voxel intensity

distributions. In order to quantify these textures as a function of

position ½x,y� and time, we developed an application that is called

dynamic texture parameter analyzer (DTPA). This application

computes a series of different texture parameters for user-defined

square voxel neighbour kernel size; in this paper we used a 5|5
voxel range (Figure 2), for every region around ½x,y� as a function of

time. In this manner, a time series of texture parameter images or

maps (TPMs) is obtained. For illustration, an example of the TPMs

computed by the application at one time point during the

reperfusion phase is given in Figure 3. In this paper we focused

on the first four moments of the mean and their variances during

baseline, contrast agent inflow, outflow, and reperfusion phase to

characterize MS-lesions of different types (NEL, EL), and NAWM.

2.3.2. Data Normalization. Our study sample has been

recorded on three MR scanners runnung at with 1.5 and 3T of the

same vendor using the same DSCE-Perfusion sequence. Differ-

ences in field strength, patient head size, and head positioning lead

to significant differences in RF-coil-load and thus to changes in

MRI-voxel intensities Im½x,y,tn� from patient to patient. Addi-

tionally, in DSCE-MRI the voxel intensities of the difference

image series Dm½x,y,tn� do not only depend on the flow properties

of the blood vessels, but also on the cardiac ejection fraction. In

order to be able to compare the texture parameters between two

different patients, normalization for both sources of variance is

mandatory. Since both Im½x,y,tn� and Dm½x,y,tn� derived texture

parameters are studied, a twofold normalization is required:

2.3.3. Corrections for Differences in RF-coil-loads. Norma-

lization for these differences was performed by setting a user defined

region encircling a specific tissue of interest (TOI) to a certain value.

Figure 2. a. 11|9 voxel region of an MR-image. To a simple
moving average filter, the developed algorithm computes for each
voxel (x,y) of the image time series I(x,y,tn), where (1ƒnƒN), the
local (statistical) texture parameters based on a user definable input
voxel area (in this case 5|5). b. Schematic contrast agent time curve
graphically indicating the definitions of the time-intervals over which
the image characteristics are averaged, discriminating the baseline
period (I), inflow period (II), outflow period (III), and reperfusion period
(IV).
doi:10.1371/journal.pone.0067610.g002
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The normalization constant g1is defined as the quotient of average

voxel intensity value of voxels within this user-defined region mTOI

divided by a user-defined constant tTOI, that resembles the ideal

value for this tissue type, so g1~mTOI=tTOI, and the normalized

image time series Im,norm½x,y,tn�~Im½x,y,tn�=g1 for all tn. With the

selection of the most homogeneous tissue located at a predefined

anatomic structure, the inter-subject variance can be minimized

further. In this study, normalization was performed by defining a

region in NAWM of the first baseline image and with a tTOI~1000.

2.3.4. Correction for different cardiac ejection fractions. Tissue

concentrations Cm½x,y,tn� time curves (see Figure 2b) as a function

of time can be computed from the formula Cm½x,y,tn�~
const:| ln (Im½x,y,tn�=Im½x,y,t0�). Depending on the cardiac

ejection fraction, the duration of inflow and outflow phase may

differ substantially, resulting in different peak contrast concentration

values that prevent a time-point-by-time-point comparison between

patients for Dm½x,y,tn� and all its derived time dependent texture

parameters. To overcome this problem, we compared identical time

intervals of normalized Dm½x,y,tn� as described in [14]. The

following time intervals were defined (see also Figure 2b):

– Base line period (BLP): time interval between the first

measure(att~0), and time of arrival (TOA) at t~TTOA.

– Inflow period (IFP): time interval between t~TTOA and

t~TTTP.

– Outflow period (OFP): time interval t~TTTP and t~TRP (time

point where the concentration reaches its first local minimum

after t~TTTP).

– Reperfusion period (RPP): time interval between t~TRPand

t~TEE, (here t~TEE is time at the end of the measurement).

For the normalization of inter-patient differences due to

differences in cardiac ejection fraction the area-under-the-time-

difference-curve Dm½x,y,tn� of a user defined TOI is determined

for the IFP and OFP and is denoted by aAUC. Within the scaling

factor g2~aAUC=tAUC the dominator tAUC is set to 200, for all

Figure 3. Texture maps computed from the original EPI MR-image time series (ORIG). Data recorded at one time point during the RPP
during DSCE imaging. The texture map DIFF time series indicates the difference maps of the TPM-ORIG time series; TPM-AVE indicates the local
average map; TPM-VAR indicates the local variance map; TPM-STDEV indicates the local standard deviation map; TPM-SKEW indicates the local
skewness parameter map; TPM-KURT indicates the local kurtosis map; and TPM-VAVA indicates the local variance-of-variance map of the TPM-DIFF
time series. The displayed maps are function of time and only one map is displayed here at a time point during which signal enhancement due to
extravasation of contrast agent already took place. Note that the lesion area that shows enhancement (best seen as isolated red dot in the TPM-
VAVA) is much smaller than the total lesion (red, orange and yellow parts) in the TPM-ORIG. Additionally, the lower right image is T1w after
application of contrast agent.
doi:10.1371/journal.pone.0067610.g003
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images Dm,norm½x,y,tn�~Dm½x,y,tn�=g2. In the present implemen-

tation, g1 and g2 are determined for the same region in NAWM.

The time points demarking the four time intervals (BLP, IFP,

OFP, RPP) are determined automatically by the developed

program by numerical analysis of the time dependent bolus

passage function. Due to differences in timing caused e.g. by

differences in cardiac function, only separately time averaged

values over the four defined time intervals as defined above (BLP,

IFP. OFP, RPP) can be adequately compared.

2.3.5. Computed TPM types during BLP, IFP, OFP and

RPP. This section shortly describes the computed histogram

based on TPMs. Figure 3 illustrates all derived texture parameter

maps computed in this study for a single patient with RRMS.

1. Original EPI MR image time series: TPM-ORIG The

original Im½x,y,tn� EPI image series can be regarded as a texture

map itself, since every type of MR-pulse sequences is designed to

obtain a specific image contrast, i.e. having specific textural

characteristics. DSCE-raw images show limited but substantial

contrast differences during the BLP, so that both EL and NEL can

clearly be identified (Figure 1a). In case of an intact BBB, the

passage of Gadubutrol causes T2
�-shortening effects resulting in a

signal decrease relative to the BLP. Counteracting this T2
�-

shortening effect, voxel intensities Im½x,y,tn� increase during the

RPP and OFP in ELs with a disrupted BBB. The leakage effect

during the OFP and RPP is illustrated in Figure 3, (denoted as

‘‘ORIG’’). The EL (red) can be clearly depicted.

2. Difference image time series: TPM-DIFF The brightness of a

voxel is proportional to its Gadobutrol concentration for the

difference image series Dm½x,y,tn� if the BBB is preserved. In case

of BBB disruption T1-shortening effects in the tissue result in a

signal decrease during the first passage of the contrast agent and

reperfusion (see Figure 1e and Figure 3 DIFF). This TPM is

further denoted by TPM-DIFF.

3. Local Average Difference Maps: TPM-AVER This TPM,

denoted by Ave½x,y,tn�, is the moving average filtered version of

TPM-DIFF over a 5|5 voxel intensity range. In Figure 3, the

TPM denoted with ‘‘AVE’’ gives an example of the appearance of

this texture, illustrating better SNR, but worse spatial resolution.

This TPM was added to provide the same spatial resolution as the

other textures, and is denoted by TPM-AVER.

4. Local Variance: TPM-VARI The TPM-VARI Var½x,y,tn�
time series computed from Dm½x,y,tn� is sensitive to edges within

the image. The broader the local voxel intensity range, the

brighter it appears in this TPM. To some extent this texture is

related to the gradient image of Dm½x,y,tn�. This texture thus

reflects the local heterogeneity of a tissue [14]. In Figure 3, the texture

map indicated with ‘‘VARI’’ is an example of this texture type,

illustrating how an EL appears in this type of TPM. Note that the

surrounding edema behaves differently. This TPM is further

denoted by TPM-VARI.

5. Local standard deviation: TPM-STDEV The TPM

StDev½x,y,tn� is derived from Varm½x,y,tn� by taking its square

root. This TPM is further denoted by TPM-STDEV.

6. Local Skewness: TPM-SKEW Skew½x,y,tn� is the third

moment about the mean of Dm½x,y,tn� (see Figure 3, ‘‘SKEW’’).

This TPM-SKEW is a measure of the asymmetry of the voxel

intensity distribution, and in this case indicates the asymmetry of

contrast agent distribution within the image voxels. An increase in

asymmetry reflects an increase in skewness. For positive skewness,

there is a preference in the distribution for brighter voxel intensity

values, and for a negative skewness there is a preference for darker

voxel intensity values.

7. Local Kurtosis: TPM-KURT Kurt½x,y,tn� is the fourth

moment about the mean of Dm½x,y,tn� (see Figure 3, ‘‘KURT’’).

This texture parameter measures the steepness or peakedness of

voxel intensity distribution. The software computes the excess

Figure 4. Relation between the original EPI raw image time series (ORIG-TPM) and derived image time series. The ‘‘difference image
time series’’ (TPM-DIFF) is obtained by subtracting the N-th image from the first image, resulting in an image series for which holds that, the brighter
the voxel, the more contrast agent is present at that location at the specific point in time. All other histogram based TPMs are derived from the TPM-
DIFF image series and are computed over the same (5|5) voxel-region in order to improve SNR: local average (TPM-AVE, moving averaged version of
TPM-DIFF), local variance (TPM-VAR), local standard deviation (TPM-STDEV), local skewness (TPM-SKEW), local kurtosis (TPM-KURT) and local variance
of variance (TPM-VAVA). Since each texture map is an image itself, the statistical parameters of a user defined TOIs can be computed for each TPM
denoted by the boxes denoted with ‘‘Compute TOI statistics’’. For each TPM and each TOI the following statistical parameters were computed: mean,
standard deviation, variance, variance-in-variance, skewness, and kurtosis.
doi:10.1371/journal.pone.0067610.g004
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kurtosis, which sets the kurtosis for Gaussian distributed voxel

intensities to zero. Voxel intensity distributions which are less

peaked than the Gaussian distribution have an excess kurtosisv0
(platykurtic), and voxel distributions more peaked than the

Gaussian have an excess kurtosisw0 (leptokurtic). This kurtosis

TPM is denoted by TPM-KURT.

8. Local variance-of-variance: TPM-VAVA VarVar½x,y,tn� of

Varm½x,y,tn� is the variance-of-the-variance TPM, indicated as

TPM-VAVA. Since Varm½x,y,tn� is a stochastic variable itself, it

also has a variance (see Figure 3, ‘‘VAVA’’). Due to the large

dynamic range of the TPM-VAVA and the limitation to 512 color

discretization display-levels in the current implementation (see

Figure 3), low intensity voxel values are all displayed in black,

although they all have distinct floating point values. Interestingly,

in contrast to the TPM-VARI this texture is not an ‘‘edge

detector’’ as can be clearly seen in the image.

2.3.6. Determined Texture Parameters. Within the tex-

ture maps as displayed in Figure 3, manually shaped regions can

be drawn. The basic statistical properties of these regions

(NAWM, EL, and NEL) are determined within all TPMs. To

clarify the interdependence of the TPMs, Figure 4 displays the

TPMs (eight dark gray boxes), and the parameters determined

from them. For each TOI (EL, NEL or NAWN) defined in the

TPMs and for each time interval, the six statistical parameters

(light gray box) are determined, resulting in a total of

8|3|16~144 parameters. The user defines the TOIs in one

of the eight TPMs and the TOIs are copied fully automatically

into all other TPMs.

2.3.7. Selection Criteria for the TOI. For this pilot study,

all TOIs (EL, NEL and NAWM) were defined by a board certified

Table 1. Details of patients included in the study.

No. Gender
Age
(years) Diagnosis EDSS

Disease
duration DMT-therapy

Acute disease
exacerbation/start
before MRI

Symptoms of acute
disease exacerbation

Symptomtic
EL

1 female 30 RRMS/TL 2 17 months none yes/4–5 days hemihypaesthesia left yes

2 female 64 CIS/TL 3 new onset none yes/7–8 days dysarthria/ataxia yes

3 female 54 RRMS 2 24 years none yes/5–6 days paresis right leg yes

4 female 33 RRMS 2 new onset none yes/2 days sensorimotor
hemisyndrom left

yes

5 female 30 RRMS/TL 3 new onset none yes/3 days hemiparesis right yes

6 male 29 RRMS 1.5 new onset none yes/12 hours retrobulbar neuritis
left

no

7 female 24 RRMS 2 3 months BetaseronH/BetaferonH no N/A no

8 female 37 RRMS 6.0 6 years none yes/9 hours hemiparesis left,
anarthria

yes

9 female 20 RRMS 1.5 27 months BetaseronH/BetaferonH no N/A no

10 female 24 RRMS 4 26 months CopaxoneH no N/A no

11 female 60 SPMS 7.5 23 years None yes/2 days hemiparesis left yes

12 female 50 RRMS 3.5 23 months BetaseronH/BetaferonH no N/A no

13 female 23 RRMS 1 new onset none yes/2–3 months progressive hypesthesia
in all extremities

no

14 female 44 RRMS 3.5 2 months none yes/3 days dysaesthesia, ataxia,
bladder disorder, fatigue

yes

15 female 35 RRMS 5.0 13 years none yes/4 month progressive paresis in
lower extremity

no

16 female 42 RRMS 2 new onset none no spasticity in all
extremities

no

17 male 74 SPMS 7 30 years none yes/2 days paraparesis no

18 male 28 RRMS 1.5 7 months BetaseronH/BetaferonH no N/A no

MS = Multiple Sclerosis; RRMS = relapsing-remitting MS; SPMS = secondary-progressive MS, CIS = clinically isolated syndrome; TL = tumefactive lesion;
EL = enhancing lesion; DMT = disease modifying treatment; N/A = not applicable.
doi:10.1371/journal.pone.0067610.t001

Table 2. Overview of total numbers of significant texture
parameters per time interval and parameter type.

Texture Type BLP IFP OFP RPP Total

TPM-AVER 2 6 4 11 23

TPM-DIFF 2 9 6 9 26

TPM-KURT 2 6 0 2 10

TPM-ORIG 8 8 6 9 31

TPM-SKEW 1 0 2 2 5

TPM-STDE 2 7 8 11 28

TPM-VARI 2 8 8 9 27

TPM-VAVA 1 8 6 9 24

Total 20 52 40 62 174

Total number of performed tests are 8672 = 576. Expected false positive rate
(p = 0.05) 28.8. However, the number of observed positive Wilcoxon tests are
174, strongly indicating that observed differences in the analyzed texture maps
are not just by chance.
doi:10.1371/journal.pone.0067610.t002
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radiologist (RV) with 12 years of experience in the diagnostic of

MS lesions. The following selection criteria were maintained: (a) a

contour was drawn around the complete hyperintense NEL in an

image of the BLP; (b) a contour was drawn enclosing the

hypointense part of the EL at the end of the RPP, i.e. in the last

image of the time series; and (c) the NAWM contour was drawn in

the WM at the end of the IFP, i.e. within the time period where

the best GM/WM contrast was obtained. For every patient at least

one image covering one or more lesions was analyzed, and a

maximum of 3 EL and 3 NEL lesions was not exceeded. A total of

37 TOIs were defined in NAWM, 27 TOIs in ELs, and 29 TOIs

in NELs. In most cases lesions and NAWM were analyzed on the

same slice. Since in a few cases only one lesion and the

corresponding NAWM were analyzed, the number of NAWM

measurements exceeds the number of EL and NEL measurements.

Four out of 27 ELs were surrounded by vasogenic edema (see

Figure 1). Additionally to the DTPA we calculated the bolus

passage (i.e. perfusion) characteristics of every TOI [27].

2.4. Workflow
Data analysis included the following workflow steps: (a) launch

DTPA analyzer tool; (b) mount examination and load DICOM

DSCE image-series (TPMs are computed and displayed); (c) draw

contour in NAWM and press normalize button (data are twofold

normalized now); (d) define the TOIs by drawing contours around

EL, NEL and NAWM contours and press reporting button; all

statistical parameters are written to text files that can be easily

imported into a statistical analysis application; and (e) per TPM

with three different tissue types defined, six parameters were

determined for each tissue type, and for each of the four time

intervals separately, making a total of 72 parameters, where 72

independent Wilcoxon-tests were performed in order to test for

differences between the tissue types.

2.5. Statistical evaluation
The statistical software package R-Studio (0.96.331, available

from http://www.rstudio.org/) was used for the statistical analysis

of the data. In this explorative study we investigated (a.) which

dynamic texture parameters discriminate between NAWM, NEL

and EL, and (b.) during which time interval (BLP, IFP, OFP or

RPP) these tissue types show most discriminative properties. The

distribution of all texture parameters was examined in advance, in

order to be able to select the correct test statistic. Since the texture

parameters that we determined were not normally distributed, we

employed a one way ANOVA followed by Wilcoxon sum rank

tests. If the p-value of the ANOVAs F-test satisfied the condition

p,0.05, the multiple Wilcoxon sum rank tests between NAWM,

NEL and EL were performed. The p-values of these tests were

corrected for multiple Wilcoxon sum rank testing by setting the

‘‘BH’’ option, which stands for the Benjamini, Hochberg, and

Yekutieli method to control for false discovery rate. The false

discovery rate of this method is a less stringent condition than the

family-wise error rate, so these methods are more powerful than

e.g. the Bonferroni test.

Results

3.1. Clinical data
The results of every patient regarding gender, age, diagnosis,

EDSS, disease duration, disease modifying treatment (DMT),

acute disease exacerbation and symptomatic EL are presented in

Table 1. 18 patients (83.3% female) with a mean age of 38.9 years

(range 20–74 years) and a mean disease duration of 7.7 years were

enrolled. 15 patients had relapsing-remitting MS (RRMS), two

patients secondary progressive MS (SPMS) and one patient CIS.

Three of these patients had tumefactive lesions and biopsy was

performed in two of them showing predominately macrophage

and T-cell mediated demyelination in one and antibody-mediated

demyelination in the other patient (Table 1) corresponding to

pattern I (patient 5) and II (patient 2) of the classification of

Table 3. Overview of all texture parameters for which there exist statistical significant differences between all three TOIs.

Texture Map Stat. par. Time period
Anova
(p-value)

NAWM vs EL
(p-value)

NAWM vs NEL
(p-value) NEL vsEL (p-value)

TPM-AVER st-dev RPP 0.000114 0.0018 0.047 0.047

TPM-AVER var RPP 0.001508 0.0011 0.0357 0.0357

TPM-AVER vava RPP 5.735.10211 7.7.10210 0.0038 3.0.1025

TPM-DIFF vava IFP 4.43.1025 4.1.1025 0.036 0.03

TPM-DIFF st-dev OFP 2.635.1025 2.2.1026 0.0235 0.0041

TPM-DIFF var OFP 0.0004425 9.4.1027 0.0213 0.0033

TPM-DIFF vava RPP 2.573.10211 2.1.1029 0.0028 1.2.1025

TPM-ORIG var RPP 8.732.1025 8.6.1029 1.5.10207 0.049

TPM-STDEV mean IFP 0.0002377 4.4.1025 0.029 0.02

TPM-STDEV mean OFP 1.403.10-8 1.5.1029 0.0016 2.8.1025

TPM-STDEV vava OFP 0.02834 2.9.1027 3.1.1025 0.027

TPM-STDEV vava RPP 2.5.1025 1.1.1028 4.1024 3.559.10211

TPM-VAR var IFP 0.003175 5.8.1025 0.03 0.011

TPM-VAR vava IFP 2.501.1026 2.9.1025 0.0025 0.0161

TPM-VAR mean OFP 3.415.1026 3.0.1029 0.0014 6.8.1025

TPM-VAR st-dev OFP 0.002716 4.11025 0.038 0.0074

The significance levels of the one way ANOVA and the multiple Wilcoxon sum rank tests are indicated.
doi:10.1371/journal.pone.0067610.t003
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demyelination by Lassmann and Lucchinetti [28]. In the third

patient, MR-spetroscopy and MR-angiography was sufficient to

further underline the inflammatory/demyelinating origin of the

lesion(s) (patient 1). 12 patients presented with acute disease

exacerbation at the time of MRI, with symptomatic ELs in eight

patients. None of the patients received steroid treatment before or

at the time of MRI.

3.2. Discriminators between two tissue types
Table 2 summarizes the number of statistical differences

obtained for all TPMs as a function of the time interval and

texture parameter type: For the different periods IFP, OFP and

RPP we calculated the parameters, that discriminated between

two tissue types (NEL vs. EL, NEL vs. NAWM or EL vs. NAWM).

Measured during all timed periods, the most discriminative TPM

is TPM-ORIG, followed by TPM-STDEV and TPM-VARI.

Within the four preselected time periods that have been analysed,

during the RPP the highest number of discriminative TPMs were

detected. During RPP, for the TPM-STDEV 11 different TPs

were detected that discriminated differences in the tissue under

investigation. During OFP, TPM-STDEV (8 TPs) and TPM-

VARI (8 TPs) were most discriminative, while during IFP, TPM-

DIFF (9 TPs) yielded the most significant results.

Overall, the differences in tissue types between between EL,

NEL and NAWM are predominantly expressed during RPP (62

out of 144 parameters were discriminative). The TPM types with

least significant discrimination between the TOIs are the TPM-

SKEW, with only (5 TPs), and TPM-KURT with 10 significant

different TPs.

Table 4. All ANOVA test values, and Wilcoxon sum rank test results (p-values) for all statistical parameters and for all time periods
of the TMP-STDEV texture parameter map.

a.) Base line period

Parameter ANOVA Pr(.F) NEL vs EL NAWM vs EL NAWM vs NEL

Mean 0.2932 0.4 0.23 0.46

St-dev 0.8974 0.93 0.93 0.93

Var 0.8718 0.91 0.91 0.91

Vava 0.001283 0.5625 0.002 0.0037

Skew na na na na

Kurt na na na na

b.) Inflow period

Parameter ANOVA Pr(.F) NEL vs EL NAWM vs EL NAWM vs NEL

Mean 0.0002377 0.02 4.4e–05 0.029

St-dev 0.2267 0.238 0.065 0.366

Var 0.4992 0.19 0.05 0.38

Vava 3.841.1026 0.14907 2.5.1025 0.00032

Skew 0.04121 0.962 0.046 0.016

Kurt 0.207 0.731 0.12 0.035

c.) Outflow period

Parameter ANOVA Pr(.F) NEL vs EL NAWM vs EL NAWM vs NEL

Mean 1.403.1028 2.8.1025 1.5.1029 0.0016

St-dev 0.003319 0.0614 0.0047 0.1309

Var 0.03201 0.0775 0.0033 0.102

Vava 0.02834 0.027 2.9.1027 3.1.1025

Skew 0.0736 0.637 0.024 0.026

Kurt 0.3643 0.423 0.045 0.127

(d.) Reperfusion period

Parameter ANOVA Pr(.F) NEL vs EL NAWM vs EL NAWM vs NEL

Mean 2.813.1027 9.7.1026 1.1.1027 0.11

St-dev 3.987.1025 0.0074 0.0014 0.4354

Var 0.03201 0.0091 0.001 0.3672

Vava 3.559.10211 2.5.1025 1.1.1028 4.1024

Skew 0.03806 0.4 0.015 0.015

Kurt 0.1626 0.5821 0.0075 0.0041

The program did not determine the skewness and kurtosis during the base line period and are therefore indicated by ‘‘n.a’’.
doi:10.1371/journal.pone.0067610.t004
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3.3. Discriminators between all TOIs
Table 3 summarizes all parameters that discriminate NAWM,

NEL and EL. This table lists p-values of the One-way ANOVA

(p,0.05). In addition, we performed a repeated Wilcoxon sum

rank tests corrected for multiple comparisons using the Benjamini-

Hochberg method. TPM-DIFF maps, TPM-STDEV and TPM-

Figure 5. Mean values and 95% confidence intervals for the different TOIs. Data recorded for (a.) TPM-AVER which is a moving averaged
version of (b.) TPM-DIFF representing the differences of the baseline images of TPM-ORIG and images recorded during and after bolus passage; (c.)
TPM-ORIG representing the original image series, and (d.) TPM-STDEV. The indicated ranges are the 95% confidence intervals.
doi:10.1371/journal.pone.0067610.g005

Figure 6. Mean values and 95% confidence intervals for the different TOIs. In (a.) the TPM-VARI results are displayed with monotonically
increasing values for NELs; (b.) the TPM-VAVA parameter has a different time behavior that (a.). The mean values of TPM-SKEW (c.) and TPM-KURT (b.)
show only little differences for the examined TOIs.
doi:10.1371/journal.pone.0067610.g006
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VARI were the strongest discriminators between the TOIs, and

yielded the highest significance levels during the OFP, followed by

the RPP. The TPM-ORIG was less discriminative between the

TOIs.

3.4. The Time Evolution of Texture Parameters
As an example, Table 4 displays the derived time evolution of

all texture parameters for TPM-STDEV derived statistical

parameters. Two perfusion imaging parameters discriminated

between the different tissue types, as investigated in this study,

were mean TPM (p,0.002) and TPM-VAVA (p,0.0001). The

strongest effects could be denoted for the mean TPM during the

outflow for the VAVA TPM during the reperfusion period

(p,0.002). Notably, only the mean TPM discriminated between

NAWM and EL during inflow, while all six parameters

discriminated the ELs during the outflow period (p,0.05). The

best discrimination between EL and NAWM was achieved by the

VAVA TPM (p,3.5610211) during outflow and reperfusion.

NEL were discriminated from NAWM by three parameters during

outflow (mean TPM, p,0.002; TPM-SKEW, p,0.03 and TPM-

VAVA (p,461024). The best discrimination between EL and

NAWM and NEL and NAWM was achieved by the TPM-VAVA

during reperfusion. For discrimination between NEL and EL, the

mean TPM during reperfusion was the best discriminator

(p,9.761026), followed by mean TPM during outflow

(2.861025). Notably, the TPM-VAVA contributed less to the

discrimination of NEL and EL during outflow (p,0.03) and

reperfusion (p,2.561025). During the inflow period, the mean

TPM was the best discriminator between NAWM and EL

(4.461025), while TPM-VAVA most reliably discriminated

between NAWM and NEL (2.561025). In summary, the mean

TPM could be used as a discriminator between EL, NEL and

NAWM during inflow and outflow, while TPM-VAVA discrim-

inated during the outflow and reperfusion period. The TPM-

VAR, the TPM-SKEW and TPM-KURT failed to discriminate

between the different tissue types.

3.5. All TPMs Mean Parameters as a Function of Time
In Figure 5, 6 the mean values of all 8 TPMs for different time

intervals are displayed. The indicated ranges represent the 95%

confidence intervals. Differences between ELs, NELs and NAWM

can be observed in e.g. TPM-DIFF and TPM-VARI especially

during the OFP and RPP phase. Differences between NELs, ELs

and NAWMs can be observed in the TPM-ORIG. The differences

between the TOIs from TPM-KURT and TPM-SKEW are less

pronounced.

Discussion

In this paper, we suggest a novel strategy towards in-vivo tissue

characterization of ELs, NELs and NAWM in multiple sclerosis.

The goal of this pilot study was to investigate the time dependent

behavior of statistical texture parameters derived from time series

of DSCE difference images. While previous studies aimed at either

static texture analysis or description of cerebral blood flow,

cerebral blood volume and blood-brain barrier permeability, we

aimed to analyze specific texture parameter constellations that

differentiate between ELs, NELs and NAWM by analyzing DSCE

image time series data. We further analyzed whether these texture

parameters evolve as a function of time intervals during bolus

passage, and whether these differences are sufficiently large to

enable a quantitative grading of the perfusion-related texture of

MS lesions. Three points stand out from this study: (a) the voxel

intensity distributions of tissue types in the DSCE (difference)

image series vary as a function of time during bolus passage; (b)

histogram based texture parameters reveal characteristic time

responses for ELs, NELs and NAWM; and (c) different tissue types

can be discriminated by statistically significant difference in

histogram based texture parameter signatures.

The key finding of our study – that DTPA detects subtle

differences in time dependent contrast agent distributions other-

wise obscured by visual inspection of T1w CE images - implicates

that quantitative differences in voxel intensity distributions of the

examined DSCE difference images are related to alterations in

micro-circulation and BBB properties of the investigated tissue

types. The BBB constitutes a dynamic interface forming a

neurovascular unit that controls the supply of nutrients while

shielding neurons and glial cells off from potentially harmful

substances. In MS, GD-DTPA diffuses into the nervous system

along the leaky BBB, and conventional MRI provides only a gross

estimate of tissue damage. Leukocyte infiltration into the

perivascular space is mainly driven by BBB disruption and

parenchymal inflammation, although some authors demonstrated

passive diffusion of hydrophilic molecules and leukocyte recruit-

ment in post-capillary segments [29]. Local blood flow changes

precede the plaque formation process and elude conventional

MRI [3]. Inversely, persistence of inflammatory activity along

reconstituted BBB in tissue that lacks frank BBB disruption is

obscured [30]. The poor clinico-radiological association of the T2

lesion load in MS may thus be influenced by microscopic

inflammation that contributes more strongly to disability [31].

Thus, quantitative knowledge about persistent inflammatory

activity would enhance the knowledge about tissue damage

beyond a deterministic and analysis of ELs, NELs and NAWM.

Texture analysis applied to MR-images enables such an

extraction of quantitative information by post-hoc analysis. Different

texture parameters have been suggested in the literature: (a)

histogram-based parameters; (b) gradient-based parameters; (c)

run length-based parameters; (d) co-occurrence matrix-based

parameters; (e) auto regressive model-parameters; and (f) wavelet

parameters [18]. In the present study, the analysis to histogram based

texture parameters (i.e. average, variance, skewness, kurtosis and

variance-of-the-variance) is restricted to explore whether differ-

ences between ELs, NELs and NAWM can be extracted directly

from DSCE (difference) images. To the best knowledge of the

authors, texture analysis has not been applied previously to time

series of DSCE-MRI (difference) images aiming to characterize

tissue response to a bolus of Gd-containing contrast agent as a

function of time.

Previous studies have examined the feasibility of texture analysis

to differentiate ELs (88%) and NELs (96%) with high sensitivity

[32]. ‘‘Coarse’’ texture analysis in acute enhancing lesions (ELs)

predicted tissue injury based on the severity of structural

disorganization within acute lesions [33,34], where ‘‘fine’’ texture

refers to a regular pattern and ‘‘coarse’’ texture corresponds to

irregular tissue. Texture analysis of T2w lesions predicted poor

recovery and mild ongoing tissue injury [35]. The study further

indicated that recovery of acute lesions tends to be associated with

the degree of coarse texture during enhancement. While these

studies aimed at static characteristics related either to persistence

or recovery of acute lesions over time, DTPA analysis first aims at

the discrimination of how pathological processes influence the

effect of bolus passage of Gadobutrolum on the selected subset of

histogram TPs as a function of time and tissue type. Notably,

discrimination between ELs, NELs and NAWM was performed on

raw EPI images (thus incorporating the different static and dynamic

tissue properties) during bolus passage and the difference image time

series (TPM-DIFF) and its derived TPMs. In the latter, the
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different structural pathological components that influence the

static signal components of the tissues are canceled out by the

subtraction of the raw image at t0. Due to the large differences in

the histogram-based TPMs over different time intervals and their

tissue dependent specific response, DTPA provides numeric

information on a continuous scale about the amount of BBB

disruption in MS-lesions, instead of a classification in enhancing or

non-enhancing lesions. Yet, a formal proof for a relationship

between inflammation and the DTPA information is currently

lacking.

Potential relevance of TPMs for the clinical evaluation of MS

lesions:

TPM-ORIG/TPM-DIFF/TPM-AVE
The TPM-ORIG shows monotonously increasing values for

ELs during IFP, OFP, and RPP. Yet, this TPM did not

discriminate ELs from NELs due to: (a) hypo- and hyper-perfused

ELs; and (b) large variations in leakage among ELs; the latter is

demonstrated by the TPM-DIFF in Figure 6. The TPM-DIFF

further indicates that even NELs continue to have a subtle BBB

disruption since the TPM-DIFF is statistically significantly smaller

than zero, indicating leakage. This leakage is not observed by

visual inspection of T1w images, but is clearly observed with

DTPA. Therefore the TPM-DIFF might be used as a novel

gradual marker for BBB disruption that is otherwise discarded on

routine imaging. The difference in TPM-DIFF (or TPM-AVE)

parameter between IFP and RPP (indicated by DTPM-DIFF)

obtrudes itself as a surrogate marker to grade the MS-lesion state:

the higher the value of DTPM-DIFF, the larger is the grade of

leakage. The DTPM-DIFF-value allows grading of the leakage of

the MS-lesion on a continuous numeric scale, instead of an ordinal

scale known from T1w imaging (enhancing/non-enhancing).

Further clinical studies are necessary to validate the added value

DTPM-DIFF for the predictive evaluation of disease progression.

TPM-STDEV/TPM-VAR/TPM-VAVA
These TPMs are all measures of heterogeneity of the examined

tissues. For IFP, OFP and RPP the values of the ELs were , NELs

, NAWM. TPM-VAR/TPM-STDEV values increase slowly

from IFP towards RPP for ELs, and strongly decrease for NELs

and NAWM. For TPM-VAVA we observe reductions as a

function of time for all three tissue types. A second DTPA-derived

numeric MR marker is proposed from the difference in the numeric

values obtained for the TPM-VAVA between IFP and RPP, and is

indicated by DTPM-VAVA. The smaller DTPM-VAVA, the more

severely inflammatory is the MS-lesion. This also applies to

DTPM-STDEV and DTPM-VAR. Again, further research must

be done to find out whether these parameters correlate with

disease activity.

TPM-SKEW/TPM-KURT
Due to their low SNR (see discussion below) the comparison of

the mean values between the different tissues did not reach

statistical significance. TPM-SKEW decreased over time in ELs,

NELs and NAWM. ELs showed the highest variation in its values

including a sign reversal during the late stages. TPM-KURT

decreases for NAWM and ELs towards RPP, whereas the ELs

increased. For the used 5|5 voxel kernel it seems that based on

these two texture types no meaningful surrogate markers can be

defined. For higher kernel sizes it is likely to find significant

differences between these tissue types as well.

Limitations of the study
This study aimed to introduce DTPA and to demonstrate its

feasibility in a clinical setting. The female preponderance in our

Figure 7. Direct computation and analysis of time dependent texture parameters. The DTPA software also allows direct computation and
analysis of time dependent texture parameters without first having to compute the TPMs on a fixed pixel grid. In this figure the time dependent TPs
of EL versus NAWM tissue are displayed. Note that each TP has its own SNR.
doi:10.1371/journal.pone.0067610.g007
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cohort is determined by the epidemiology in MS. The incidence of

MS in women is doubling males, and there is still a ongoing

disproportional increase [36]. We have investigated different types

of lesions in a small and female dominated patient collective

diagnosed with different subtypes, which is a drawback. We

conclude that large differences in TPs between different tissue

types can be detected by DTPA. As a next step, we aim to perform

a randomized clinical cohort study in RR-MS to analyze the

differences between early and late ELs, NELS and NAWM. SNR

of the TPM-SKEW and TPM-KURTs, depends on both SNR of

the EPI input images (TPM-ORIG) series and kernel size. In this

study we choose a kernel size of 5|5 voxels to compute TPMs (see

Figure 3 on which the low SNR of the TPM-SKEW and TPM-

KURT can be seen). Improved SNR could be obtained by

increasing the kernel sizes to be used (e.g. 8|8), at the cost of

spatial resolution however. We identified this SNR/spatial

resolution problem during this study and extended the software

to allow direct computation of texture parameters from user

defined TOIs without the detour via TPMs computed using a

fixed kernel. Figure 7 shows the time dependency for an EL and

NAWM and using the direct computation method. Note that each

TP has its own SNR. Whether the direct computation of texture

parameters without first computing the texture parameter maps

over a fixed kernel is better than direct computation from the

defined TOI is still an open issue and has to be addressed in a

separate study.

Finally, this study only examined a limited number of texture

parameters and focused on histogram based texture parameters. In

a follow up study we will also incorporate gradient-based,

cooccurrence-matrix based and run length matrix based TPMs

to explore the differences in TPMs of various subtypes of MS

lesions.

Conclusion

This paper investigated the dynamics of texture parameter

evolution in time series of DSCE-images in 18 patients with CIS or

MS according to the 2010 McDonalds criteria. A novel software

program is introduced here to investigate time dependent texture

parameter maps derived from DSCE (difference) images. In order

to enable comparison of texture parameters between two patients,

a twofold image-normalization was performed. The first normal-

ization, to compensate for variations in coil-load, is obtained by

setting the mean NAWM voxel value during BLP to a specific

value in the ORIG-TPM. The second normalization, to compen-

sate for differences in cardiac output, is obtained by normalization

of the time integral of the TPM-DIFF over the IFP and OFP for

the same NAWM. After normalization, comparisons between

patients by comparing the time averaged texture parameter values

during the BLP, IFP, OFP and RPP are feasible. We detected

dynamic texture features that revealed highly statistically signifi-

cant differences between ELs, NELs, and NAWM. Based on these

dynamic TPs, novel grading parameters for MS lesions can be

introduced allowing for grading of MS-lesions on a numerical

scale instead of an ordinal scale as is the case with pre/post

contrast T1w image analysis. Our data support the hypothesis

that, dependent on the tissue type, subtle differences in micro-

circulation are present in enhancing and non-enhancing MS

lesions.
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