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A frequency averaging framework is proposed for
the solution of complex linear dynamic systems. It
is remarkable that, while the mid-frequency region
is usually very challenging, a smooth transition from
low- through mid- and high-frequency ranges is
possible and all ranges can now be considered in a
single framework. An interpretation of the frequency
averaging in the time domain is presented and it is
explained that the average may be evaluated very
efficiently in terms of system solutions.

1. Introduction
Two regimes are often distinguished when solving
structural dynamics and vibroacoustics problems in the
frequency domain. Broadly speaking,

(i) the low-frequency range is a region with low
modal density and low response sensitivity,
whereas

(ii) the high-frequency range is a region with high
modal and statistical overlaps.

The reasons for this distinction are multiple, with four
salient characteristics: all details of the behaviour of the
systems are not required or requested from a practical
engineering point of view; the cost of modelling and
solving a system in all its complexity may be excessive;
some parts of the acoustic or vibratory response may
be so sensitive to the system parameters that their
adequacy to represent the system behaviours precisely is
at best tenuous at some frequencies; and, finally, a limited
set of simplified features or asymptotic behaviours
may actually dominate the response in some frequency
ranges.
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In the low-frequency range, a relatively small number of well-defined modes are usually
sufficient to describe the response of the system deterministically. Furthermore, thanks to
long wavelengths of its mode shapes and propagating waves, element-based models of the
system can be kept coarse, and therefore at a reasonable size, while still providing accurate
representation of its behaviour. Usually, the system response is therefore essentially treated in
a deterministic manner at low frequency. Relatively unexpensive physical models give accurate
representation of the system behaviour and a small number of modes or waves can be evaluated
and used.

The same approach can usually not be used at high frequency. Dimensionally, huge models
are necessary owing to small wavelengths, the number of modes can be extremely large, and
treating responses deterministically does not really make sense owing to their sensitivity. In this
frequency range, statistical or average methods are usually preferred. An additional motivating
factor for this choice, besides the facts that a full response could be very expensive and practically
random in the presence of small system disturbances or propagating numerical errors, is that the
statistical properties of the response may greatly simplify.

This fact has been most notably used in statistical energy analysis (SEA) [1,2], a now common
branch of structural dynamics and vibro-acoustics whose developments were sparked by Lyon
and Maidanik’s paper 50 years ago [3]. Under certain conditions [4], the response of structural
or acoustic components can indeed be characterized by their energy density in a frequency band
and the exchange of energy between these components is proportional to the difference between
their energy densities. This simplification has been used successfully to evaluate the vibration
and acoustics behaviour of complex systems such as ships whose response would otherwise have
been mostly untractable. A library of SEA parameters, such as coupling loss factors, has been
developed for a range of material components and geometries in an analogy to the library of
deterministic components developed at low frequency. Progress in the understanding of SEA and
trying to extend its applicability has been made [5–8] but without generally allowing it to overlap
fully with the lower frequency methods.

This problematic mid-frequency gap in understanding and modelling between low- and high-
frequency regions has been long known and an area of concern. While there is an increasingly
strong industrial and theoretical call for techniques that can be applied in the whole frequency
range, and while both the physical or modal lower frequency techniques and the higher frequency
SEA methods are pushed as involuntary candidate to fill this gap, neither approach appears to be
extendable enough to cover the whole mid-frequency region. An additional difficulty is that the
boundaries of applicability of low- or high-frequency methods are somewhat blurred and it may
thus be hard to assess whether those are adequate in particular engineering situations.

There have been extensive efforts to describe and extend the range of applicability of the
respective methods such as, starting from the higher frequencies point of view, in [9–15].
Similar efforts to encroach on the mid-frequency range have been pursued, starting from the
lower frequencies point of view. For example, wave methods that allow to obtain deterministic
responses over large physical domains using only a relatively small number of waves have been
further developed. Since the wave characteristics can be evaluated from a detailed model of only
a small portion of the domain, it is possible to part with several limitations of low-frequency
methods. Alternative statistical simplifications at high frequencies have also been considered such
as the representation of the system dynamic matrices by random matrices. A description of some
recent developments can be found in [16–18].

Significant advances have also particularly been made in the combination of deterministic
and statistical features of system characteristics. Besides the techniques to include parametric
uncertainty in the low-frequency range, most notable, are relatively recent hybrid techniques such
as those proposed in [19–24] that specifically deal with the mid-frequency range. The argument
is that in the same structure or system, different components may see a given frequency as being
either in the low- or in the high-frequency ranges. The latter ‘fuzzy’, ‘complex’ or ‘reverberant’
components are coupled to the former deterministic ‘master’ deterministic components, so
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that displacement variables are interfaced with energy variables and vice-versa. This allows
application to specific practical engineering problems that would only be treatable with great
difficulty otherwise, for example in the case of car doors that can be seen as made of relatively
low-frequency frames coupled to very thin, high-frequency plates.

It is the view of the author that there remains a need for general points of view in which
the various methods can be assessed, compared and extended. The work presented here intends
to offer such a point of view that covers the whole frequency range. The proposed approach
is to consider averaging or filtering of the frequency responses with tunable averaging width. On
the one hand, a small averaging width leads to dealing with the system deterministically, with the
frequency average being asymptotically equal to the deterministic response and zero variance. On
the other hand, a larger averaging width, leads to a statistical and energy treatment of the system
behaviour. Since this averaging width can be freely chosen and tuned at different values along
the frequency range, it is possible to use the same analysis with a smooth transition from the low-
to the mid- and high-frequency ranges.

This paper is organized in the following way. In §2, the proposed averaging process is
formally described in general terms. It is then shown in §3 that the frequency average, covariance
and averaged square of the response are more than theoretical concepts and that they can be
evaluated in practical situations. The presentation focuses especially on the case of Gaussian
averages and other possible types of averaging functions are mentioned. Illustrations are then
presented and discussed in §4. Particular focus then turns to the time analysis of the averaged
response in §5, and the preservation of the system energy information in §6. Finally, the
efficient evaluation of the average response through matrix operations, without modal analysis,
is mentioned in §7 before conclusions are drawn.

The modal expressions of the averages are very general. For any system that can be expressed
in the form of equation (3.2), the frequency average of its response has the form of (3.8), where
the function S(·) takes the particular values of (3.11)–(3.13) in the case of a Gaussian average.
Similarly the simple expressions of the variance, covariance, and the expectation of the squares
or products of the responses can be found in (3.16) and (3.28), with the values of the function Q(·)
being discussed in §3c.

2. Proposed framework
The approach proposed in this paper is applicable to linear systems such as

A(ω)x(ω) = f, (2.1)

where the relationships between the input and output vectors, f and x are described by a dynamic
stiffness matrix A. This matrix and the response depend on a circular frequency parameter, ω =
2π f and the interest is in the response x(ω) = A(ω)−1f(ω), in a frequency range ω ∈ [ωmin, ωmax].
The full response at every possible frequency within the range is however usually not required.
An engineer may indeed only be interested in one or more particular transfer functions, such
as g(ω) = cTx(ω), for an output vector c, or some combination thereof. Or, most important in the
context of this article, one may only have broad interest in the frequency range: one may only be
interested in a few particular modes, in the value of the response in some discrete regions, or in
the average of the response magnitude or energy. The analysis in the frequency domain can be
transposed in the time (t) domain, through the Fourier transforms

x(t) = 1
2π

∫∞

−∞
x(ω) eiωt dω and inversely, x(ω) =

∫∞

−∞
x(t) e−iωt dt. (2.2)
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(a) Frequency average, averaged square and variance as computational goals
Instead of considering either the deterministic solution or the energy statistics of the system
described by equation (2.1) as is typically done at low- or high-frequency ranges, it is proposed
here to directly consider the statistics or average of the response x(ω) with regards to a variation in
the frequency. The problem or computational goal is thus as follows: for a frequency-dependent
level of uncertainty or averaging width, a(ω), and a frequency probability density function or
frequency averaging function pa(�ω), evaluate the average and variance, that is

x̂(ω) = E[x(ω + �ω)] and var[x(ω)] = E[abs(x(ω + �ω) − x̂(ω))2] (2.3)

in the frequency range ω, ωA, ωB ∈ [ωmin, ωmax]. The expectation or average E[.] is on the random
variable �ω so that, for any function u,

E[u(ω + �ω)] =
∫
Dp

u(ω + �ω)pa(�ω) d�ω, (2.4)

where Dp denotes the support of the measure pa(.), generally [−∞, ∞] for pa(.) defined on
the real axis. Similarly, the covariance is considered for possibly different input vectors and
different frequencies, both distinguished by subindices .A and .B so that A(ωA)xA(ωA) = fA
and A(ωB)xB(ωB) = fB. It is defined by

cov[xA(ωA), xB(ωB)] = E[(xA(ωA + �ω) − x̂A(ωA))(xB(ωB + �ω) − x̂B(ωB))H], (2.5)

where the superscript .H indicates the complex transpose conjugate. The variance of a vector is
thus its covariance with itself. In general, when evaluating a covariance at different frequencies,
the averaging width, a(ωA, ωB), may depend on the two frequencies.

The frequency average and covariance can be seen as the first and the second frequency
moments of the response. However, since the responses are complex functions, some second
moment information on the phase would be lost if only the covariance was considered. In order
to remediate this, one also targets as computational objective the frequency average of the square
of the response, that is

squ[x(ω)] = E[x(ω + �ω)x(ω + �ω)T], (2.6)

where the superscript .T denotes the transposed vector. An additional objective, similar to the
covariance, is then also the expected value of the product of responses at different frequencies or
even due to different forces. It is defined as

csq[xA(ωA), xB(ωB)] = E[xA(ωA + �ω)xB(ωB + �ω)T], (2.7)

where the averaging width, a(ωA, ωB), may again depend on two parameters.
Information on the phase is then retained thanks to the transpose—rather than the complex

conjugate transpose—of x̂B(ωB) being also considered. The frequency first moments or averages of
the real and imaginary parts of the response are indeed

E[�(x(ω + �ω))] = �(x̂(ω)) and E[�(x(ω + �ω))] = �(x̂(ω)), (2.8)

and their second moments for consistent averaging widths can be derived as

E[�(xA(ωA + �ω))�(xB(ωB + �ω)T)] = 1
2 �(S + P), (2.9)

E[�(xA(ωA + �ω))�(xB(ωB + �ω)T)] = 1
2 �(S − P), (2.10)

E[�(xA(ωA + �ω))�(xB(ωB + �ω)T)] = 1
2 �(S + P) (2.11)

and E[�(xA(ωA + �ω))�(xB(ωB + �ω)T)] = − 1
2 �(S − P), (2.12)

where S = csq[xA(ωA), xB(ωB)] and P = E[xA(ωA + �ω)xB(ωB + �ω)H] = cov[xA(ωA), xB(ωB)] +
x̂A(ωA)x̂B(ωB)H.
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(b) Link to deterministic response and statistical energy analysis
The main advantages of the proposed solution objective, in regards to providing a consistent
framework from low- to high-frequency ranges, are (i) that it can be applied in the whole
frequency range and (ii) that it covers usual deterministic and statistical energy approaches as
particular or asymptotic cases. The deterministic, low-frequency, approach indeed corresponds
to the asymptotic case where the averaging width tends to zero

x(ω) = lim
a(ω)→0

x̂(ω) and lim
a(ω)→0

var[x(ω)] = 0, (2.13)

while the power frequency average, can be expressed in terms of the average and variance using

E[x(ω + �ω)x(ω + �ω)H] = var[x(ω)] + x̂(ω)x̂(ω)H. (2.14)

The statistical simplifications encountered at high-frequency, say in the SEA theory, can thus be
examined in this context. Since the averaging width a(ω) can depend on frequency, a smooth
transition can be obtained through and between regions usually categorized as low-, mid- and
high-frequency ranges. Such categorization is not necessary when both the first and the second
frequency moments of the response are considered, although it may be very useful to make use
of accurate approximations in the respective frequency ranges.

3. Analytical frequency average, variance and averaged square
In order to take full advantage of the proposed framework and to be able to use it in practical
situations, frequency average, variance, covariance, averaged square and averaged product of
responses should ideally have analytical expressions that can be evaluated accurately, robustly
and cheaply.

Such exact analytical expressions of average, variance, covariance and therefore of power
average have been presented in [25] and further discussed in [26–28]. For a real Gaussian function

pa(.) = p(g)
a (.), both average and variance of any transfer function can be expressed in terms of the

Faddeeva function w(z) = e−z2
(1 + (2i/

√
π)

∫z
0 et2

dt) [29], with different expressions depending
on the imaginary parts of the system eigenvalues. In the case of purely real eigenvalues, the
corresponding modal components of the averages have to be understood in a principal value
sense as noted by Gautschi [30, p.188].

It is worth stressing the important subtlety that, as a function of its eigenvalue, each modal
component corresponds to different analytic functions in the two half-spaces of positive and
negative part of this eigenvalue. Since these functions are neither analytic continuation of each
other nor equal to the principal value function on the real axis, it is essential to understand what
is meant by an undamped modal component. If one means a modal component that has negligible
damping, then one should use the expression corresponding to the limit of vanishingly small
positive damping. On the other hand, in the case of an actual undamped modal component, there
is no other alternative, without further information, than to use the principal value expression.
Physically, if the average is evaluated through Monte Carlo sampling, in this case, there will
always be samples drawn close enough to the resonance for the estimated average to not converge.
However, if these rogue samples that are within a radius, say ρ, of the resonance are excluded
when estimating the average, there will be convergence and the converged value will tend to the
predicted principal value for vanishing values of ρ.

It was further demonstrated that all expressions could be evaluated efficiently and robustly
in the whole frequency range. The theory was also extended to the case of complex normal
variables [27]. In this paper, particular focus is put on the real Gaussian distribution, denoted
by a superscript .(g), for real argument �ω, zero mean and standard deviation a(ω) or a(ωA, ωB),
so that one has

pa(�ω) = p(g)
a (�ω) =

√
1

2πa(ω)2 e−�ω2/2a(ω)2
. (3.1)
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Other options of averaging functions that readily fit in the proposed framework are mentioned in
§3e. The presentation uses a modal point of view in order to retrieve the exact scalar integrals
that were presented in [25,27]. The resulting average expressions may however be expressed
in matrix form without requiring any explicit evaluation of eigenvalues or eigenvectors. This
has been notably demonstrated in [31] where it was further shown that Krylov methods can be
used to evaluate the average in a frequency range extremely efficiently. The existence of such
efficient matrix evaluations is essential for practical application of the theory on dimensionally
large discretized systems.

(a) Frequency modal expression of the response
For facility of presentation, it is assumed that equation (2.1) can be expressed in an equivalent
form where the dynamic stiffness matrix is a linear function of the frequency parameter, that is

(A(l)
0 − ωA(l)

1 )x(l)(ω) = f(l) (3.2)

with constant A(l)
0 and A(l)

1 . This is always the case if, say, the original dynamic stiffness matrix,
A(ω), is a polynomial function of ω. For example, in the case of a damped structural system,
this matrix may be a quadratic function of ω as A(ω) = (K + iωC − ω2M) with constant stiffness,
damping and mass matrices, K, C and M. The matrices, output and input vectors of the equivalent
form (3.2) could then be

A(l)
0 =

[
K C

0 I

]
, A(l)

1 =
[

0 −iM

iI 0

]
, x(l)(ω) =

[
x(ω)

iωx(ω)

]
and f(l) =

[
f

0

]
. (3.3)

The eigenvalues ωj and left- and right-eigenvectors, ψ (l)
j and φ(l)

j �= 0, of the system then satisfy

[ψ (l)
j ]T(A(l)

0 − ωjA
(l)
1 ) = 0 and (A(l)

0 − ωjA
(l)
1 )φ(l)

j = 0. (3.4)

The matrix A(l)
1 is assumed regular and if the system further has a full set of eigenvectors,

φ
(l)
j , j = 1, . . . , N, a modal decomposition can be obtained by using the corresponding basis,

Φ(l) = [φ(l)
1 . . . φ

(l)
N ]. Binormalizing the left- and right-eigenvectors with respect to the A(l)

1 matrix,

so that Ψ (l)T
A(l)

1 Φ
(l) = I, Ψ (l)T

A(l)
0 Φ

(l) = diag(ωj), and expressing x(l)(ω) =Φ(l)y(ω), equation (3.2)
can indeed be rewritten with diagonal matrix, as (diag(ωj) − ωI)y(ω) = [Ψ (l)]Tf(l) which results in
the following modal expression of the response:

x(ω) =
∑

j=1,...,N

φj(ψ j
Tf)

(ωj − ω)
=

∑
j=1,...,N

PT
xφ

(l)
j ([ψ (l)

j ]Tf)

(ωj − ω)
, (3.5)

for eigenvalues and modes that satisfy

[ψ (l)
j ]T A(ωj) = 0, A(ωj)φ

(l)
j = 0. (3.6)

The matrix Px denotes the projection matrix that allows to extract the response vector x(ω) from
the longer vector x(l)(ω), i.e. x(ω) = Pxx(l)(ω). In the case of the damped example of equation
(3.3), it is equal to Px = [I 0]. While the eigenvectors, φj = Pxφ

(l)
j , are therefore the first half

of the linearized eigenvectors φ(l)
j in the present example, the same expression can be found—

and the theory derived below can be used—in more general cases. Note also that if the force
vector was frequency dependent and could be expressed in rational form of ω, then the present
approach could still be used with expansions similar to (3.5) and an alternative meaning
for the poles.
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(b) Frequency average
In modal form, the frequency average of the response is thus the function

x̂(ω) =
∑

j=1,...,N

{
φj(ψ j

Tf)
∫
Dp

[
1

(ωj − ω − u)
pa(u) du

]}
(3.7)

=
∑

j=1,...,N

{φj(ψ j
Tf)S(ω, a, ωj)}. (3.8)

Ideally, the scalar integrals S(ω, a, ωj) = ∫
Dp

(1/(ωj − ω − u))pa(u) du or their combination
necessitate computable exact expressions or accurate approximations which are discussed next.
As discussed in [28], the effect of the averaging operation on the individual eigenvalues can be
combined into the form of an (exact) averaging matrix Ĥ(ω), so that x̂(ω) = Ĥ(ω)f, where

Ĥ(ω) =
∑

j=1,...,N

{φjψ j
TS(ω, a, ωj)}. (3.9)

The average of other transfer functions such as iωx̂(ω) that corresponds to the system’s velocity
can be obtained directly from the application of the theory to the system written in the form (3.4),
with matrices and vectors defined as in equation (3.3). The full averaging matrix is then simply

Ĥ
(l)

(ω) =
∑

j=1,...,N

{φ(l)
j ψ

(l)
j

T
S(ω, a, ωj)} (3.10)

with the same functions S(ω, a, ωj) and the vector of averaged response (and, possibly, of its

averaged transfer functions of time derivatives) is x̂(l)(ω) = Ĥ
(l)

(ω)f(l).
Real Gaussian case. In the case of a real Gaussian averaging function, averaging corresponds to

applying a Gaussian filter to the response or evaluating its Weierstrass transform (see for example
[32,33] and the references therein).

Since ω is real, the exact expressions of the integrals are [25,29,34]

S(g)(ω, a, ωj) = −i
a(ω)

√
π

2
w
(

ωj − ω√
2a(ω)

)
if �(ωj) > 0 (3.11)

= i
a(ω)

√
π

2
w∗
(

ωj
∗ − ω√
2a(ω)

)
if �(ωj) < 0 (3.12)

= PV −i
a(ω)

√
π

2

{
w
(

ωj − ω√
2a(ω)

)
− exp

[
− (ωj − ω)2

2a(ω)2

]}
if �(ωj) = 0, (3.13)

where the complex conjugate, denoted as .∗, of both the Faddeeva function and the eigenvalue in
the second equation are taken and where the third equation has to be understood in a principal
value sense. For example, if all the eigenvalues have a positive imaginary part, expression (3.8) of
the exact average becomes

x̂(g)(ω) = −i
a(ω)

√
π

2

⎧⎨
⎩

∑
j=1,...,N

[
φj(ψ j

Tf)w
(

ωj − ω√
2a(ω)

)]⎫⎬
⎭. (3.14)

Such expression can also be expressed and evaluated directly in terms of transfer functions, the

average response matrix (−i/a(ω))
√

π/2
{∑

j=1,...,N[φj(ψ j
T)w((ωj − ω)/(

√
2a(ω)))]

}
or the system

matrices, without requiring a modal decomposition, as discussed in [31].
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(c) Frequency variance and covariance
The frequency variance or covariance of the response is also available, from equation (2.14) and
the following frequency cross-power average

E[xA(ωA + �ω)xB(ωB + �ω)H]

=
∑

k=1,...,N

∑
j=1,...,N

{
φjφ

H
k (ψ j

TfA)(ψk
TfB)∗

×
∫
Dp

[
1

(ωj − ωA − u)
1

(ω∗
k − ωB − u)

pa(u) du

]}
(3.15)

=
∑

j,k=1,...,N

{φjφ
H
k (ψ j

TfA)(ψk
TfB)∗Q(ωA, ωB, a, ωj, ωk)}. (3.16)

The integrals Q(ωA, ωB, a, ωj, ωk) = ∫
Dp

(1/(ωj − ωA − u))(1/(ω∗
k − ωB − u))p(u) du in this

expression have one of two forms depending if ωj − ωA and (ωk − ωB)∗ = ω∗
k − ωB are equal

or not [25]:

— if ωj − ωA �= ω∗
k − ωB, then, by considering partial fraction decomposition,

Q(ωA, ωB, a, ωj, ωk) = S(ωA, a(ωA, ωB), ωj) − S(ωB, a(ωA, ωB), ω∗
k )

ω∗
k − ωB − ωj + ωA

, (3.17)

— otherwise, if ωj − ωA = ω∗
k − ωB,

Q(ωA, ωB, a, ωj, ωk = ω∗
j − ωA + ωB) =

∫
Dp

1(
ωj − ωA − u

)2 pa(u) du (3.18)

and, in the real case, one has by integration by parts,

Q(ωA, ωB, a, ωj, ωk = ω∗
j − ωA + ωB) = −

∫∞

−∞
1

(ωj − ωA − u)
∂pa(u)

∂u
du. (3.19)

The frequency average power, cross-power, variance and covariance are thus directly available
from expressions (3.11)–(3.13) in the first case where ωj − ωA �= ω∗

k − ωB.
Real Gaussian case. Considering a real Gaussian and in the first case where ωj − ωA �= ω∗

k − ωB,
one finds from equations (3.17) and (3.11)–(3.13) that attention must be paid to the signs of both
ωj and ω∗

k . For example, if the system is damped and all eigenvalues ωj have positive imaginary
part, their complex conjugate, ω∗

k has negative imaginary part, so that

E(g)[xA(ωA + �ω)xB(ωB + �ω)H]

= −i
a(ωA, ωB)

√
π

2
×
⎧⎨
⎩

∑
k=1,...,N

∑
j=1,...,N

[
φjφ

H
k (ψ j

TfA)(ψk
TfB)∗

×
(

w((ωj − ωA)/(
√

2a(ωA, ωB))) + w∗((ωk − ωB)/(
√

2a(ωA, ωB)))

ω∗
k − ωB − ωj + ωA

)]}
.

(3.20)
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Using equations (2.14) and (3.14), the covariance is then found to be

cov(g)[xA(ωA), xB(ωB)] = −i
a(ωA, ωB)

√
π

2

⎧⎨
⎩

∑
k=1,...,N

∑
j=1,...,N

[
φjφ

H
k (ψ j

TfA)(ψk
TfB)∗

×
(

w((ωj − ωA)/(
√

2a(ωA, ωB))) + w∗((ωk − ωB)/(
√

2a(ωA, ωB)))

ω∗
k − ωB − ωj + ωA

− i
a(ωA, ωB)

√
π

2
w
(

ωj − ωA√
2a(ωA, ωB)

)
w∗
(

ωk − ωB√
2a(ωA, ωB)

))]⎫⎬
⎭. (3.21)

Note that in the same example case of ωj with positive imaginary part, if the further condition
ωj − ωA = ωk − ωB holds, then the double pole integrals equal

Q(g)(ωA, ωB, a, ωj, ωk = ωj − ωA + ωB) = 1
a�(ωj − ωA)

√
π

2
K
(�(ωj − ωA)√

2a
,
�(ωj − ωA)√

2a

)
(3.22)

where K(., .) denotes the Voigt function [35], defined as the real part of the Faddeeva function
K(x, y) = �[w(x + iy)] = (y/π )

∫∞
−∞ exp(−t2)/((x − t)2 + y2) dt for real x and y.

Alternatively, when ωj − ωA = ω∗
k − ωB, the integral Q(g)(ωA, ωB, a, ωj, ωk = ω∗

j − ωA + ωB) of

equation (3.17) has a simple expression since ∂p(g)
a (u)/∂u = −(u/a(ωA, ωB)2)p(g)

a (u). This leads
indeed to the following:

Q(g)(ω, a, ωj, ωk = ω∗
j − ωA + ωB) = − 1

a2

∫∞

−∞
−u

(ωj − ωA − u)
p(g)

a (u) du (3.23)

= − 1
a2

∫∞

−∞

(
1 − ωj − ωA

(ωj − ωA − u)

)
p(g)

a (u) du (3.24)

= − 1
a2 + ωj − ωA

a2 S(g)(ωA, a, ωj) (3.25)

and expressions (3.11)–(3.13) can again be used, depending on the sign of �(ωj).

(d) Frequency averaged square and averaged product of responses
The frequency square or averaged product of the response vectors are similarly available from

csq[xA(ωA), xB(ωB)] =
∑

k=1,...,N

∑
j=1,...,N

{
φjφ

T
k (ψ j

TfA)(ψk
TfB)

×
∫
Dp

[
1

(ωj − ωA − u)
1

(ωk − ωB − u)
pa(u) du

]}
(3.26)

=
∑

j,k=1,...,N

{φjφ
T
k (ψ j

TfA)(ψk
TfB)R(ωA, ωB, a, ωj, ωk)}. (3.27)

The integrals R(ωA, ωB, a, ωj, ωk) = ∫
Dp

(1/(ωj − ωA − u))(1/(ωk − ωB − u))pa(u) du are thus simply
R(ωA, ωB, a, ωj, ωk) = Q(ωA, ωB, a, ωj, ω∗

k ) and, following the explanation of the previous section,
therefore also have one of two forms depending if ωj − ωA and ωk − ωB are equal or not.

Real Gaussian case. Considering again the real Gaussian case and the particular example where
the system is damped and all eigenvalues ωj have positive imaginary part, the first case to
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consider is ωj − ωA �= ωk − ωB when

csq(g)[xA(ωA), xB(ωB)]

= −i
a(ωA, ωB)

√
π

2
×
⎧⎨
⎩

∑
k=1,...,N

∑
j=1,...,N

[
φjφ

T
k (ψ j

TfA)(ψk
TfB)

×
(

w((ωj − ωA)/
√

2a(ωA, ωB)) − w((ωk − ωB)/
√

2a(ωA, ωB))

ωk − ωB − ωj + ωA

)]⎫⎬
⎭. (3.28)

In the general real Gaussian case, one has, when ωj − ωA = ωk − ωB and for real ωA and ωB, that
R(g)(ω, a, ωj, ωk = ωj − ωA + ωB) = Q(g)(ω, a, ωj, ω∗

k = ω∗
j − ωA + ωB), whose expression is provided

in equation (3.25).

(e) Other distributions
The general expressions presented in this paper can be directly applied to a wide variety of
averaging, filter or distribution functions. Many choices of such functions can be found in various
fields such as in the theory of filters [36] or in statistics [37]. One of the most notable among those
might be the uniform distribution since it has been extensively used in acoustics and vibration
to model the energetic response in frequency bands or octaves. Some explicit expressions of
the necessary integrals can be adapted from the expressions of the frequency average of the
energy given in [38, appendix] for the particular case of a proportionally damped system, i.e.
when the complex poles come in particular pair combinations. Regarding the first frequency
moment, i.e. the frequency average, an advantage of distributions or averaging functions that
are in rational form, such as the Cauchy, Fisher’s F, Student’s t distributions, or the Bessel,
Butterworth, Chebyshev filters, is that they may offer the computational advantage that the
average can easily be expressed in matrix form, as a function of system solutions only. This
can for example be used, together with the fact that the averaged input energy is proportional
to the average transfer function, to approximate the averaged energy in a frequency band
as in [39].

A more general approach for the average, proposed in [31] and inspired by Weideman’s work
on scalar rational approximations of the complex error function [40], allows working with rational
matrix operations and by-passing any modal analysis, even for general non-rational distributions.
Further using properties of Krylov subspaces, the main overall cost to evaluate the averages over
a range a frequencies is only a few solutions, as demonstrated in [31] and further discussed in
§8. A significant advantage worth noting is that the average at a particular frequency can be
obtained with solutions at a single shifted frequency which corresponds to working with a system
with additional damping. Any available factorization of the system dynamic stiffness matrix can
thus be re-used.

The choice of which frequency averaging function to use is dependent on a user’s preference
and on the objectives of the application of interest. The influence of a particular choice can
further be quantified, notably by examining the resulting frequency moments in the time
domain. This is discussed in §§5a, 6 and 7. It is seen that for a constant averaging width,
the averaging process results in the scaling of the exact impulse responses by the inverse
Fourier transform of the averaging function. In statistics, this Fourier transform of a distribution
function is called its characteristic function and is therefore readily available for standard
distribution functions.

Complex averaging windows are also generally supported. For example, the integrals
necessary for a complex Gaussian were presented in [27]. Some care must be taken since the
covariance may exhibit local singularities.
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Figure 1. Illustration of the complex spring–mass system benchmark.

4. Illustration of the evaluation of the frequency averages
The use of the general notions of frequency average and frequency variance can be geared
towards specific applications, depending on the computational goals pursued. Various uses are
illustrated in the next sections. In the current section, a benchmark problem that exhibits a mix of
low- to higher frequency characteristics is first introduced. The average, variance and averaged
square are then evaluated and discussed, in comparison to the system full solution.

(a) Description of the benchmark problem
The benchmark system considered here is made of a large oscillator connected to a set of
substructures, as illustrated in figure 1. Similar prototypes of complicated systems made of a
large mass with many attached spring–mass systems have recurrently appeared in the literature
of the last 20 years. One of the first occurrences was, for example, the undamped system that
Weaver [41] used to illustrate the (ensemble) averaging approach he proposed as an alternative
and extension to previous work on fuzzy and complex structures as by Soize [20] and Pierce
et al. [21]. Although apparently simple, such complex systems are representative of engineering
systems that are conceptually difficult to model because they exhibit a combination of low-, mid-
and high-frequency characteristics. Their behaviour having actually proved to be far from simple
and rather particularly interesting, they have been used in a form or another either to illustrate
various theories or to study them in their own right. A salient example of the latter is the analysis
in [19,42–44] and other publications of how the undamped additional spring–masses provide
apparent equivalent damping to the larger mass.

Similar line of thought and motivation as that of others has been followed to select the current
benchmark. Its parameters are, in particular, inspired from the first example of [19, section 7.1].
Two aspects however somewhat distinguish the current work from previous work on this type of
problem. First, somewhat unusual is that the presence of both significant or smaller values of
damping are supported. Second, more generally and arguably more importantly, the analysis
is exact and general, so that neither approximations, such as for example an ad hoc smoothing
of the modes, nor conditions on the distribution of the modes are necessary. While the chosen
benchmark has damping, the proposed exact theory can also be applied without approximation
to either undamped or very slightly damped systems (doing so, the remarks made in §3 about
principal values must be kept in mind). It is finally worth reminding here that the averaging in the
current work is on a property (the frequency) of an actual system, rather than over an ensemble
of similar structures.

The details of the model are now described and the frequency average and variance are
presented for varying values of the tuning parameter, a(ω). Units notations are essentially omitted
(except for the time, in seconds) and may be assumed to be any consistent unit system. The
main mass, m1 = 2 is connected with a spring, k1 = 2, to a fixed point and n = 150 spring–mass
pairs, kj, mj, j = 2, . . . , n + 1, are attached to it. As in [19], the individual natural frequencies, ωj, of
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Figure 2. Nominal response of the main mass to a unit force in the (a) frequency and (b) time domains, with and without the
additional attachments.

the smaller attached systems are chosen randomly and uniformally within a range [0, Ωmax = 5].
The individual masses are randomly drawn from an exponential distribution with expected total
additional mass, MT. Therefore, they have probability density, p(mjn/MT) = exp(−(mjn/MT)) for
all j = 2, . . . , n + 1 and the individual stiffness coefficients are kj = mjω

2
j . The actual values of

the masses and springs, mj and kj can be found on the j-th line of the respective Electronic
Supplementary Material Files ESM_mn and ESM_omegan, for j = 1, . . . , 150. Further viscous
damping, cj = ηkj, is added to each spring, j = 1, 2, . . . , n + 1 so that the viscous damping matrix
is C = ηK for some damping factor η = 5 × 10−4. The chosen dimension of the model is such
that the ensemble of additional masses is not in any asymptotic form of complexity in the sense
that the n = 150 additional masses cannot really be considered as a good approximation of the
case of a smooth modal density, notwithstanding the fact that one resonance is isolated. While
this asymptotic form of an higher complexity model would not pose particular problem to the
proposed framework, it is not required either.

The interest is in the transfer function, g1(ω) = x1(ω) = eT
1 x(ω), of the main mass, m1, owing to

a unit force, f = e1 = [1 0 . . . 0]T, as well as in the impulse time response, g
1
(t) = x1(t), of the same

mass. The evaluated corresponding nominal, ‘non-averaged’, functions are presented in figure 2.
Some of the difficulties arising when the complexity of the system increases are illustrated on this
benchmark problem and now highlighted. First, it is clear that the effect of the additional masses
cannot be neglected or simply integrated in the properties of the main system. In the frequency
domain, two main parts of the response are identifiable: a single well-isolated resonance in the
6 ≤ ω ≤ 7 range and an apparent blurred resonance pattern made of a combination of several
resonances within the range 0 ≤ ω ≤ 5. While the latter roughly looks like a main individual
resonance perturbed by a multitude of minor disturbances, such simplified vision is not really
the case, since it is really the combination of all individual resonances that creates the blurred
pattern. It is also not clear, de visu and qualitatively, if just one or several equivalent blurred
resonances are hidden in the pattern. The situation is similarly not that simple in the time
domain: the impulse response of the full system exhibits some kind of beating phenomena where
its general magnitude appears to first decrease, i.e. be damped, up to about t = 50[s] to only
increase back up to t = 150[s]. Similarly, the response at lower times exhibits a high-frequency,
lower magnitude oscillation, that is superposed to a signal with wavelength equal to about 10[s].
Nevertheless, although the impulse response is somewhat complicated, it appears to have some
hidden simplified pattern, made of only a small number of components. This situation exhibits
several typical characteristics of the problems one is exposed to when working through various
frequency ranges. The averaging framework proposed here offers an approach to extract such
important components. Before discussing this in more detail, the use of two alternative existing
approaches is presented.



13

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130743

...................................................

0 5 10
10–4

10–3

10–2

10–1

1
(a) (b)

ab
so

lu
te

 v
al

ue
 o

f 
im

pu
ls

e 
re

sp
on

se
, a

bs
(g –1

(t
))

50 55 60
time, t (s) time, t (s) time, t (s) time, t (s) time, t (s) time, t (s)

exact exact
modal trunc.

190 195 200 0 5 10 50 55 60

exact
OMR trunc.

190 195 200
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(t), to its approximation bymodal truncation when

(a) keeping 1, 2, 5 or 10 modal pairs with the highest modal density magnitude, and (b) keeping 1, 10 and 50 most important
modal pairs—as defined in [45]—of the attached masses.

Alternative approaches. An apparently evident alternative strategy to model the response of
the system would be to consider the modal components of the system that contribute most to the
response. Looking at the modal magnitudes abs(eT

1φjψ j
Te1) of eT

1 x found from modal expression
(3.5), as such a criteria, one can truncate the modal representations at a number of pairs of
conjugate modes (since the response in time is real, each ωj comes in pair with an eigenvalue
with opposite real part, −�(ωj) + i�(ωj)). The magnitude of the impulse responses are presented
in figure 3a for an increasing number of 1, 2, 5, 10 modal pairs whose reference eigenvalues,
sorted by decreasing modal magnitude are ωj = {0.5634 + i0.000079, 0.5173 + i0.000067, 6.2552 +
i0.009782, 0.6022 + i0.000091, 0.4823 + i0.000058, 0.7754 + 0.00015i, 0.6191 + 0.000096i, 0.3755 +
0.000035i, 0.7165 + 0.00013i, 0.8323 + 0.000024i, . . .}. While the predictions obtained through
modal truncation are roughly similar to the actual impulse response, they are not particularly
precise. For example, the time and value of the first local maximum, (t, g

1
(t)) = (0.3800[s], 0.1126),

of the impulse response is estimated as (0.3350[s], 0.0805), when 10 pairs of modes are used. This
is a 13 and 40% relative error. Another issue is that it is difficult to assess the quality of these
approximations if information on the other modes is not used. Other approaches have been
proposed over the last one or two decades with the objective of reducing model dimensions
such that the reduced model preserves information of the original system, in particular in the
time domain. Among the several options that have notably been proposed and explored by
Barbone et al. [19], it is worth noting a connection of the current work with the smooth (mass)
modal density function used to model a high-density discrete spectrum. Although starting from
a different point of view, the present frequency averaging framework can indeed also be seen
as offering smoothed frequency functions. Further comparison between the two points of view
might therefore bring additional insight. Further efforts have also been pursued to identify and
extract the most important modes of complicated subsystems, also with a focus on the quality
of the time responses of coupled systems. The impulse response predictions obtained through
the OMR algorithm of [45, Box 1, page 1669]1 are presented in figure 3b for reduced models
of the attachment of dimensions 1 to 50. While such approach is better targeted than other modal
truncation methods to the evaluation of impulse responses, its accuracy is still relatively limited
for the amount of information preserved. Note that the possibly less precise predictions compared
with those obtained via the previous modal truncation method may be explained by the fact that
OMR operates without information on the actual system to which the complicated ensemble of
attachments is connected. The predictions of both sets of impulse responses of figure 3 should

1Note that the reduced damping matrix was defined as η times the reduced stiffness matrix.



14

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130743

...................................................

10–2

1

(a) (b) (c)

(g) (h) (i)

( j) (k) (l)

(m) (n) (o)

(d) (e) ( f )

ab
s(

E
(g

1)
)

–3.0
–2.5
–2.0

–1.0
–0.5

0

ph
as

e(
E

(g
1)

)

10–3

10

E
(a

bs
(g

1)
2 )

ab
s(

E
( –g 12 )

)

10–5

10–1

–3
–2
–1
0
1
2
3

0 2.5 5.0 7.5 10.0 0 2.5 5.0 7.5 10.0 0 2.5 5.0 7.5 10.0

ph
as

e(
E

(g
12 )

) a = 1 a = 0.1

frequency parameter, w (rad Hz)frequency parameter, w (rad Hz) frequency parameter, w (rad Hz)

a = 0.01

a = 1 a = 0.1 a = 0.01

a = 1 a = 0.1 a = 0.01

a = 1 a = 0.1 a = 0.01

a = 1 a = 0.1 a = 0.01

–1.5

Figure 4. Average, E[g1(ω + �ω)]= cTx̂(ω), averaged absolute square, E[abs(g1(ω + �ω))2], and averaged square,
E[g1(ω + �ω)2], of the transfer function g1(ω), for three values of the averaging width, a= 1, 0.1 and 0.01.

be compared to the results presented in figures 4–6. It is seen that an accurate estimation of
the average can be achieved with only a few equivalent modes and that it can provide extremely
accurate time domain predictions. A practical implicit approach for evaluating such equivalent
modes is through the rational Krylov projection method proposed in [31].

(b) Evaluation of the frequency moments as computational goals
Rather than the full, detailed response as presented in figure 2a, it is the three averaged functions
of order 1 and 2 that are directly targeted in the proposed framework. Such computational
responses of the system are presented in figure 4 for three different values of the averaging
width, a. Varying the value of the averaging width allows to look at the response with various
interest in details, as if using a magnifying glass of various strength. For the largest value, a = 1,
all irregularities of the first blurred resonance are smoothed and it appears from looking at the
averaged response in (a) that, in some way, two main resonances are present in the response.
At this value of the averaging or magnifying strength, a = 1, the average itself does not allow
to differentiate between a single, clear resonance and a blurred one. Such information is however
provided by the second-order averages: the ratio between the square root of the averaged square
of the magnitude, in (g), and the absolute value of the average, in (a), is about 60 at the first
resonance, while it is only about 8.5 at the second resonance. This information is sufficient to
identify the region with higher modal density, and if desired, the averaging width can be refined.
Doing so reveals more details of the response as seen in (b) where about 10 distinct resonances
are apparent. Pushing further the identification of details by decreasing the averaging width to
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a = 0.01 leads to a much less regular response in (c). This lightest touch average is however notably
smoother than the full detailed solution of figure 2: the minor resonances that are not important
in the response have been smoothed out.

The averages thus provide qualitative information about the location and density of
resonances. As such, they are useful by themselves and one can use them to refine the analysis,
i.e. to decrease the averaging width, in regions of interest. The effect of averaging can also be
characterized in the time domain, as now described in §5.

5. Time domain analysis and impulse response of the averaged responses
In this section, the interpretation and effect of the frequency averaging in the time domain is
discussed. Constant and variable averaging width, a(ω), are studied in turn.

(a) Impulse response from frequency averaging with constant width
Properties of convolutions can be used to evaluate time responses when the averaging width is
constant. This is described and illustrated in the two following sections, in particular in the case
of Gaussian averaging.

(i) Description of the approach to evaluate time responses

First, for a constant a(ω) = a, averaging the full response, x(ω), is equivalent to evaluating its
convolution with the averaging window or probability density function pa(�ω). The inverse
Fourier transform of the average x̂(ω) is therefore equal to the product of the exact impulse
response by the inverse Fourier transform of pa(�ω). The latter is called the characteristic function
of the probability density function, pa(.), in statistics.

Specifically, considering the Fourier transform, x̂(t), of the frequency average transfer function
vector, x̂(ω), one has in general the following filtered impulse response:

x̂(t) = 1
2π

∑
j=1,...,N

{
φj(ψ j

Tf)
∫∞

−∞

∫
Dp

[
1

(ωj − ω − u)
pa(u) du

]
eiωt dω

}
. (5.1)

Since a(ω) = a is constant, the change of variable ω′ = ω + u gives the product of the impulse
response of the system by the characteristic function of pa(.), i.e.

x̂(t) = 1
2π

∑
j=1,...,N

{
φj(ψ j

Tf)
∫
Dp

∫∞

−∞

[
1

(ωj − ω′)
eiω′td(ω′)pa(u) e−iut du

]}
(5.2)

= x(t)
∫
Dp

pa(u) e−iut du. (5.3)

Equation (5.3) offers a strategy to evaluate the time response of the system, which does not
require the knowledge of the details of the full system, but only its average response. The
proposed strategy, valid for times at which the values of the scaling function

∫
Dp

pa(u) e−iut du
are large enough, is illustrated in figure 5 for the real Gaussian case. It has three main steps:

(i) evaluate the frequency average, x̂(ω);
(ii) evaluate its inverse Fourier transform, x̂(t) and

(iii) scale this time function, using equation (5.3) in general and (5.7) in the particular real
Gaussian case, to estimate the impulse response, x(t).

Each of these operations has the option to be evaluated in various manners. For example,
while the frequency average could be evaluated by using the modal decomposition used in the
derivation in this paper, an efficient matrix alternative based on rational approximations and
Krylov subspaces that has been proposed by Lecomte [31] allows by-passing any modal analysis
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Figure 5. Comparison of the exact impulse response with its ‘Averaged’ estimation through frequency average, inverse Fourier
transform and scaling as described in (g). Three averaging width, a= 1, 0.1 and 0.01 rad Hz, are considered in plots (a), (b) and
(c), respectively, and the corresponding relative errors are presented in plots (d), (e) and (f ). The inverse Fourier transforms of
the discretized transfer functions were evaluated through an explicit trapezoidal integral. The real Gaussian scaling functions
affecting the impulse response when the inverse of the frequency average is taken are presented in (h).

and has been successfully applied by the author to large systems in this context of evaluating
time responses as proposed here. Similarly, the inverse Fourier transform could be evaluated by
considering individual modes of a modal decomposition or numerically by sampling the average
in the frequency domain. The evaluation through modal decomposition can also be applied to the
precise approximate reduced models of [31].

Real Gaussian case. In the particular real Gaussian case when pa(u) = p(g)
a (u), the Fourier

transform of a real Gaussian averaging function is another real Gaussian function: starting from
∫∞

−∞
p(g)

a (u) e−iut du =
∫∞

−∞

√
1

2πa2 e−u2/(2a2) e−iut du (5.4)

one can complete the square in the exponential argument and use Cauchy integral
theorem to find

∫∞

−∞
p(g)

a (u) e−iut du =
∫∞

−∞

√
1

2πa2 e−(u/(
√

2a)+ita/
√

2)2
e−t2a2/2 du (5.5)

= e−t2a2/2
∫∞

−∞

√
1

2πa2 e−(u/(
√

2a))2
du = e−t2a2/2. (5.6)

The Gaussian filtered impulse response is thus

x̂(g)(t) = x(t) e−t2a2/2. (5.7)

This shows that Gaussian frequency averaging for constant a(ω) = a preserves the nominal
impulse response at time zero, i.e. x̂(0) = x(0) and that the smaller the value of a, the better is
x̂(g)(t) an approximation of x(t) at small times.

Note finally that the current discussion provides a description of the eigenfunctions of the
Gaussian averaging operator. This is detailed in appendix B in the electronic supplementary
material.

(ii) Illustration of the approach to evaluate time responses

The estimations of figure 5 were evaluated through a modal decomposition and the discretization
of the frequency average in a wide but finite range of frequencies. The relative error on the
estimated impulse responses is about 10−3 or less in most of the time ranges corresponding to
each of the averaging widths. The increase in the error at the end of the two first time ranges, i.e.
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the intervals (0, 5)[s] for a = 1 and (0, 45)[s] for a = 0.1, is due to two reasons: first, the precision
of the evaluation of the average and, mostly, of the inverse Fourier transform, and, second, the
limits of the finite precision arithmetics. Both the evaluation of the average and inverse Fourier
transform can be made much more precise, particularly by using the method of Lecomte [31].
The finite precision arithmetic remark corresponds to a more fundamental fact: since the impulse
response x̂(t) has to be scaled by the inverse Gaussian et2a2/2 to estimate x(t), this estimation will
be marred by round-off effects if x̂(t) is represented in finite precision. The estimations for smaller
values of t and the scaling factor remain precise as is shown in figure 5 where the vertical dotted
lines correspond to values of this factor equal to et2a2/2 = 104. If an engineer, who would for
example want to design a structure that is only moderately affected by a shock or turbulence,
is only interested in the maximum and minimum values of the impulse response during a given
time period after some impact, as in (a), he or she can thus define the maximum averaging width
possible that provides accurate response in the smallest time range of interest. The discussion
of this section provides some explanation of the Gaussian frequency averaging process in that
the smoothed out details and irregularities of the transfer functions correspond to details of the
response at larger times. Averaging with other distributions, as those discussed in §3e, leads to
different but similar interpretations since the characteristic functions of these distributions—their
inverse Fourier transforms—has other properties.

Nevertheless their being smoothed out, information about the details of the transfer functions
does not disappear in the averaging process, at least when the second-order averages—averaged
square and variance—are considered. The information about the total transient energy, including
at larger times, is indeed preserved and retrievable. This will be discussed in §6. Before that, the
case of variable averaging width is briefly discussed.

(b) Time domain analysis using a variable averaging width
It was mentioned in §2b that the low-frequency focus corresponds to responses that have zero or
small variance. The discussion of the previous section provides the further interpretation that
their deterministic character can be understood as well defined—rather than blurred—transfer
functions and consequently refined impulse responses at small times. The alternative high-
frequency focus corresponds instead to statistical, blurred transfer functions and a more and more
imprecise notion of energy at larger and larger times. It is now stressed how the focus of the
analysis can be qualitatively pushed into the direction of a more deterministic character, by
pinpointing frequency regions.

In general, since the averaging width, a(ω), can be frequency dependent, it can indeed be used
to gear the analysis into different focus in different frequency ranges and provide a smooth
transition from low- to high-frequency as shown in [31]. Another application, illustrated in
figure 6, is presented here. The frequency average response is by itself an approximation of
the exact response, in the sense that the averaging process may allow to get rid of unimportant
features of the response. As noted in the previous sections, this notion of unimportance is related
to an accurate time response of the system at small times and a small frequency variance. Steps
for reducing the frequency variance may therefore lead to a focus on more important features of
the system response.

The analysis presented in figure 4 for a = 0.1 is examined again. The corresponding inverse
Fourier transform of the average is presented in figure 6e and is seen to rapidly lose precision for
increasing time. This can be compared to figure 4b, where the Gaussian scaling was applied. Since
the frequency variance is relatively the largest in the region ω < 1, reducing the averaging width,
i.e. refining the response, in this lower frequency region may consequently achieve a generally
better approximation in the time domain.

A constant refined value of a = 0.004 is chosen in the interval 0.2 ≤ ω ≤ 1 (rad Hz) and is
connected to the initial a = 0.1 everywhere else through a linear variation at the edges ω ∈ (0.1, 0.2)
and (1, 1.1) (rad Hz). With this choice, the average reveals a number (about 30) of resonances
in the refined interval and globally reduces the variance there. As can be seen in plot ( f ), this
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Figure 6. Comparison of the average, variance and impulse response functions for a constant, original, averaging width a=
0.1 rad Hz and an averaging width that has been refined in the interval (0.1, 1.1) rad Hz. The approximate and exact impulse
responses are, respectively, the inverse Fourier transforms of the exact transfer function and that of its average. Both were
evaluated through an explicit trapezoidal integral as for the results of figure 5.

significantly increases the quality of the approximate response over a larger region of time and,
while qualitative, this study illustrates again the link between averaging and precise response at
small time. Attention now turns to the imprecise or energy part of the responses that are assessed
by the second-order averaged square and variance.

6. Repartition of the energy in the system response
It is shown in this section that the total transient energy, which transits through part of a
system during impulse, can be retrieved from a combination of its first and second frequency
moments obtained with constant averaging width, a(ω) = a. Equivalence theorems of two kinds
are first highlighted. Exact expressions of the energy in terms of the frequency moments are then
presented and discussed. It is notably shown how the energy is partitioned in terms of the first
and the second moment contributions.

(a) Energy equivalence theorems
The evaluation of the total impulse energy through averaged functions is based on theorems
of equivalence of the energy in the three domains, namely the domains of time, frequency and
frequency average. The known equivalence between the time and frequency domains is reminded
in the next section while the equivalence between the nominal and average frequency domains is
introduced in §6a(ii).

(i) Time and frequency energy density equivalence

The first kind of equivalence between the frequency and time densities is provided by Plancherel’s
theorem below, whose proof is provided in appendix A (in the electronic supplementary material)
for completeness.
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Theorem 6.1. Using the notations of equation (2.2)

X =
∫∞

−∞
x(t)x(t)T dt = 1

2π

∫∞

−∞
x(ω)x(ω)H dω. (6.1)

Its application to time derivatives gives the expressions needed for the evaluation of the kinetic
energy, e.g. as follows.

Corollary 6.2. Using the notations of equation (2.2)

D =
∫∞

−∞
∂x(t)
∂t

∂x(t)
∂t

T
dt = −1

2π

∫∞

−∞
ω2x(ω)x(ω)H dω. (6.2)

(ii) Frequency and frequency average energy density equivalence

The second kind of equivalence concerns the frequency integrals of functions of the responses
and of their frequency average. In particular, the following theorem for the products of responses
is used for the evaluation of the total potential energy in §6b.

Theorem 6.3. The integrated quadratic term defined in equation (6.1) is equal to the integrated
frequency averaged quadratic term, i.e.

X = 1
2π

∫∞

−∞
x(ω)x(ω)H dω = 1

2π

∫∞

−∞
E[x(ω + �ω)x(ω + �ω)H] dω = X̂, (6.3)

where E[x(ω + �ω)x(ω + �ω)H] denotes the frequency average on the frequency shift �ω for any
probability density function, pa(�ω), and constant standard deviation, a,

E[x(ω + �ω)x(ω + �ω)H] =
∫
Dp

x(ω + �ω)x(ω + �ω)Hpa(�ω) d�ω. (6.4)

Proof. Substituting the expression of the frequency average, considering the constance of a, and
changing the variable ω′ = ω + �ω, one finds X̂ = ∫

Dp
[(1/2π)

∫∞
−∞ x(ω′)x(ω′)Hdω′]pa(�ω) d�ω

and one can then integrate successively with respect to ω′ and d�ω to find X. �

The integrals match similarly when the time derivatives of equation (6.2) are considered, i.e.

Theorem 6.4. The integrated term defined in equation (6.2) is equal to its integrated frequency
average, i.e.

D = −1
2π

∫∞

−∞
ω2x(ω)x(ω)H dω = −1

2π

∫∞

−∞
E[(ω + �ω)2x(ω + �ω)x(ω + �ω)H] dω = D̂ (6.5)

for constant averaging width a(ω) = a.

The proof is similar to that of theorem 6.3 and this property is used for the evaluation of the
total kinetic energy in §6c.

These and similar equivalence properties can be applied to evaluate the energy terms of a
system, just from the knowledge of its frequency average first and second moments targeted in
the proposed framework. It is now demonstrated how this can be done.

(b) Repartition and retrieval of potential energy
The particular case of a typical dynamic stiffness matrix A(ω) = (K + iωC − ω2M) is considered
for illustrative purpose. Examining a transient response of the system, since the potential energy
of the whole system at any time t is U(t) = (1/2)x(t)TKx(t), its integral over time is equal to U =∫∞

−∞ U(t) dt = (1/4π)
∫∞

−∞ x(ω)HKx(ω) dω.
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Full system energy. Using theorem 6.3, and denoting kkj the element of K in kth row and jth
column, one has that

U = 1
4π

∑
k=1,...,N

∑
j=1,...,N

[
kkj

(∫∞

−∞
xj(ω)xk(ω)∗ dω

)]
(6.6)

= 1
4π

∑
k=1,...,N

∑
j=1,...,N

[
kkj

(∫∞

−∞
E[xj(ω + �ω)xk(ω + �ω)∗] dω

)]
= Û. (6.7)

This expression can further be expanded in terms of the average and variance of the response by
using equation (2.14) which gives

U = Û = 1
4π

⎧⎨
⎩

∑
k=1,...,N

∑
j=1,...,N

[
kkje

T
j

(∫∞

−∞
var[x(ω)] dω

)
ek

]

+
∑

k=1,...,N

∑
j=1,...,N

[
kkj

(∫∞

−∞
x̂j(ω)x̂k(ω)H dω

)]⎫⎬
⎭ (6.8)

or, in compact matrix form,

U = Û = 1
4π

{
tr
[

K
(∫∞

−∞
var[x(ω)] dω

)]
+

∫∞

−∞
x̂(ω)HKx̂(ω) dω

}
, (6.9)

where tr [.] denotes the trace of a matrix, i.e. the sum of its diagonal coefficients.
Component energy. The integrated potential energy of a component of the system can similarly

be expressed in terms of frequency averages. For example, if the system is decomposed into two
components, distinguished by indices ‘A’ and ‘B’, such that

x(ω) = [VA VB]

[
xA(ω)

xB(ω)

]
and

[
xA(ω)

xB(ω)

]
= [WA WB]Tx(ω), (6.10)

then the energy of the component j = A or B is equal to

Uj = 1
4π

{
tr
[

Kjj

(∫∞

−∞
var[xj(ω)] dω

)]
+

∫∞

−∞
x̂j(ω)HKjjx̂j(ω) dω

}
, (6.11)

where var[xj(ω)] = WT
j var[x(ω)]W∗

j , x̂j(ω) = WT
j x̂(ω) and Kjj = VH

j KVj. Similarly, the integrated
potential energy of the coupling between the two components is equal to UAB + UBA where

Ujk = 1
4π

{
tr
[

Kjk

∫∞

−∞
cov[xk(ω), xj(ω)] dω

]
+

∫∞

−∞
x̂j(ω)HKjkx̂k(ω) dω

}
(6.12)

for Kjk = VH
j KVk and j, k = A or B.

For example, the integrated potential energy of a component made of a single degree of
freedom, say VA = ej where ej is the unit vector with zero components except for 1 at its jth
component, is

UA = kjj

4π

{∫∞

−∞
(var[xj(ω)] + |x̂j(ω)|2) dω

}
= kjj

4π

∫∞

−∞
E[|xj(ω + �ω)|2] dω. (6.13)

Real Gaussian case. In the real Gaussian case, the values of the integral function S(g)(ω, a, ωj) were
given in equations (3.11)–(3.13) and those of Q(g)(ω, a, ωj, ωk) can be found in equations (3.17)–
(3.25), with appropriate substitution of the right expression of the S(g) function, based on the sign
of the imaginary part of its last argument (i.e. the sign of �(ωj) and �(ω∗

k )). As discussed in §8,

the average vector or scalar functions, x̂(l)(ω) and x̂(l)
j (ω), can also be directly evaluated without

requiring any modal analysis and therefore, by bypassing any evaluation or use of S(g)(ω, a, ωj).
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(c) Repartition and retrieval of kinetic energy
The integrated kinetic energy can also be expressed in either time or frequency domains. The
expressions of the variance and products cannot be used directly owing to the presence of the ω2

term in the right-hand side of the last equation. The integrand must first be modified. Starting
from equation (3.5), one finds

ωx(ω) =
∑

j=1,...,N

φj(ψ j
Tf)

ω

(ωj − ω)
=

∑
j=1,...,N

{
φj(ψ j

Tf)

[
ωj

(ωj − ω)
− 1

]}
, (6.14)

which allows to evaluate the corresponding frequency average in terms of known integral
functions S(ω, a, ωj) and Q(ω, a, ωj, ωk). Indeed, for a general pdf pa(�ω)

E[(ω + �ω)2x(ω + �ω)x(ω + �ω)H]

=
∫
Dp

(ω + �ω)2x(ω + �ω)x(ω + �ω)Hpa(�ω) d�ω

=
∑

k=1,...,N

∑
j=1,...,N

{φjφ
H
k (ψ j

Tf)(ψk
Tf)∗

× [1 − ωjS(ω, a(ω), ωj) − ω∗
k S(ω, a(ω), ω∗

k ) + ωjω
∗
k Q(ω, a(ω), ωj, ωk)]}. (6.15)

This modal expression of the second moment can also be expressed in matrix form, by using

expression (3.10) of the averaging matrix Ĥ
(l)

and the general discussion of §3a. Basic algebra,

together with the substitutions x̂(l)(ω) = Ĥ
(l)

(ω)f(l), var[x(l)(ω)] = E[x(l)(ω + �ω)x(l)(ω + �ω)H] −
x̂(l)(ω)x̂(l)(ω)H, Px(A(l)

1 )−1f(l) = 0 and Px(A(l)
1 )−1A(l)

0 = [0 − iI]T, gives indeed

E[(ω + �ω)2x(ω + �ω)x(ω + �ω)H] = d̂(ω)d̂(ω)H + var[d(ω)], (6.16)

where d(ω) = iωx(ω), d̂(ω) is its frequency average, retrievable from the second part of the vector
x̂(l)(ω) and var[d(ω)] = [0 − I]var[x(l)(ω)][0 − I]T.

In the typical particular case of the previous section, i.e. A(ω) = (K + iωC − ω2M), the integrals
of the kinetic energy, T = ∫∞

t=−∞(1/2)(∂x(t)/∂tT)M(∂x(t)/∂t) dt, can thus also be expressed in terms
of computable averaged frequency densities thanks to these expressions.

Full system energy. Through theorem 6.3, one knows that the kinetic energy of the whole system
is

T = 1
4π

∑
k=1,...,N

∑
j=1,...,N

[
mkj

(∫∞

−∞
ω2xj(ω)xk(ω)∗ dω

)]
(6.17)

= 1
4π

∑
k=1,...,N

∑
j=1,...,N

[
mkj

(∫∞

−∞
E[(ω + �ω)2xj(ω + �ω)xk(ω + �ω)∗] dω

)]
= T̂. (6.18)

This can further be expanded in terms of the average and variance of the response, by using
equation (6.16), and it can finally be written in a compact matrix form similar to that of equation
(6.9), i.e.

T = T̂ = 1
4π

{
tr
[

M
∫∞

−∞
var[d(ω)] dω

]
+

∫∞

−∞
d̂(ω)HMd̂(ω) dω

}
. (6.19)

Component energy. The kinetic energy of two individual components distinguished by indices
‘A’ and ‘B’, generally such that

d(ω) = [VA VB]

[
dA(ω)

dB(ω)

]
and

[
dA(ω)

dB(ω)

]
= [WA WB]T d(ω) (6.20)

is then

Tj = 1
4π

{
tr
[

Mjj

∫∞

−∞
var[dj(ω)] dω

]
+

∫∞

−∞
d̂j(ω)HMjjd̂j(ω) dω

}
, (6.21)
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where var[dj(ω)] = [Wj]Tvar[d(ω)][Wj]∗, d̂j(ω) = [Wj]Td̂(ω) and Mjj = VH
j MVj, and j = A or B.

Similarly, the integrated kinetic energy of the coupling between the two components is equal
to TAB + TBA where

Tjk = 1
4π

{
tr
[

Mjk

∫∞

−∞
cov[dk(ω), dj(ω)] dω

]
+

∫∞

−∞
d̂j(ω)HMjkd̂k(ω) dω

}
(6.22)

for j, k = A or B.
The kinetic energy of a component made of a single degree of freedom, say the jth one such

that VA = ej, is thus the following sum of two terms:

TA = 1
4π

{
mjj

(∫∞

−∞
var[dj(ω)] dω +

∫∞

−∞
|d̂j(ω)|2 dω

)}
= mjj

4π

∫∞

−∞
E|dj(ω)|2 dω (6.23)

where all the averages of the scalar response dj(ω) may be evaluated as discussed.
Real Gaussian case. As for the potential energy discussed in §6b, in the case of a real Gaussian

average, the modal expressions only necessitate the functions S(g)(ω, a, ωj) and Q(g)(ω, a, ωj, ωk)
and, as discussed in §8, the matrix expression of the average can be evaluated without requiring
any modal analysis.

(d) Retrieval of input, dissipated and other energy terms
Other energy terms can be similarly evaluated exactly by integrating frequency averaged
quantities. For example, the energy dissipated by viscous damping necessitates the evaluation
of a term (1/2π )

∫∞
−∞ ωx(ω)x(ω)H dω = (1/2π )

∫∞
−∞ E[(ω + �ω)x(ω + �ω)x(ω + �ω)H] dω whose

second expression can be evaluated using equation (6.14).
The integral of the transient input power can also be evaluated in terms of the averaged

expressions. For example, in the case of an impulse force, its frequency density is constant so
that the total input energy is

E(in) =
∫∞

t=−∞
(fδ(t))Tx(t) dt = 1

2π

∫∞

ω=−∞
fTx(ω) dω (6.24)

and this term can again be expressed in terms of a frequency average

E(in) = Ê(in) = 1
2π

fT
∫∞

ω=−∞
E[x(ω + �ω)] dω = 1

2π
fT

∫∞

ω=−∞
x̂(ω) dω. (6.25)

(e) Averaged square and averaged product of responses
The averaged square and product of responses did not appear in the expressions of the energy
terms in the previous sections. They are however an important feature of the response at higher
(mid or high) frequencies and are therefore an integral part of the computational goals of the
proposed framework. Without these notions, a pure energy analysis indeed loses information on
the phase of the transfer functions that may possibly be critical for some applications. Although
these terms should not be overlooked, they may of course be omitted in situations where they
are negligible, or in asymptotic forms, in the same way as the variance may be omitted in the
asymptotic case of a low-frequency, deterministic, analysis.

7. Time domain analysis of the covariance and averaged products
of responses

In this section, an interpretation of the second frequency moments is provided in the time domain.
The discussion is similar to that of §5a where it was shown that, since frequency averaging with
constant width is the convolution of an averaging function by the exact transfer function, its
inverse transfer function is the product of the exact impulse response by the inverse Fourier
transform of pa(�ω). Similar properties exist here with regards to double or two-dimensional inverse
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Fourier transforms of the second-order averaging terms, that is of the covariance and averaged
products of responses. These properties are now detailed, with a particular focus on the real
Gaussian case.

Starting from the definition of the inverse Fourier transform of equation (2.2), one finds

csq[xA(ωA), xB(ωB)] =
∫
Dp

xA(ωA + u)xB(ωB + u)Tpa(u) du

=
∫∞

−∞
xA(tA)

∫∞

−∞
xB(tB)Tcsq[e−iωAtA , e−iωBtB ] dtB dtA, (7.1)

where the integral in csq[e−iωAtA , e−iωBtB ] = e−iωAtA e−iωBtB
∫
Dp

pa(u) e−iu(tA+tB) du needs to be
evaluated for particular functions, pa(.). Following the same derivation, for the case of the power
term, one finds

E[xA(ωA + �ω), xH
B (ωB + �ω)] =

∫
Dp

xA(ωA + u)xB(ωB + u)Hpa(u) du

=
∫∞

−∞
xA(tA)

∫∞

−∞
xB(tB)csq[e−iωAtA , e+iωBtB ] dtB dtA. (7.2)

Real Gaussian case. In the real Gaussian case, pa(.) = p(g)
a (.), one can again use equation (5.6),

which gives ∫
Dp

p(g)
a (u) e−iu(tA+tB) du = e−(tA+tB)2a2/2 (7.3)

and therefore

csq(g)[xA(ωA), xB(ωB)]

=
∫∞

−∞

(∫∞

−∞

{
xA(tA)xB(tB)Te−[(tA+tB)2a2/2]

}
e−iωBtB dtB

)
e−iωAtA dtA (7.4)

and

E[xA(ωA + �ω), xB(ωB + �ω)H] (7.5)

=
∫∞

−∞

(∫∞

−∞

{
xA(tA)xB(−tB)Te−[(tA+tB)2a2/2]

}
e−iωBtB dtB

)
e−iωAtA dtA, (7.6)

where, in the last expression, the argument of xB is negative. The variance derives directly from
this expression.

Each of the two expressions (7.4) and (7.6) is a two-dimensional Fourier transform in the
plane (tA, tB) of the product of an outer product of xA and xB by the weighting function,
r(tA, tB) = e−[(tA+tB)2a2/2]. While similar expressions would exist for other averaging distributions,
the weighting function in the real Gaussian case, is remarkably also a Gaussian. Furthermore,
since both impulse responses xA and xB are zero for negative value of their arguments, in the case
of a causal system, and since xB has a negative argument in the expression of the second average,
these inverse Fourier transforms of the average functions result in functions that are each non-
zero only in a single quadrant. In both cases, the outer product of the impulse responses is scaled
by the Gaussian ridge function, r(tA, tB), that becomes tighter and tighter for increasing values of a.
The maps of the non-zero components of these functions are illustrated in figure 7 for the transfer
function g1, which was introduced in §4.

Different behaviours are visible for different averaging widths. For the smallest, a = 0.01, the
averaged products and covariance are very close to the non-averaged outer products of impulse
responses. Simplifications however occurred since irrelevant details have been smoothed out
of the response. This corresponds to a low-frequency behaviour. At the largest, a = 1, the cross-
influences are negligible while the energy information is preserved. This is the high-frequency
behaviour. For the intermediate value, a = 0.1, additional information about the coupling between
responses at different times, i.e. phase in the frequency domain, is partially present. Observing
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Figure 7. Illustration of the two-dimensional inverse Fourier transform of the second frequency moments as described in (g).
Three averaging width, a= 1, 0.1 and 0.01 rad Hz, are considered as well as two kinds of second frequency moment terms:
plots (a), (b) and (c) are the maps of non-zero values of the inverse Fourier transforms of the frequency averaged products,
csq(g)[g1(ωA), g1(ωB)], whereas plots (d), (e) and (f ) are those of the power term E[g1(ωA + �ω), g1(ωB + �ω)H], both
for a real Gaussian average. They are respectively labelled ‘IF(E[g1gT1 ])’ and ‘IF(E[g1g

H
1 ])’. While the specific g1 transfer function

of §4 is used here for illustration, the same Gaussian ridge scaling functions, r(tA, tB) presented in (h), would affect the
product of the exact impulse responses of any general system similarly averaged.

both the covariance and averaged products provides a rational and quantitative tool with
which to assess the actual behaviour of the dynamic system. As such, the quality of the existing
methods to deal with the frequency methods can be analysed and compared by evaluating how
well they preserve the actual frequency average, covariance and averaged product characteristics
of the actual system. New methods can also be developed based on the actual important system
features identified by the averaging process.

8. Efficient evaluation
Besides the asymptotic approximations, which provide evaluation of the averages that are
accurate and economic in particular situations, the question of evaluating the averages efficiently
and precisely in a general context is a relevant concern. As mentioned in §3e, a solution has
been offered in [31] for the first moment averages, through the precise expansion of distribution
or weighting functions, pa(�Ω), into fast converging rational expressions. Consequently, the
exact averages are approximated in terms of fast converging rational functions of the poles of
the system. These rational functions may be expressed in matrix form and evaluated exactly
through stable Krylov projection methods, using only solutions of a system with added damping.
Combining the projection subspaces at only a few interpolation frequencies can then provide a
precise evaluation of the average function over a whole frequency range. This approach has been
shown to be extremely efficient and able to provide the Gaussian averaged response in a whole
frequency range, and with frequency varying averaging width, with only a few responses—as
little as two—of the full system. This has particularly proved valuable to obtain the response of
the system through a single reduced model of the system that gives different low- to high-frequency
focus through different frequency ranges. The same strategy of mixing rational expressions,
interpolation, and model reduction is applicable to other weighting functions that may or may
not be originally expressed in rational form. In terms of asymptotic approximations, different
approaches can be used, for example with rational expansions being used at zero, intermediate
or infinite frequency.
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The question of the efficient approximation or representation of the covariance and averaged
product is of essential importance for the fundamental understanding of the mid-frequency region.
The framework and analysis of this paper offers a new point of view, notably in that the pairs
of plots (a)–(d), (b)–(e), (c)–( f ) in figure 7 expose that the relevant patterns are the product of an
outer product of functions in the (tA, tB) plane and another outer product of a Gaussian with a
constant functions in the (tA + tB, tA − tB) plane. The consideration of the averaged product of
responses additionally to the covariance is important in assuring this representation, as well as
in preserving information on the phase, as previously mentioned. It is evident from the analysis
and plots that it can, in theory, be retrieved from the covariance or energy information evaluated
with a single averaging width over the whole frequency range.

The question of optimality of the approximations of the responses as in [19] can be reframed
and possibly extended in the proposed averaging framework.

9. Conclusion
A solution framework for dynamic systems has been proposed that targets directly the frequency
average of their responses and their higher, second frequency moments. This approach is
applicable exactly, independently of the system’s modal density or modal sensitivity so that
a smooth transition from one region of the frequency spectrum to the other can be achieved
by merely tuning an averaging width function, a(ω). This parameter can be interpreted as the
typical standard deviation or the characteristic bandwidth of a distribution or weighting function
pa(�ω). It describes the desired level of frequency precision or uncertainty of the solution at any
frequency. Asymptotically zero values of the parameter correspond to a deterministic or low-
frequency solution with zero variance, while larger values correspond to high-frequency solutions
that can be understood in a more energetic or statistical sense. The transitional mid-frequency
region is smoothly supported and no distinction or boundaries between the regions is necessary.
The frequency averaged power or energy of the system, which are statistics that are usually
considered at high-frequency, are found as function of the frequency average and of the averaged
square of the absolute value of the response. It has been explicitly stressed that this fact considered
in [38] for the case of a uniform distribution can be applied for a general weighting function.
The general explicit analytical expressions are provided and demonstrated here for the case of a
real Gaussian averaging function. Again, the flexibility in the choice of the frequency-dependent
parameter, a(ω), allows to extract deterministic, statistical or intermediate frequency averaged
power, with values of the parameter that are respectively small, large or intermediate. Contrary
to the case of many statistical energy analysis and high-frequency methods, the power or power
average is not the only result of the analysis in the proposed framework. The consideration of
both frequency average and variance, and of the tunable uncertainty parameter, a(ω), in a single
analysis gives a smooth transition from low- to mid- and high-frequency ranges and provides a
framework in which the usually distinct deterministic and statistical approaches can be seen just as
particular or asymptotic cases.

Many existing low-, mid- and high-frequency approaches can actually be placed and examined
in the proposed framework. For example, deterministic modes, models of low-frequency physical
components, such as springs and masses, SEA systems, analytical waves or hybrid models can
be integrated into a single model. The coupling between any of these components within the
framework must be characterized in such a way that the average, averaged square and variance of
the responses of the global system are accurately represented. This may be seen as a generalization
of the fact that the coupling of high-frequency or SEA components must be such that the transfer
of energy in a whole SEA system is accurately represented and that the coupling between low-
frequency or deterministic systems must be such that the deterministic transfer functions, i.e.
their frequency average for zero value of the a(.) parameter, of the coupled system are properly
predicted. Coupling conditions assuring matching of the averages and variance also offer a
point of view for the coupling conditions between the deterministic and SEA components of
hybrid models [46,47]: for the same averaging width, a(ω), a sub-system might behave in its
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low-frequency regime while another behaves in its high-frequency regime in which case, this
would be reflected in the average and variance of the response of the components. Low-, mid-
and hybrid mid-frequency coupling conditions are also particular cases of the more general
framework coupling conditions. They are perfectly valid within the framework but only under
certain conditions and for specific ranges of values of the parameter a(.). This is exactly in the same
manner as the validity of a simplified model of a spring or a mass starts breaking down when the
frequency increases and the wavelengths become closer to the dimensions of the actual physical
spring or mass. Other topics of the literature that have not yet been covered here but would
be worth studying in future works include the averaging in the location of force, measurement
and interface areas, the treatment of higher moment such as the variance of the general energy
terms, and the conjunction of frequency and statistical averages. On the other hand, material more
rarely covered in the literature, that has been studied and highlighted here includes the treatment
of the averaged product of responses and the covariance terms and the interpretations of the
averages in the time domain. An efficient approach based on the frequency averages to estimate
time responses has notably been proposed.

Besides the fact that many approximate or asymptotic methods can be integrated into a single
analysis, the framework also provides the advantage of offering a natural environment in which
they can be better understood and expanded. The precision of various methods to approximate
low-, mid- or high-frequency components can also be studied in reference to how they affect the
precision of the average and variance of transfer functions.
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