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Background
Gas and liquid chromatography coupled with mass spectrometry  (GC/LC-MS), 
among others, are the main technical approaches for metabolomics studies, as they 
are able to detect and quantify a large variety of metabolite molecules from cells, tis-
sues and biological fluids [1]. However, it is challenging to get accurate and repro-
ducible data processing results due to the complexity of mass spectra (MS) data. To 
extract information and knowledge from metabolomics data, several non-commercial 
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computational tools have been successively generated and widely used in biologi-
cal, agricultural and medical studies. For example, XCMS [2], MAIT [3], AMDIS [4], 
ADAP [5], and Metaboseek (https​://metab​oseek​.com) [6], mainly focus on raw data 
preprocessing to generate peak intensity tables that can be further processed by other 
tools. MetabolAnalyze [7], metbaolomics [8], MetaboLyzer [9], and SIMCA-P [10], 
are designed for downstream statistical analysis using preprocessed peak intensity 
table. MSEA [11], ESEA [12], and Subpathway-GM [13], are specifically designed for 
pathway analysis with potential metabolic markers as inputs. To meet the evolving 
needs of the metabolomics research community, some integrated tools (with multiple 
interconnected functions), such as MetaboAnalyst [14], PiMP [15], Workflow4Me-
tabolomics (W4M) [16], MZmine2 [17], MetaBox [18], XCMS online [19], MS-DIAL 
[20], and Galaxy-M [21], have been developed and have become increasingly popular 
in recent years. These tools are designed for comprehensive metabolomics data pro-
cessing, allowing users to perform a nearly complete analysis by a single tool rather 
than several separate ones. However, there is still a quest for a more powerful, more 
comprehensive, and more friendly platform for both basic and advanced users.

Our research led to the development of a new platform, the Integrated Platform for 
Metabolomics data mining (IP4M). It covers all the core steps of metabolomics data 
mining, including peak picking, peak de-convolution, isotopes filtering, peak identifica-
tion, data preprocessing (such as transformation, normalization, missing value imputa-
tion), basic statistical description, classification and biomarker detection (by unit- and 
multi-variant methods and machine learning methods), correlation analysis, cluster and 
sub-cluster analysis, regression analysis, receiver operating characteristic curve (ROC) 
analysis, pathway and enrichment analysis, and sample size and power analysis. Com-
pared with existing multifunctional non-commercial tools, IP4M made advances in 
3 aspects: (1) a reaction library (based on Kyoto Encyclopedia of Genes and Genomes 
(KEGG)) has been established and embedded. Based on this, some ratio variables will be 
generated and be included for differential and correlation analysis. These ratios, which 
partially reflect the bioactivity of metabolic enzymes and reactions, may provide more 
information than that of traditional metabolomics data. (2) A new method,  General-
ized coRrelation analysis for Metabolome and Microbiome (GRaMM) [22], which was 
designed and developed recently for the inter-correlation detection of metabolome and 
microbiome data, has been embedded. (3) The pathway analysis module with richer 
knowledgebase and extended algorithms is beneficial to data interpretation. Pre-set 
workflows for a quick and reproducible analysis that does not require complex param-
eter settings or computer programming are included. However, IPM4 also offers inde-
pendent modules and sufficient parameters for advanced users to obtain a customized 
and more refined analysis.

Four data sets, 2 generated from a GC–MS platform and 2 from a LC–MS platform, 
were used to evaluate the performances of IP4M. For each platform, 1 data set derived 
from a mixture of known standards and 1 derived from serum samples were employed. 
The standard mixture data sets were used to test the performances of peak picking and 
annotation and the real world data sets were used to test the performances of differ-
ential analysis, correlation analysis, and pathway analysis. Several widely used tools, 
including MetaboAnalyst, MetaboAnalystR, W4M, Galaxy-M, XCMS online, MZmine2, 
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MS-DIAL, metabox and Metaboseek, were involved in the comparisons. Currently, 
IP4M has been used successfully for more than 100 data sets from 20+ labs.

Methods
IP4M was jointly developed using the languages of Java, Perl, and R. The Graphical User 
Interface (GUI) was developed with Eclipse rich client platform (RCP) for the develop-
ment of rich client desktop applications. The source code and demo data sets are pro-
vided at https​://githu​b.com/IP4M. The software (Windows/Mac/Linux versions) and 
manuals can be downloaded via https​://ip4m.cn. When the sample size was over 1000 
and each raw data file was over 100 MB size, it would take a long time (over 6 h) for both 
LC–MS data and GC–MS data preprocessing. Minimum computer hardware configura-
tion with CPU over 3.0 GHz, 2 cores, and RAM over 8 GB is recommended.

IP4M contains 62 independent functions. As shown in Fig. 1, they are categorized into 
8 modules, including LC–MS data preprocessing, GC–MS data preprocessing, peak 
annotation, peak table operations, statistical analysis, pathway and enrichment analysis, 
workflows, and other tools.

Inputs and outputs

Raw data from both GC–MS and LC–MS instruments, in mzML, mzXML and/or 
netCDF formats, are supported. Other files (e.g., peak table, sample information, com-
pound list) in tab-delimited text format are supported, with variables in columns and 
samples in rows. The msConvert tool of free ProteoWizard is recommended for for-
mat conversion. All the results are exported as.txt (data and tables) or.pdf (figures) files. 
More details and examples of output results are shown in the user manual and the help 
pages of GUI.

Fig. 1  Interface and function modules of IP4M. a The tools window contains a directory tree for function 
navigation. b The main window to display parameters and results. c The tasks window to list tasks and their 
status. d The files window to list output files. The major functions and inputs/outputs (in blue/black) of IP4M 
are shown in (b)

https://github.com/IP4M
https://ip4m.cn
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LC–MS and GC–MS data preprocessing

Two peak picking methods are introduced in IP4M for raw data preprocessing, metaMS 
and eRah. metaMS [23], which is based on the latest version (V3.8.1) of the XCMS pack-
age and CAMERA package (V1.42.0), can be used to preprocess both LC- and GC-MS 
data sets. It makes a technical advance by providing a series of optimized parameter set-
tings for diverse experimental designs and instruments. The CAMERA package of met-
aMS is useful for isotope and pseudospectra identification as well as, artefacts removal. 
Comparatively, the eRah [24] can only preprocess GC–MS data sets and it usually pro-
vides more peaks at the cost of longer running time and higher CPU supports, com-
pared to metaMS (see comparisons in Table 2). The peak picking step, which is based 
on blind source separation (BSS) and multivariable chromatography deconvolution, is 
probably the most time consuming step of eRah. metaMS does not contain the deconvo-
lution step for peak picking.

Peak annotation

For peak annotation, both public libraries and in-house databases are supported by 
IP4M. Many public databases, including Human Metabolome Database (HMDB), Golm 
Metabolome Database (GMD), and National Institute of Standards and Technology 
(NIST), have been incorporated into IPM4, with ~ 15,000 compounds in total. The exact 
molecular mass (for LC–MS) and spectral similarity (for GC–MS) are matched with 
those in public and in-house libraries. Retention time (RT) serves as an optional crite-
rion if it is provided in an in-house library. The best hit with RT error (in second), M/Z 
error (in ppm or Dalton), and/or possible structures (fragments and adducts for LC–MS; 
mass spectrum list for GC–MS) will be reported. Several top candidates with supporting 
information will also be reported in the extended file for advanced users.

Peak table operations

This module contains many simple but useful functions for outlier detection, missing 
value imputation, data structure pretreatment and variable extension. Outliers (data 
points exceeding ± 3S.D. of the corresponding variable) are replaced by the maximum 
value of the remaining data. Missing values can be imputed or replaced by the minimum 
strategy, the KNN method, or the ‘qrilc’ algorithm [25, 26]. Three frequently used nor-
malization approaches (by total signal intensity of each sample, by intensity of internal 
standard, and by quality control samples [27]) have been implemented. IP4M also pro-
vides log-transformation and z-score transformation to linearize data structure. Other 
small functions such as matrix transpose, retrieving target rows, samples or variables 
combination and basic statistics calculations are also integrated, with the goal of facili-
tating data integration. Notably, a “variable expansion” function that allows one to gen-
erate a series of ratio variables is incorporated into this module. The ratio of a product to 
a substrate of a specific metabolic reaction is usually taken as a marker of the bioactiv-
ity of the metabolic reaction and/or the catalytic enzyme of this reaction. A local meta-
bolic reaction pair database was established by extracting corresponding information 
from KEGG and the ratios of products and substrates within the embedded reaction 



Page 5 of 16Liang et al. BMC Bioinformatics          (2020) 21:444 	

pair database will be generated. These ratio variables with enhanced information derived 
from the original metabolomics data set can be involved in subsequent analysis. All of 
the above functions contribute to a high quality peak table for downstream analysis.

Statistical analysis

Common univariate tests, parametric or nonparametric tests, for two groups or more 
than two groups, are introduced for potential biomarkers identification. Three multi-
ple testing correction methods, Bonferroni, Holm and the false-discovery rate  (FDR), 
are offered. FDR is the default one as it is more suitable for most metabolomics studies 
where more than one metabolite is expected to be screened out [1].

In addition to univariate analysis, which does not consider the effect of collinearity 
among variables, IP4M offers several multivariate analysis methods, including the con-
ventional linear ones (principal component analysis (PCA) and (orthogonal) partial-least 
squares discriminant analysis ((O)PLS-DA)), some popular machine learning methods 
(Random Forest (RF), support vector machines (SVM)) and some integrated methods 
(biosigner [28] and Boruta [29]) for "potential biomarkers" screening and re-screening. 
For PCA, PLS-DA and OPLS-DA, their scores, loadings, and permutation plots, the 
coordinate values of these plots, and the OPLS-DA VIP values of the variables will be 
exported. RF is a nonlinear algorithm and can handle small differences and large noise 
without or with little over-fitting. The ranked importance of variables for group sepa-
ration is calculated by an ensemble of classification trees and the majority vote of the 
ensemble. The SVM algorithm aims to find a nonlinear decision curve to separate sam-
ples using a maximum margin hyperplane. It constructs the final decision function by 
a small number of support vectors and kernel functions. Four kernel functions, linear, 
polynominal, radial and sigmoid kernel, are available in IP4M. The biosigner is supposed 
to screen significant variables based on the results of the 3 aforementioned methods 
(PLS-DA, RF, SVM) collaboratively. Boruta is supposed to re-screen potential biomark-
ers from significant variables provided by other methods. The variables with significant 
distinguishing ability than that of permutated ones will be confirmed as potential bio-
markers. The results of biosigner and Boruta are likely more robust as the results of mul-
tiple methods are jointly considered.

Every single method, as a separate function, can be conducted independently. In the 
“statistical analysis” workflow, all the methods are conducted one by one on the same 
inputs automatically. PCA and (O)PLS-DA, SVM, RF, Boruta, and biosigner are based 
on the R package “ropls” [30], “e1071” [31, 32], “randomForest” [33], “Boruta” [33–35], 
and “biosigner” [36] respectively.

Pathway and enrichment analysis

This module is based on the corresponding module of MetaboAnalyst 4.0 [14, 37], the 
pioneering and leading tool of pathway and enrichment analysis. It is used to identify 
the impact of metabolites and the pathways they are involved in and to evaluate their 
associations with disease/SNP/drug metabolism and many other functional and biologi-
cal contexts. Compared with MetaboAnalyst, IP4M has two improvements. First, we 
have greatly expanded the species and pathway libraries A total of 5871 pathways cover-
ing 67 species (list in Addional file 1: Table S11, there are 1600 pathways of 25 species 
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in the latest MetaboAnalyst), such as Chimpanzee, Nomascus leucogenys (northern 
white-cheeked gibbon), Macaca fascicularis (crab-eating macaque), Cricetulus griseus 
(Chinese hamster), Bubalus bubalis (water buffalo), and Ovis aries (sheep), are loaded 
as a knowledgebase for this module. All the information for these libraries was extracted 
from KEGG. Each species has its own pathway information, including information on 
reaction equations, substrates, products, key enzymes, and reversible and irreversible 
reactions and so on. Second, IP4M not only provides the existing "out-degree central-
ity" and "relative—betweenness centrality" algorithms (provided by MetaboAnalyst) for 
pathway topology analysis, but also offers 5 other algorithms, including "total-degree 
centrality", "out/in/total closeness centrality", and "eigenvector centrality". Specifically, 
the degree centrality [38] of the node is the number of nodes connected to it. When 
the connection (a metabolic reaction) has a direction, it will be considered in the node 
centricity calculation. The “in-degree” is a count of the number of connections directed 
to the node and the “out-degree” is the number of connections that the node directs 
to others. The “total-degree” is the sum of in- and out-degrees, regardless of direction. 
Betweenness Centrality [39] is the number of shortest paths through a node. Closeness 
centrality [40] is the reciprocal of the sum of the distances from a node to all the other 
ones connected to it. It measures how close a node is to other nodes. Unlike all the other 
algorithms, “Eigenvector Centrality” [41] takes a more systematic approach to measur-
ing a node’s impact on a network which considers the centrality of the node itself and 
all of its neighbors. For two nodes with the same number of connections, the one con-
nected to more important nodes will achieve a higher Eigenvector Centrality. To sum up, 
the focuses of different pathway topology algorithms are different. Joint usage of mul-
tiple algorithms is recommended for complicated cases to ensure a reliable result. The 
default algorithm in IP4M is the “Eigenvector Centrality”.

Workflows

Typical metabolomics data mining pipelines are packaged into four workflows for 
a quick and reproducible analysis: LC–MS and GC–MS peak picking and annotation 
(from raw data to peak table), statistical analysis (from peak table to statistical analy-
sis results), and pathway and enrichment analysis (from compound names to pathway 
and enrichment results). Numerous parameters have been hidden and default values are 
optimized for core parameters. The output results are also slightly simplified. This mod-
ule is specially designed for basic users and batch applications.

Other functions

Apart from basic computational metabolomics functions, IP4M also provides many 
popular functions that may be conductive to metabolomics studies, including inter/
intra-correlation analysis, clustering (hierarchical clustering and sub-clustering) analy-
sis, distance analysis, linear regression analysis, ROC analysis, power and sample size 
analysis, and some plotting tools. In addition to common correlation methods (Pearson, 
Spearman, Kendall, and partial Spearman), a newly published correlation algorithm, 
GRaMM [22], is provided. This algorithm is designed specifically for the inter-correlation 
detection between metabolome and microbiome data. It is able to identify both linear 
and nonlinear correlation pairs with the consideration of known confounders. The input 
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files (.txt) include a metabolite matrix (e.g., a peak table), a microbial abundance matrix 
(e.g., a 16 s rRNA taxa abundance data or a metagenome function data) and a confound-
ing variable matrix (optional). The outputs include the correlation type (linear or non-
linear), the correlation strength (the r value), and the correlation significance (the p and 
corrected p values) for each metabolite–microbe pair. The sub-cluster analysis groups 
the inputted peaks into several clusters and shows the variance of each cluster across 
samples/groups. Seven commonly used distance metric approaches (Euclidean, correla-
tion, Minkowski, Canberra, binary, Manhattan, maximum distance) and seven cluster-
ing methods (ward, single, complete, average, mcquitty, median, centroid clustering) are 
available. IP4M can also retrieve pairs from a correlation matrix (an output of correla-
tion analysis) according to a specific criterion and the resulting files can be imported 
directly into Cytoscape for network construction. The multiple “power and sample size 
analysis” functions are consistent with conventional power analysis which provides a ref-
erence for experimental design and experimental results evaluation, depending on the 
effect size, significance level, power of test, and type of test. The Venn diagram analysis 
(up to 6 groups) and many graphic tools such as heatmap, pairwise scatter, box, line, and 
bar chart are provided for result visualization.

Function comparisons with existing tools

The functions of IP4M and 7 widely used integrated platforms, such as MetaboAnalyst 
(v4.0), W4M (v3.3), Galaxy-M, XCMS online (v3.7.1), MZmine2 (v2.5.1), Metabox (v1.2) 
and MS-DIAL (v4.24), are compared in Table 1. For peak picking, no one tool can work 
with all types of data sets. For LC–MS preprocessing, all the tools, except for MZmine2 
and MS-DIAL, are based on the XCMS package (on different versions). For the 6 tools 
with the GC–MS preprocessing function, IP4M and W4M are based on the same R 
packages. MetaboAnalyst relies on a third-party platform which has an inputs/outputs 
style that is different from MetaboAnalyst and can only process a limited number (< 30) 
of samples. The workflow and methods of XCMS online for GCMS data set processing 
appear to be the same as that of LC–MS since the settable parameters are the same and 
no additional parameters for de-convolution exist. MZmine2 provides numerous param-
eters and professional visualizations as it is designed for advanced users who are famil-
iar with, or at least have general understanding of, the measurement theory and data 
characteristics of MS. MS-DIAL can handle multiple types of raw data, and data from 
multiple vendors (via the AbfConverter for format conversion). It can perform deconvo-
lution using the MS2Dec algorithm and provides various libraries for peak identification 
(including lipids). Furthermore MS1, XCMS online, MZmine2 and MS-DIAL are also 
compatible with MSMS data sets and Galaxy-M is the only tool capable of preprocessing 
direct infusion mass spectrometry (DIMS) data sets. For peak table pretreatment, IP4M 
is superior to the others with the most functions and all the other tools are comparable. 
For statistical analysis, pathway analysis, and other functions, IP4M and MetaboAna-
lyst are comparable and are more powerful than the others. IP4M is the only tool with 
the function “ratio variable generation”, “Boruta” and “GRaMM”. MetaboAnalyst has a 
stronger support to multi-omics integration analysis and supports time series analysis. 
Taken together, MS-DIAL, MZmine2, IP4M, and W4M are slightly better for MS data 
preprocessing, whereas MetaboAnalyst, IP4M, and W4M provide more comprehensive 
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Table 1  Function comparisons of IP4M and other 6 tools

Function 
tool

IP4M MetaboAnalyst W4M Galaxy-M XCMS 
online

MZmine2 MetaBox MS-DIAL

Raw data preprocessing

 LC–MS √ √ √ √ √ √ – √

 GC–MS √ √ √ – √ √ – √

 NMR – √ √ √ – – – –

 MS/MS – – – – √ √ – √

 DIMS – – – √ – – – –

Peak anno-
tation

√ √ √ √ √ √ – √

Peak table operations

 Normaliza-
tion

√ √ √ √ √ √ √ √

 Scaling √ √ √ √ √ √ √ √

 Zero filling √ √ √ √ √ √ √ √

 Transfor-
mation

√ √ √ √ – – √ √

 Ratio 
variable 
genera-
tion

√ – – – – – – –

 Basic sta-
tistical 
sum-
mary

√ – √ – – – – √

 Retrieve 
rows

√ – – – – – – –

 Samples 
and 
variables 
merging

√ – √ – – √ – –

Statistical analysis

 Univariate 
analysis

√ √ √ √ √ √ √ √

 Multi-
variate 
analysis

  PCA/(O)
PLS-
DA

√ √ √ √ √ √ √ √

  SVM √ √ – – – – – –

  RF √ √ – – – – – –

  Bio-
signer

√ – √ – – – – –

  Boruta √ – – – – – – –

Pathway 
and 
enrich-
ment 
analysis

√ √ – – √ √ √

Integrated 
workflows

√ – √ √ – √ – –

Other functions

 Correla-
tion/dis-
tance

√ √ √ – – – √ √

 Regression √ – – – – √ – –
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functions for subsequent analysis. IP4M is comparable to or better than existing tools, 
while it is limited in cross-omics integrated analysis.

IP4M is a local GUI-based tool considering the heavy burden and risk of big data 
uploading, saving, and privacy. To make it easier to use, we tried our best to pack in as 
many supporting packages as possible. For the Windows version, neither installation nor 
extra configuration is required for running. For the Mac and Linux versions, a one-step 
environment setting is required (see manuals).

Results and discussion
Four data sets, 2 obtained from a GC-MS platform and 2 from a LC-MS platform were 
used to illustrate the performance of IP4M. Among them, 2 were mixture standard data 
sets that were supposed to evaluate the performances of peak picking and peak annota-
tion. The other two were real world data sets (do you mean serum samples here) from 
an animal experiment which were used to demonstrate the performances of peak table 
statistical analysis and interpretation. The details of these data sets are available in the 
supplementary information (SI).

Comparisons based on standard mixture data sets

A published LC–MS standard mixture data set [42] with 152 standards and a GC–MS 
standard mixture data set (SI) from our lab with 33 standards were used to test the peak 

Table 1  (continued)

Function 
tool

IP4M MetaboAnalyst W4M Galaxy-M XCMS 
online

MZmine2 MetaBox MS-DIAL

 ROC 
analysis

√ √ – – – – – –

 Hierar-
chical 
cluster

√ √ √ – √ √ – √

 Plotting 
tools

√ √ √ – √ √ – –

 Power/
sample 
size

√ √ √ – – – √ –

 Network 
analysis

– √ – – – – – –

Omics data 
integra-
tion 
analysis

√ √ – – √ – √ –

Time series 
analysis

– √ – – – – – –

Developing 
language

R, Java, 
Perl

R, Java R R, Python, 
Matlab

R Java R R C#,

Local GUI/
web 
server

Local 
GUI; 
Win-
dows/
Linux/
OS

Web server; Local 
R package

Web 
server

Web server Web 
server

Local GUI; 
Win-
dows/
Linux/
OS

Local GUI; 
Win-
dows/
Unix/
Linux

Local GUI; 
Win-
dows

“√” means yes and “–” means no or N/A
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picking and annotation performances of several tools. All the standards were able to be 
found by at least one of the tools.

The LC–MS data set was processed separately by MetaboAnalystR (v2.0), W4M (v3.3), 
Galaxy-M, XCMS online (v3.7.1), MZmine2 (v2.5.1), MetaboSeek (0.9.5), MS-DIAL 
(v4.24) and IP4M (v2.0), using the same computer. Considering the difference in settable 
parameters of the tools, 4 key parameters were kept consistent: SNR = 3, mzdiff = 0.05, 
bw = 10, and corr_eic_th = 0. Other parameters were set as default values of the tools 
(see SI for detailed settings of each tool). Table  2 lists the total features detected and 
the number of true features provided by different tools. Features were matched with the 
same reference library (Addional file 1: Table  S1) based on the difference of m/z and 
retention time tolerance (ppm < 10 or m/z toleration < 0.005 Da and retention time tol-
erance < 0.3). As Table 2 shows, the numbers of matched true features for all the tools, 
except Metaboseek (n = 112), were comparable (n = 68–89). The performance of IP4M 
is moderate (n = 76). Although the core package for LC–MS dataset processing of all 
the tools (excepting for MZmine2) was XCMS, the results from different tools were dif-
ferent, probably due to their different default parameters. In IP4M, all the key param-
eters of XCMS were adjustable and advanced users can refine their results by tuning the 
parameters carefully. The default parameters suitable for most cases are also provided 
for basic users.

The GC–MS data set was separately processed by IP4M, MZmine2 and MS-DIAL 
with default parameters, and the results are shown as Table 2. The same in-house stand-
ard database (Addional file 1: Table S2, the database with 33 standard mass spectrum 
information) was used for mass spectral matching and metabolite annotation (similarity 
of mass spectrum > 0.7, retention time tolerance < 0.3). As Table 2 shows, eRah (IP4M) 
out-performed metaMS (W4M, IP4M), ADAP (MZmine2) and MS-DIAL, and all 
33 standard metabolites were identified within the shortest time. The results of W4M 
were not shown separately as the corresponding packages of W4M and IP4M are the 

Table 2  Number of  features picked and  matched with  standard mixture data sets using 
different tools

The computer used: Windows 10, CPU = 3.4 GHz, 4 cores, and RAM = 16 GB

Tool Number of total features Number of true features Time spent (h)

LC–MS

 IP4M (metaMS) 5150 76 0.5

 W4M 4102 68 0.5

 Galaxy-M 6021 74 0.5

 XCMSonline 6339 79 0.6

 MZmine2 3033 81 1.5

 MetaboanalystR 5386 84 2.0

 Metaboseek 3863 112 0.5

 MS-DIAL 6765 89 4.0

GC–MS

 IP4M/W4M (metaMS) 84 27 1.3

 IP4M (eRah) 188 33 1.0

 MS-DAIL 241 25 0.5

 MZmine2 (ADAP) 130 28 2.0
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same and so were the results. The results of XCMS online were not shown as well, as its 
embedded library (METLIN) is different to the others and only 9 metabolites were iden-
tified correctly.

An application using real world data sets

Two real world data sets from our previous animal study were used to validate the per-
formance of the peak table statistical analysis and interpretation [43]. The study was 
approved by the ethical committee of our hospital. The brain metabolic profiles of 12 
normal Wistar rats (2 groups, 6 one-week-old and 6 seven-week-old) were acquired 
using both UPLC/QTOF-MS (Waters, U.S.A.; positive and negative modes) and GC/
TOF–MS (Leco, U.S.A.) platforms. Please refer to the original paper for detailed infor-
mation of the animal experiment and data acquisition. The LC/MS and GC/MS data 
sets were imported into IP4M for peak processing. In total, 8967 (the total ion chro-
matogram is shown in Fig. 2a) and 189 peaks (the basic peak chromatogram is shown 
in Fig. 2b) were detected using both the metaMS runLC method and metaMS runGC 
methods, respectively. Among them, 721 and 118 were identified using HMDB and 
NSEN (a self-integrated library based on NIST, EPA, and NIH library) respectively. 
These identified metabolites were combined and extra 65 ratio variables were generated 
and added into subsequent statistical analysis. Student’s t test and several multivariate 
statistical analysis methods were conducted on all the variables. The total ion chroma-
tograms (TICs), basic peak chromatograms (BPCs), and extracted ion chromatograms 
(EICs) of some of the raw data sets are shown as Fig. 2a, b. The PCA and OPLS-DA score 
plots derived from all the variables are shown as Fig. 2c, d which are similar to that of 
other tools (SI). There are clear group separations in both plots. Overall, 422 variables 
were identified as differential ones between the two groups, with the unpaired student’s 
t test p < 0.05 and the OPLS-DA VIP > 1. To narrow down the potential biomarkers, we 
analyzed these differential variables further using RF and SVM. The top ten important 
variables from RF and SVM are listed as Fig. 2e, f respectively. These 20 important varia-
bles, including 3 ratio variables, were imported into Boruta for validation and all of them 
were confirmed as potential biomarkers (Fig. 2h). Compared with the 7-week-old rats, 
the younger group showed higher levels of fatty acids, phospholipids, ratio of hypoxan-
thine to inosine and ratio of 7-dehydrocholesterol to cholesterol, which play important 
roles in growth. Among these metabolites, DHA [44, 45], a highly unsaturated fatty acid, 
is essential for brain nutrition, as it can promote foetal brain cell development and neu-
roretinal development. 7-dehydrocholesterol [46–48] converted from cholesterol can 
then be converted into vitamin D3 under ultraviolet light, which has the biological activ-
ity of regulating calcium and phosphorus metabolism.

Furthermore, we analyzed the inter-correlations between the 20 potential biomarkers 
and 18 bacterial phyla (derived from the intestinal contents of the same samples) using 
the newly developed GRaMM. Age (the week age of rats) was taken as the confounding 
variable. The correlation coefficients and p values are shown in heatmaps (Fig. 2i). The 
correlation pairs identified by GRaMM are in line with some previous reports [22, 43]. 
For example, the metabolite DHA and microbial phylum Firmicutes showed a significant 
nonlinear relationship. This kind of nonlinear pair is rarely detected by common meth-
ods (e.g., Pearson, Spearman, linear regression). It is well known that many microbes 
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under Firmicutes are related to digestive tract diseases [49, 50]. For example, Ruminococ-
cus gnavus has the function of pro-oxidation and C3, 7, 12 hydroxyl isomeric [51]. It can 
produce iso-bile acids, and iso-bile acids can reduce DCA toxicity [52]. More studies, 

Fig. 2  Some results of IP4M using a real world data set. ‘G1’ indicates the group of 1-week-old mice and 
‘G2’ indicates the group of 7-week-old mice. a, b BPCs of LC–MS and TICs of GC–MS data sets derived from 
murine brain metabolic profiles. c–h Some results of multivariate differential analysis: PCA scores plot (c); 
OPLS-DA scores plot (d); the top 10 potential markers provided by RF (e) and SVM (f); the venn plot (g) of 
potential markers from RF, SVM and Boruta; and the validation boxplot (h) of Boruta based on the union set 
of the top 10 markers from RF and SVM. i, j Results of the correlation analysis: r value heatmaps GRaMM (i); 
scatter plot with nonlinear fitting curve of the correlated pair “DHA ~ Firmicutes” derived from GRaMM (j). 
k–n Some results of pathway analysis: the bubble plot of pathway analysis using “relative—betweenness 
centrality” algorithm (k) and “eigenvector centrality” algorithm (l). Each bubble corresponds to a metabolic 
pathway. The x-coordinate indicates the extent of pathway influence (Pathway Impact). The point size is 
related to Pathway Impact of the pathway. The ordinate represents the negative logarithm of the p value 
obtained from the enrichment analysis. Pathways with p < 0.05 are labeled. m, n The network diagrams of 
two significant pathways. Up and downregulated metabolites (G2 versus G1) are highlighted in red and blue 
respectively
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especially in vivo and in vitro experiments are needed to validate the relationship of this 
pair.

Finally, pathway and enrichment analysis were carried out on the union set of top 100 
most important variables ranked by SVM and RF. The results of two typical topologi-
cal analysis algorithms are shown in Fig. 2k (using “relative-betweeness centrality”) and 
Fig. 2l (using “eigenvector centrality”). They found the same eight differential pathways 
(p < 0.05). This means that these 8 pathways and the metabolites within them were sig-
nificantly altered between the young and adult rats. However, the impact values of these 
pathways (the x-axis), which were affected by the importance of differential metabolites 
in corresponding pathways, were different. This is because the importance of metabolite 
in the network calculated by betweenness centrality (Fig. 2k) is based on the number of 
shortest routes through this metabolite (node), while eigenvector centrality (Fig. 2l) is 
based on the importance of itself and all of its surrounding nodes. The KEGG pathway 
figures of alanine, aspartate and glutamate metabolism and beta–alanine metabolism are 
illustrated as Fig. 2m, n. Beta–alanine metabolism is mainly in the brain and muscles, 
and the final product of normal metabolism is acetic acid [53]. As a neurotransmitter or 
hormone regulator, it can regulate metabolism in the body [54] and improve the body’s 
ability to exercise [55], memory [56].

Conclusion
IP4M is an integrated platform for MS based untargeted metabolomics data mining. It 
is open source and easy to use. The strength of IP4M is that it has comprehensive func-
tions and useful tools, a rich knowledgebase, and options for customizable operations 
and integrated workflows. However, currently, IP4M is a stand-along local tool. We are 
planning to construct a server cluster-based online platform (iIP4M) to serve more users 
and run bigger samples size. In addition to MS1 data, MSMS data preprocessing and tar-
geted metabolite quantification will also be added to the data preprocessing module. The 
interactive operation and visualization for peak checking and modification of this mod-
ule will be further improved. Current functions for multi-omics data integrative analysis 
are limited. More functions are need to be incorporated along with the rapid develop-
ment of this field. In conclusion, IP4M, a comprehensive, user-friendly, and open source 
platform, may serve as an attractive alternative tool for metabolomics data mining.

Availability and requirements

Project name IP4M.
Project home page https​://IP4M.cn.
Operating system(s) Windows 2007 or 2010; Ubuntu 16.04 or 18.04; macOS Catalina 
10.15.
Hardware CPU > 3.0 GHz; Memory > 8 Gb.
Programming language Java, Perl, R, Eclipse RCP.
	 Programming language Java, Perl, R, Eclipse RCP.
Other requirements For Windows users: no installation is required. Please download 
the.zip file and click the only.exe file to launch IP4M directly. R, Perl, and python 

https://IP4M.cn
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environments are not required. Administrator privileges are required. For Linux and 
Mac users: a few steps for environment configuration are required.
License GNU GPL.V3.
Any restrictions to use by non-academics None.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03786​-x.

Additional file 1. The supplementary information includes 4 test data sets, the parameters of  comparison softwares, 
the new species libraries added into IP4M for enrichment analysis, and the typical multivariable analysis reselts of 
other softwares.
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