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A B S T R A C T

This study evaluates the performance of 13 global climate models (GCMs) from the Coupled Model Intercom-
parison Project Phase 6 (CMIP6) for simulating the temperature over Thailand during 2000–2014, for land-only,
sea-only, and both land and sea. Both observation and reanalysis datasets are employed to compare with the
GCMs, evaluated by five performance metrics including mean annual temperature, mean bias errors, mean sea-
sonal cycle amplitude, correlation coefficient, and root mean square error. GCMs are ranked by relative error of all
performance metrics. Results show that the temperatures from most GCM simulations are below the mean
reference data (i.e., average of ground-based and reanalysis datasets), with north to south gradient in the range
from 19 �C to 33 �C. In addition, all the GCM biases range from -0.07 �C to 2.78 �C and show severity of the
temperature changes in spatial pattern ranging from -5 �C to 15 �C. The correlations of most GCMs range from
0.70 to 0.95, while the magnitudes of error are less than 2 �C. Study cases point out that the 13-MODEL
ENSEMBLE, CESM2, and CNRM-CM6-1 perform better than the other models in simulating the temperature
over Thailand for land-only and sea-only, and both land and sea cases, respectively, while MIROC6 performs the
worst for all study cases in this study area. From the designed methodology, CNRM-CM6-1 has the best perfor-
mance and is the most appropriate choice to simulate the temperature for the overall Thailand area.
1. Introduction

Thailand is a tropical country in Southeast Asia, located near the
equator. The temperature and precipitation in Thailand are strongly
affected by the El Ni~no–Southern Oscillation (ENSO) and tropical mon-
soons. Hence, this area has a high variability in its climate; it often en-
counters floods and droughts that are difficult to predict for climate and
disaster preparedness (Haraguchi and Lall, 2015; Tan and Pereira, 2010).

Global circulation/climate models (GCMs) are mathematical models
representing the physics of the climate system, including atmosphere,
ocean, land surface, and cryosphere (Randall et al., 2007). GCMs are
beneficial tools widely utilized to study the global climate system for
both historical and future periods. Researchers from several institutions
around the world have continually developed GCMs from 1995 to the
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present, to create efficient and reliable models for simulating climate
systems (Edwards, 2011). Climate variables of GCMs are provided in grid
cell format coverage of the globe (Flato et al., 2019).

GCM outputs from the climate modeling groups around the world
have been collected by the World Climate Research Programme (WCRP)
Working Group on Coupled Modelling (WGCM) to generate climate
model experiments that are under the Coupled Model Intercomparison
Project (CMIP). CoupledModel Intercomparison Project Phase 6 (CMIP6)
is the most recent update. CMIP6 was planned and designed since 2013,
and it was officially published in the middle of the year 2017 (Stouffer
et al., 2017). Results from CMIP simulations are used to evaluate climate
for several international projects, such as the assessment report of the
Intergovernmental Panel on Climate Change (IPCC) for the years 2001,
2007, and 2013 (IPCC, 2014; Taylor et al., 2012); in addition, CMIP6
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simulation results are anticipated to appear in the IPCC Sixth Assessment
Report (AR6) (Grose et al., 2020).

Several studies have used the climate variables of GCMs for simu-
lating climate trends in the past, present, and future, over various regions
of the world. For instance, Yan et al. (2013) assessed 25 Coupled Model
Intercomparison Project Phase 5 (CMIP5) historical simulations of tem-
perature over China and found that the multi-model ensemble of CMIP5
could well simulate the spatial pattern. Kumar et al. (2013) analyzed
trends and long-term persistence of temperature and precipitation from
19 CMIP5 GCMs over continental areas (68�S–68�N) and found good
agreement between the simulation and observation results. Rupp et al.
(2013) evaluated the performance of 41 CMIP5 GCMs in simulating
temperature and precipitation with observation data over the United
States Pacific Northwest (PNW) using performance metrics. Based on the
design criteria and results, CNRM-CM5 performed the best among the
selected models. Miao et al. (2014) used criteria of the correlation, the
centered root mean square error, and the amplitude of the standard de-
viations to evaluate 24 CMIP5 GCM simulations and projections over
Northern Eurasia; the study discovered that most of the simulations
overestimated the annual mean temperature. Siew et al. (2014) evalu-
ated the performance of 10 CMIP5 GCMs over Southeast Asia and found
large bias magnitudes for all models in the simulation of winter monsoon
precipitation. Xu et al. (2017) evaluated the ability of 14 CMIP5 GCMs in
simulating air temperature, specific humidity, geopotential height, and
wind over Tibetan Plateau, using various criteria, including spatial cor-
relation coefficient, spatial mean error, and standard deviation. Their
ranking scores showed that CCSM4 and CNRM-CM5 performed better
than the other models. Xuan et al. (2017) evaluated maximum and
minimum air temperature, precipitation, wind speed, solar radiation, and
relative humidity from 1971 to 2000 over Zhejiang Province in China,
using 18 CMIP5 GCMs ranked by criteria of correlation coefficient, root
mean square error, and model estimation bias in percentage. Six vari-
ables of all GCMs presented different spatial patterns, while five variables
(except wind speed) of most simulations had similar patterns in seasonal
variations. Bannister et al. (2017) evaluated the changes in recent and
future temperature over Sichuan Basin in China, using 47 CMIP5 GCMs
and found that most GCMs could not fairly demonstrate temperature
trends, especially for seasonal cases. Agyekum et al. (2018) evaluated 18
CMIP5 GCMs in simulating various timescales of precipitation over the
Volta Basin with the conclusion that ensemble means of all chosen
models had better performance in the annual, seasonal, and monthly
timescales than the individual models. Huang et al. (2019) analyzed
vector winds for performance assessment of 37 CMIP5 GCMs and
multi-model ensembles in the Asian-Australian monsoon region, using
criteria of mean, annual cycle, and interannual variability and found that
the multi-model ensembles had the best performance.

As aforementioned, CMIP6 GCMs are the project's last release, with
just a few CMIP6 assessments in the current stage. Xin et al. (2020)
simulated summer precipitation from eight CMIP6 GCMs over China and
East Asia in summer during the period 1961–2005; moreover, they
compared the simulations of all the CMIP6 GCMs and eight previous
CMIP5 GCMs. The climatology of their study was assessed by interannual
variation and linear trends, and most of the CMIP6 GCMs could simulate
the interannual rainfall pattern over Eastern China better than previous
CMIP5 GCMs. In summary, their study reported that the multi-model
ensemble of CMIP6 had better performance than the multi-model
ensemble of CMIP5. Almazroui et al. (2020) analyzed projection
change in temperature and precipitation over Africa of 27 CMIP6 GCMs
for the period 2030–2059, as well as for the period 2070–2099. Then, the
two future periods were compared with historical climate (1981–2010).
Under the highest emission scenario in CMIP6, it was predicted that the
mean annual temperature at the end of the 2100 would rise by 5.6 �C
over the Sahara area and by 3.5 �C over Central East Africa.

For the previous studies within the boundary of Thailand, Watanabe
et al. (2014) studied monsoon precipitation using nine models of CMIP5
over Thailand, and the projection of all GCMs was compared with three
2

reference datasets (Climate Prediction Center Merged Analysis of Pre-
cipitation: CMAP, Global Precipitation Climatology Project: GPCP, and
Asian Precipitation – Highly Resolved Observational Data Integration
Towards Evaluation: APHRODITE). It was emphasized that September
would be the month with the largest difference (possibly between 60%
and 90%) in river discharge between the retrospective simulation
(1980–1999) and the future forecast (2080–2099). Supharatid (2015)
analyzed the performance of Coupled Model Intercomparison Project
Phase 3 (CMIP3) and CMIP5 GCMs for simulating precipitation over the
Chao Phraya River Basin, Thailand, and found that the mean precipita-
tion of GCMs in CMIP5 was closer to observation data than that of GCMs
in CMIP3.

Since GCMs participating in CMIPs projects are generated by different
climate institutes around the world (Taylor et al., 2012), there are
different physical parameterizations and development strategies in each
GCM (Hourdin et al., 2006). Moreover, the topography and climate
characterization of each region are different (White et al., 2009). The
internal determinations of GCMs are key to the different performances of
GCMs by region, as it is difficult to input the topography and climate
datasets that cover all of the globe. This is why researchers have evalu-
ated the capacity of the GCMs regionally or locally around the world
(Kumar et al., 2013; Lovino et al., 2018; Miao et al., 2014; Moise et al.,
2015; Raghavan et al., 2018; Rupp et al., 2013; Su et al., 2013). Among
climate parameters, the temperature variable is a common factor in many
disasters frequently occurring in Thailand such as drought causing forest
fires, which in turn affect human health, agriculture, and corals (Brown
et al., 1996; Phongsuwan et al., 2013; Rerngnirunsathit, 2012). In order
to take advantage of the updated version of CMIP, this study focuses on
evaluations over Thailand, generally having large climate fluctuations
(Tan and Pereira, 2010).

Regarding the period of study, climatologists have traditionally
defined the climate normal as a 20- to 30-year average period (WMO,
2017); this definition has prevailed since the early twentieth century
(Arguez and Vose, 2011; Trewin, 2007). However, given the current
global warming crisis, it is an inescapable fact that climate variability and
mechanisms have changed significantly (Le Treut et al., 2007). Anthro-
pogenic greenhouse gas emissions from the burning of fossil fuels have
led to an increase in global average surface temperatures and caused the
current climate change (Trenberth et al., 2000). Space studies according
to the Goddard Institute records from National Space Science Data Centre
(NASA) have shown that the warmest years have occurred since 2000
and annual temperatures continue to rise (NASA/GISS, 2020), marking
the beginning of the warmest decade in the records of National Oceanic
and Atmospheric Administration (NOAA) Global Temp: National Centers
for Environmental Information (Smith et al., 2008), NASA Goddard
Institute for Space Studies (Hansen et al., 2010), and Met Office Hadley
Centre and Climatic Research Unit (Morice et al., 2012). Therefore, it is
possible that rising temperatures cause new weather patterns that are
different from those of the last century (IPCC, 2021). In addition, the
accuracy of the reference data used to assess the model's simulation re-
sults is also critical (Gampe et al., 2019); therefore; not only have the
models been adjusted, but the reference data have been continuously
collected with more accuracy (Dee et al., 2011; Harris et al., 2020; Rie-
necker et al., 2011; Willmott and Matsuura, 2001). Hence, data collected
recently are likely to be more accurate than data collected over decades
or centuries due to the smaller number of measurement sites and tech-
nologies in the past (Sun et al., 2018).

Due to these reasons, the study of climate over period (such as 15
years) has been considered acceptable. Fiedler et al. (2020) demon-
strated this by comparing simulation results from CMIP6 GCMs with
observations for historical tropical precipitation between 1900 to 1999
and 2000 to 2014. They found that there were only small differences in
the spatial mean statistics between the two periods, about 0.01 mm/day
(Fiedler et al., 2020). The value of the spatial correlation coefficient of
CMIP6 and the observation over the tropics for both 1900 to 1999 and
2000 to 2014 was 0.84, while their root mean square error values were



Figure 2. Topography (elevation in meters (m)) of the study area.

S. Kamworapan et al. Heliyon 7 (2021) e08263
1.55 and 1.57, respectively. They also examined the spatial correlation
and root mean square error between CMIP6 for 1900 to 1999 and CMIP6
for 2000 to 2014 with a correlation of 0.998 and a root mean square error
of 0.19 mm/day, respectively (Fiedler et al., 2020). The efficiency for the
simulations of CMIP6 between the long period (20th century) and the
short period (early 21st century) is quite close. Therefore, these results
support the idea that climate research may no longer need a 20–30-year
study period.

Given the evidence of temperature rise scenarios, the recent 15-year
period presents a new challenge to the capability of GCMs from CMIP6 to
simulate current temperature; therefore, the most recent decade of the
historical CMIP6 experiment, the short-term period around the turn of
the century (2000–2014), was chosen. The capability of 13 CMIP6 GCMs
for simulations of temperature over this study area is illustrated to verify
the reliability of the evaluations and to support further climate studies in
Thailand.

2. Methodology

2.1. Research framework

The overall research framework of this study is shown in Figure 1.
CMIP6 GCM outputs and the reference datasets (i.e., ground-based
datasets and climate reanalysis datasets) evaluated in this research
were linearly interpolated to the same grid having 0.15� resolution. The
historical outputs of 13 CMIP6 GCMs were evaluated over Thailand for
the years 2000–2014 by five statistical metrics, separately for land, sea,
and both land and sea.

2.2. Study area

The study covers Thailand between 5�S–21�N latitudes and
96�E–107�E longitudes, in the tropical zone (Figure 2). The topography
of Thailand has high mountains, a central plain, and an upland plateau.
The study area is presented in two main parts that are land area and sea
area. The land area is located in the middle of Southeast Asia, while the
sea area is located between the Pacific and Indian oceans (Tantrakarnapa,
2018).

2.3. CMIP6 models

The performance of 13 GCMs in the Atmospheric Model Intercom-
parison Project Simulation (AMIPhist) of CMIP6 from several institutions
around the world, covering the year 2014, are evaluated in this study.
Data associated with this study have been deposited at https://esgf-n
ode.llnl.gov/search/cmip6/, by choosing the features as: Source ID ¼
GCMs’ names in Table 1, Variable ¼ tas, Frequency ¼ mon, Experiment
Figure 1. Research framework of this study (MA: Mean annual, MBE: Mean bias e
RMSE: Root mean square error).
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ID ¼ amip-hist. Ensemble variants of each model are used to uniquely
distinguish each member of an ensemble based on realizations (r),
initialization schemes (i), different physics (p), and forcing (f) indices
(Papalexiou et al., 2020). In this work, CMIP6 GCMs with multiple
members are created by the same model but with different initial con-
ditions. This study included all 13 available GCMs at the time of starting
this research (1 March 2020). The spatial resolution and ensemble
members of each GCM are presented in Table 1. Because the ensemble
members of each model have different sizes, the ensemble members from
each model are averaged before they are all averaged in a multi-model
ensemble.

The multi-model ensemble is a method created by multiple model
simulations. Considering the summary by several previous studies, this
method can reduce the biases and uncertainties of the simulations
associated with GCMs (Ahmed et al., 2018; He et al., 2019; Raju and
rror, SeasonAmp: Mean seasonal cycle amplitude, r: the correlation coefficient,

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/


Table 1. CMIP6 models used in this study.

GCM Name Institution Resolution lon
� lat

Variant label Number of Ensemble
Members

BCC-CSM2-
MR

Beijing Climate Center of China Meteorological Administration (BCC-CMA), China 1.12 � � 1.12 � r (1)i1p1f1 1

CAMS-CSM1-
0

Chinese Academy of Meteorological Sciences (CAMS), China 1.12 � � 1.12 � r (1,2,3)i1p1f1 3

CanESM5 Canadian Centre for Climate Modelling and Analysis (CCCMA), Canada 2.8 � � 2.8 � r (1,2,3,4,5,6,7,...8,9,10)
i1p2f1

10

CESM2 National Center of Atmospheric Research (NCAR), USA 1.25 � � 0.9 � r (1,2,3)i1p1f1 3

CNRM-CM6-
1

Centre National de Recherches Meteorologiques, France, Centre Europeen de Recherche et de
Formation Avancee en Calcul Scientifique (CNRM-CERFACS), France

1.4 � � 1.4 � r (1,2,3,4,5,6,7,...8,9,10)
i1p1f2

10

CNRM-CM6-
1-HR

Centre National de Recherches Meteorologiques, France, Centre Europeen de Recherche et de
Formation Avancee en Calcul Scientifique (CNRM-CERFACS), France

0.5 � � 0.5 � r1i1p1f2 1

CNRM-ESM2-
1

Centre National de Recherches Meteorologiques, France, Centre Europeen de Recherche et de
Formation Avancee en Calcul Scientifique (CNRM-CERFACS), France

1.4 � � 1.4 � r1i1p1f2 1

FGOALS-f3-L Chinese Academy of Sciences (CAS), China 1.25 � � 1 � r (1,2,3)i1p1f1 3

FIO-ESM-2-0 First Institute of Oceanography, Ministry of Natural Resources, Qingdao National Laboratory
for Marine Science and Technology (FIO-QLNM), China

1.25 � � 0.9 � r (1,2,3)i1p1f1 3

GFDL-CM4 NOAA Geophysical Fluid Dynamics Laboratory (NOAA GFDL), USA 1 � � 1.3 � r (1,2,3)i1p1f1 3

IPSL-CM6A-
LR

Institute Pierre Simon Laplace (IPSL), France 2.5 � � 1.3 � r (1,2,3)i1p1f1 3

MIROC6 Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research
Institute, National Institute for Environmental Studies (MIROC), Japan

1.4 � � 1.4 � r (1,2,3,4,5)i1p1f1 5

MRI-ESM2-0 Max Planck Institute for Meteorology (MPI-M), Germany 1.12 � � 1.12 � r (1,2,3,4,5)i1p1f1 5
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Kumar, 2020; Yan et al., 2015). In addition, several researchers have
demonstrated that the multi-model ensemble method can improve
climate simulation performance compared to single models (Chhin and
Yoden, 2018; Hughes et al., 2014; Kamworapan and Surussavadee, 2019;
Raju and Kumar, 2014, 2015).

In this study, simplemean techniques are used to calculate the average
of all ensemblemembers for eachGCM, aswell as the average of themulti-
model ensemble formultipleGCMs. Eq. (1) is used to calculate the average
of all members of a single model, where GCMx is the average of all
ensemblemembers of GCM x, n is the total number of ensemblemembers,
and emi is the simulation value of ensemble member i. Then, the multi-
model ensemble of 13 GCMs (13-MODEL ENSEMBLE) is calculated by
Eq. (2), where n is the total number of GCMs (Ahmed et al., 2019).

GCMx ¼1
n

Xn

i¼1

emi (1)

13�MODEL ENSEMBLE ¼ 1
n

Xn

i¼1

GCMx (2)

To examine the ability of model simulations, monthly near-surface air
temperature (Tas) of GCMs from 2000 to 2014 are extracted and
compared with four reference grid datasets using performance metrics.

2.4. Reference datasets

Reference datasets are employed to compare the GCM performances;
they are summarized in Table 2. The reference datasets in this study can
be divided into two categories, as described below.
Table 2. Reference datasets used in this study.

Data Resolution lon � lat Source Reference

UDEL v5.01 0.5 � � 0.5 � Ground-
based

Willmott and Matsuura
(2001)

CRU TS v4.02 0.5 � � 0.5 � Ground-
based

Harris et al. (2020)

MERRA2 0.625 � � 0.5 � Reanalysis Rienecker et al. (2011)

ERA-interim 0.75 � � 0.75 � Reanalysis Dee et al. (2011)
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2.4.1. The ground-based products
The ground-based products are meteorological instruments providing

reliable accuracy because they can directly detect conditions at the
weather station and have a high temporal frequency of measurements
(Gilewski and Nawalany, 2018). Ground-based datasets used in this
study include two monthly datasets for temperature over global land
areas, for instance, (1) University of Delaware (UDEL) Air Temperature
v5.01, with data available from 1900–2017 (Willmott and Matsuura,
2001) and (2) University of East Anglia Climatic Research Unit Time
Series (CRU TS) v4.02, with data available from 1901 to 2017 (Harris
et al., 2020).

2.4.2. The reanalysis products
The climate reanalysis product is a dataset that has integrated ob-

servations and satellite data to create climate variables with a high res-
olution over a long-term data record, to simulate the best representative
climate estimates for all places on the globe. Furthermore, climate
reanalysis products can estimate historical climates over several decades
or more (Decker et al., 2012; Wargan et al., 2017). Two reanalysis
datasets used in this study are (1) the Modern-Era Retrospective Analysis
for Research Applications (MERRA), Version 2, with data available from
1979 to present (Bosilovich et al., 2015; Rienecker et al., 2011) and (2)
the European Centre for Medium-Range Weather Forecasts (ECMWF)
Interim reanalysis (ERA-Interim), with data available from 1979 to pre-
sent (Dee et al., 2011).
2.5. Performance metrics

Statistical metrics are normally used for assessing differences be-
tween model simulations and reference datasets, and each metric can
show the overall (relative) performances differently for the model sim-
ulations (Gleckler and Taylor, 2008). Additionally, statistical metrics are
often found in the comparison of the climate simulation results between
GCMs and reference datasets (Kamworapan and Surussavadee, 2019; Li
et al., 2019; McMahon et al., 2015; Miao et al., 2014; Raghavan et al.,
2018; Rupp et al., 2013; Xu et al., 2017). The 13 GCMs, evaluated by five
performance metrics for analysis of Tas variable, are divided into three
study cases: land-only, sea-only, and both land and sea using different
dataset (land case: CRU, UDEL, MERRA and ERA-Interim; sea case:
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MERRA and ERA-Interim; land and sea case: CRU, UDEL, MERRA, and
ERA-Interim). This is because the thermodynamic characteristics
(endothermic vs. exothermic) for land area and sea area are different. For
example, Tas of the land area is higher than of the sea area during the day
but reduces rapidly during the night; hence, the Tas above the land area
changes faster than that of the sea area (Trenberth et al., 2007). Ocean
currents also affect Tas and precipitation (Reid et al., 2009), which show
apparent differences seasonally in Tas (Crespo et al., 2019). The climate
variables from land-atmosphere and ocean-atmosphere interactions, and
the consideration of the cases separately are of interest in this study. Each
study case uses different reference datasets because the climate data from
CRU and UDEL are available over land only; hence, these ground-based
datasets are not analyzed in the sea-only case. Results of each perfor-
mance metric are averaged over the study area (i.e., 7738 grid cells). The
statistical equations used in this study are shown in Table 3 with the
details as follows:

(1) Mean annual (MA) refers to the sum of each mean annual Tas,
divided by total number of years. It is used to assess the difference
of spatial Tas by comparing between model outputs and mean
reference data. For the best GCM, the MA Tas over the domain
should be closest to the mean reference data.

(2) Mean bias error (MBE) is a measure of the bias, indicating positive
or negative differences of the GCM data from the reference data.
In other words, MBE indicates whether the GCM simulation
overestimates (warm bias) or underestimates (cold bias) the mean
reference data; therefore, MBE ¼ 0 means no bias (Lovino et al.,
2018).

(3) Mean seasonal cycle amplitude (SeasonAmp) is a metric indi-
cating the difference between warmest and coldest month. It can
be used to display the severity of Tas changes in each area of the
study domain.

(4) Correlation coefficient (r) is employed to assess the relationship
degree or to assess the similarity between the spatial patterns in
GCM data and in reference data. For evaluation of model perfor-
mance, the highest r values between simulated and observed re-
sults of Tas in the former studies are 0.93 for tropical (20�S–20�N)
(Gleckler and Taylor, 2008), 0.85 for Tibetan Plateau (Su et al.,
2013), 0.95 for China (Yan et al., 2013), 0.56 for Northern Eurasia
(Miao et al., 2014), 0.96 for Northeastern Argentina (Lovino et al.,
2018), 0.97 for Lower Mekong Basin (Ruan et al., 2019), and 0.99
Table 3. Statistical equations of the performance metrics.

Performance
metric

Equation Reference

MA PN
y¼1Ty

N

Ruan et al.
(2019)

MBE MAm � MAr Su et al.
(2013)

SeasonAmp Mmax � Mmin Rupp et al.
(2013)

r
P

i
P

j

�
MAmij �MAm

��
MArij �MAr

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P

i
P

j

�
MAmij �MAm

�
2
��P

i
P

j

�
MArij � MAr

�
2
�r MathWorks

(2001)

RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

p¼1ðMAmij �MArij Þ2
n

s
Hebeler
(2020)

Notes. Ty is annual Tas for year y. N is total number of the years. MAm is mean
annual Tas of model for years 2000–2014. MAr is mean annual Tas of reference
data for years 2000–2014. Mmax is mean warmest month of model for years
2000–2014. Mmin is mean coldest month of model for years 2000–2014. MAmij is
mean annual Tas of model at row i and column j. MArij is mean annual Tas of

reference data at row i and column j. MAm is the average of mean annual Tas of
model. MAr is the average of mean annual Tas of reference data. n is total number
of the pixels.
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for the global land surface (Fan et al., 2020). The highest r values
from these studies range from 0.56 to 0.99, and most of them are
higher than 0.9. Therefore, r value defined as good correlation in
this work is equal to or more than 0.9. The statistical significance
of the correlation coefficients is set at the p-value < 0.05.

(5) Root mean square error (RMSE) is a statistical metric of the
magnitude of the error between the GCM and the reference data.
RMSE summarizes errors between the GCM data and reference
data (magnitude). The lower RMSE value, the less the error is
found from simulation (Lovino et al., 2018).

2.6. Model ranking

All the GCMs are ranked by performance metrics that identify the
strengths and weaknesses of each model. Because of the different objects
and results of each metric, the relative error is used in overall ranking of
the models in this study. Model rankings that consider several metrics of
the climate variables are used widely (Gleckler and Taylor, 2008; Kam-
worapan and Surussavadee, 2019; Radi�c and Clarke, 2011; Rupp et al.,
2013; Waugh and Eyring, 2008; Xu et al., 2017).

The first step in finding the error for each GCM x and each perfor-
mance metric y ðex;yÞ is defined in Eq. (3), where wr;y and wx;y are the
reference metric and the GCM result for y, respectively. Next, the relative
error of for each GCM x and each performance metric y ðerx;yÞ is calculated
by Eq. (4). Lastly, Eq. (5) is used to calculate the sum of the relative error
of GCM x ðex;totalÞ by all performance metrics, when N is the total number
of performance metrics.

ex;y ¼
��wr;y �wx;y

�� (3)

erx;y ¼
ex;y �min

�
ex;y

�
max

�
ex;y

��min
�
ex;y

� (4)

ex;total ¼
XN

y¼1
erx;y (5)

All performance metrics are assigned equal weights, as applied to
evaluate the GCMs in previous studies (Gleckler and Taylor, 2008;
Kamworapan and Surussavadee, 2019; Rupp et al., 2013), as well as in
the model ranking by overall performance metrics (Gleckler and Taylor,
2008; Kamworapan and Surussavadee, 2019; Rupp et al., 2013).
Robustness or confidence for ranking of performance metrics in this
study is grouped “highest” and “higher” as recommended by Rupp et al.
(2013).

3. Results and discussion

3.1. Annual Tas

3.1.1. Mean annual (MA)
Figure 3 shows spatial annual Tas for mean reference data, 13-

MODEL ENSEMBLE, and the individual 13 GCMs for land and sea case,
as this case can represent the overall spatial pattern for both the land-
only cases and sea-only cases. Spatially, all GCMs had the Tas gradient
in the same direction with low Tas in the north of Thailand (especially
over high mountains) and high Tas in Southern Thailand. The mean Tas
of the 13 CMIP6 GCMs ranged from 26.22 �C to 29.06 �C. The simulation
result evaluated by MA showed that GFDL-CM4 was very similar to the
mean reference data; the difference was only 0.07 �C, whereas the mean
Tas of MIROC6 performed the worst in terms of both magnitude and
spatial pattern, being very different from the mean reference data. The
Tas simulation of MIROC6 was 2.77 �C higher than the mean reference
data.

MA was used to assess CMIP5 GCMs over Lower Mekong Basin (Ruan
et al., 2019) and Eastern Tibetan Plateau (Su et al., 2013) during two
periods (i.e., 1961–2004 and 1961–2005). GFDL-CM3 was ranked the



Figure 3. Mean annual Tas (MA) (�C) of mean observations, 13-MODEL ENSEMBLE, and 13 GCMs during 2000–2014, with corresponding mean values at the bottom-
right of each sub-plot.

Table 4. The best CMIP6 GCM in this study and CMIP5/CMIP3 GCMs ranking results from the same institution in former studies.

Metrics Model with the best performance Former studies

CMIP6 & Institution reference variable year area CMIP & rank

MA GFDL-CM4 (NOAA GFDL) Ruan et al. (2019) annual Tas 1961–2004 Lower Mekong Basin GFDL-CM3* (23/34)

Su et al. (2013) annual Tas 1961–2005 eastern Tibetan Plateau GFDL-CM3* (20/24)

MBE GFDL-CM4 (NOAA GFDL) Rupp et al. (2013) annual Tas 1960–1999 Pacific Northwest USA GFDL-CM3* (20/41)

Miao et al. (2014) annual Tas 1901–2005 Northern Eurasia GFDL-CM3* (3/24)

Xuan et al. (2017) annual maximum Tas 1971–2000 Zhejiang Province in China GFDL-CM3* (18/18)

annual minimum Tas 1971–2000 Zhejiang Province in China GFDL-CM3* (17/18)

Miao et al. (2014) monthly Tas 1901–2005 Northeastern Argentina GFDL-CM3* (15/25)

Su et al. (2013) annual Tas 1901–2005 Eastern Tibetan Plateau GFDL-CM3* (20/24)

SeasonAmp CNRM-CM6-1-HR (CNRM-CERFACS) Rupp et al. (2013) annual Tas 1960–1999 Pacific Northwest USA CNRM-CM5* (11/41)
CNRM-CM5-2* (13/41)

r CNRM-CM6-1
CNRM-CM6-1-HR
CNRM-ESM2-1 (CNRM-CERFACS

Ruan et al. (2019) annual Tas 1961–2004 Lower Mekong Basin CNRM-CM5* (23/34)

Zhou and Yu (2006) annual Tas 1880–1999 Global
Northern Hemispheric
China

CNRM-CM3** (9/19)
CNRM-CM3** (9/19)
CNRM-CM3** (3/19)

Xu et al. (2017) annual Tas 1979–2005 Tibetan Plateau CNRM-CM5* (1/14)

RMSE CNRM-ESM21 (CNRM-CERFACS) Miao et al. (2014) monthly Tas 1901–2005 Northeastern Argentina CNRM-CM5-2* (10/25)

Ruan et al. (2019) annual Tas 1961–2004 Lower Mekong Basin CNRM-CM5* (6/34)

Xuan et al. (2017) annual maximum Tas 1971–2000 Zhejiang Province in China CNRM-CM5* (11/18)

annual minimum Tas 1971–2000 Zhejiang Province in China CNRM-CM5*(5/18)

Grose et al. (2014) annual Tas 1980–1999 Pacific Ocean region CNRM-CM5-1* (8/27)

* is a model in CMIP5, while ** is a model in CMIP3.
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worst performing model group, ranking 23 out of 34 models and 20 out
of 24 models in Ruan et al. (2019) and in Su et al. (2013), respectively
(Table 4). Thus, the ranking results of both those studies demonstrated
that GFDL-CM3 was not adequate for simulating the mean annual Tas
over tropical and subtropical zones. As for the performance comparisons
of Tas simulation between GFDL-CM3 in CMIP5 of Ruan et al. (2019) and
Su et al. (2013), and GFDL-CM4 in CMIP6 of this study, the findings were
very different, although the study area of Ruan et al. (2019) overlapped
with this current study. GFDL-CM4, the GCM from NOAA GFDL institu-
tion, in this study showed the best performance in MA, especially for the
simulation over the tropical zone. The ability of GFDL-CM4 had signifi-
cant improvement, which may be attributed to a new version of the
physical climate model along with spatial resolution more than double of
GFDL-CM3 (resolution 2.5 � � 2 �) (Held et al., 2019). These updates
could be the key factors of the performance results because GFDL-CM4
had higher efficiency than the previous version.

When considering the ranking of the GCM from MIROC institution
(the worst performing in MA), the model ranking results of Ruan et al.
(2019) and Su et al. (2013) were different from this current study,
because MIROC5 in Ruan et al. (2019) and Su et al. (2013) was ranked
7th out of 34 models and 8th out of 24 models, respectively (Table 5).
Thus, MIROC5 in CMIP5 was a well-performing model group for Tas
simulation. On the other hand, MIROC6 performance (the latest version
from the MIROC institution) under the CMIP6 project showed the worst
performance in this current study, although MIROC6 already determined
new physical parameterizations in sub-modules (Tatebe et al., 2019). In
addition, the horizontal resolution of MIROC6 was not higher than the
previous version in CMIP5. Tatebe et al. (2019) reported that increasing
the horizontal resolution of the model also means an increased compu-
tational cost; however, many GCMs in CMIP6 were developed in this part
while MIROC6was not (Boucher et al., 2020; Grise and Davis, 2020; Held
et al., 2019; S�ef�erian et al., 2019).

3.1.2. Mean bias error (MBE)
Figure 4 shows the spatial distribution of bias in MA Tas over the

study area relative to mean reference data, 13-MODEL ENSEMBLE, and
the individual 13 GCMs. Numbers in each sub-image are biases of spatial
Table 5. The worst CMIP6 GCM in this study and CMIP5/CMIP3 GCMs ranking resu

Metrics Model with the worst performance Former studies

CMIP6 & Institution reference variable

MA MIROC6 (MIROC) Ruan et al. (2019) annual Ta

Su et al. (2013) annual Ta

MBE MIROC6 (MIROC) Rupp et al. (2013) annual Ta

Miao et al. (2014) annual Ta

Xuan et al. (2017) annual ma

annual mi

Miao et al. (2014) monthly T

Su et al. (2013) annual Ta

SeasonAmp FGOALS-f3-L (CAS) Rupp et al. (2013) annual Ta

r MIROC6 (MIROC) Zhou and Yu (2006) Annual Ta

Ruan et al. (2019) annual Ta

Xu et al. (2017) annual Ta

Su et al. (2013) annual Ta

RMSE MIROC6 (MIROC) Xuan et al. (2017) annual ma

annual mi

Miao et al. (2014) monthly T

Ruan et al. (2019) annual Ta

Su et al. (2013) annual Ta

Grose et al. (2014) annual Ta

* is a model in CMIP5, while ** is a model in CMIP3.
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annual Tas for each simulation. The MBE of 13 CMIP6 GCMs ranged from
-0.07 �C to 2.78 �C andmost of CMIP6 GCMs showed overestimates of the
mean reference values, except for GFDL-CM4 that underestimated Tas
with the mean bias of -0.07 �C (or mean bias of -3.10 %); moreover,
GFDL-CM4 had the lowest bias in this study among the GCMs tested.
Most models showed MBE in the range of �1 �C. MIROC6 was the only
GCM showing MBE above 2 �C, the highest MBE in this study. MIROC6
showed a positive direction (warm bias), and over the study area, its
mean bias was 31.50%. Reviewing the bias of each season, it was found
that summer and rainy seasons had a significant effect on simulating
temperature in Thailand. All GCMs exhibited a positive bias in simulated
summer and rainy temperatures, with summer bias ranging from 0.76 �C
to 4.47 �C and rainy season bias ranging from 1.53 �C to 4.07 �C. In
contrast, all GCMs had the lowest bias values in the winter season ranging
from -0.46 �C to 3.05 �C. However, the seasonal performance of 13-
MODEL ENSEMBLE was able to reduce the relatively large bias that
appeared in summer and rainy of all GCMs to about -0.17 �C and 0.04 �C,
respectively. For temperature in the study area, it is possible that the bias
of each season is caused by the amount of precipitation in the summer
and rainy months.

CMIP6 models have improved their climate simulations compared to
previous generations; however, they still have persistent biases and un-
certainties, especially a warm bias over tropical regions (Kim et al.,
2020). In addition, Arias et al. (2021) discovered that CMIP6 GCMs have
limitations in simulating air surface temperatures in areas with complex
topography. Looking at the temperature bias in this study, almost all
CMIP6 GCMs show a similar spatial pattern of their biases, with surface
temperature generally being underestimated in low-altitude areas, while
overestimations are observed in high-altitude areas. Hence, the over-
estimation bias is also likely due to model deficiencies associated with
topographic parameters.

Although GCMs are designed to simulate atmospheric and ocean
processes, the structure of GCMs clearly separates the elements of the
climate system: atmosphere, oceans, cryosphere, biosphere, and geo-
sphere (Le Treut et al., 2007). The internal climate sub-models of the
GCMs, which focus on simulating each component of the climate system,
are also different (Gent, 2012). In addition, Zhao and Li (2015) reported
lts from the same institution in former studies.

Year area CMIP & rank

s 1961–2004 Lower Mekong Basin MIROC5* (7/34)

s 1961–2005 Eastern Tibetan Plateau MIROC5* (8/24)

s 1960–1999 Pacific Northwest USA MIROC5* (22/41)

s 1901–2005 Northern Eurasia MIROC5* (15/24)

ximum Tas 1971–2000 Zhejiang Province in China MIROC5* (1/18)

nimum Tas 1971–2000 Zhejiang Province in China MIROC5* (10/18)

as 1901–2005 Northeastern Argentina MIROC5* (15/25)

s 1961–2005 Eastern Tibetan Plateau MIROC5* (8/24)

s 1960–1999 Pacific Northwest USA FGOALS-s2* (41/41)

s 1960–1999 Global
Northern Hemispheric
China

MIROC3.2** (10/19)
MIROC3.2** (6/19)
MIROC3.2** (6/19)

s 1961–2004 Lower Mekong Basin MIROC5* (5/34)

s 1979–2005 Tibetan Plateau MIROC4h* (6/14)

s 1961–2005 Eastern Tibetan Plateau MIROC5* (14/24)

ximum Tas 1971–2000 Zhejiang Province in China MIROC5* (2/18)

nimum Tas 1971–2000 Zhejiang Province in China MIROC5* (9/18)

as 1901–2005 Northeastern Argentina MIROC5* (8/25)

s 1961–2004 Lower Mekong Basin MIROC5** (30/34)

s 1961–2005 Eastern Tibetan Plateau MIROC5** (9/24)

s 1980–1999 Pacific Ocean region MIRCO5** (13/27)



Figure 4. Spatial distributions of bias in mean annual Tas (MBE) (�C) of mean observations, 13-MODEL ENSEMBLE, and 13 GCMs during 2000–2014, with corre-
sponding MBE values at the bottom-right of each sub-plot.
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that the land-atmosphere interactions are usually difficult to simulate
due to the influence of complex topography and altitude differences.
Therefore, the bias patterns of temperature in Figure 4 are much higher
or lower over land than over ocean areas, which is due to the perfor-
mance of sub-models to simulate land-atmosphere and
ocean-atmosphere interactions and the terrain characteristics of the
focused areas.

MBE was the statistical metric used to assess the Tas simulation of
GCMs over several regions in previous studies, for example, Pacific
Northwest USA (Rupp et al., 2013), Northern Eurasia (Miao et al., 2014),
Zhejiang Province in China (Xuan et al., 2017), Northeastern Argentina
(Lovino et al., 2018), and Eastern Tibetan Plateau (Su et al., 2013)
(Table 4). In GCMs ranked by MBE, Miao et al. (2014) found that
GFDL-CM3 in CMIP5 had a good performance; it was ranked 3rd out of
24 models, while Kumar et al. (2013) and Lovino et al. (2018) found that
it had moderate performance. In addition, Xuan et al. (2017) and Su et al.
(2013) reported that GFDL-CM3 was a poor-performing model for Tas
simulation, and it was also ranked as the group of worst performing
models. These previous studies revealed interesting points, namely that
GFDL-CM3 could well simulate the Tas over the temperate zone as well as
the polar zone. On the other hand, the performance of GFDL-CM3 was
extremely poor in simulating over the tropical and subtropical zones.
8

NOAA GFDL institution, the generator of GFDL-CM group, had
put a focus on developing GFDL-CM4 for better simulation of Tas
over the tropical zone (Held et al., 2019). As a result, GFDL-CM4
participating in the CMIP6 project had a better performance in
simulating Tas over Thailand. The previous models by the MIROC
institution (the worst performing in MBE) had different perfor-
mances by region. Miao et al. (2014), Ruan et al. (2019), Rupp et al.
(2013), Su et al. (2013), and Xuan et al. (2017) reported that
MIROC5 was good to moderate when ranked by MBE. It received an
excellent ranking by Xuan et al. (2017) and Su et al. (2013). On the
other hand, the evaluation of MIROC6 model, the next version of
MIROC5 model, showed different simulation performance from
those studies. MIROC6 showed the highest MBE value compared to
the simulations of other models, and this finding is consistent with
the result of Fan et al. (2020).

It may be noted that the study areas of well-performing groups in
previous studies (GFDL-CM3 in Miao et al. (2014) and MIROC5 in Xuan
et al. (2017) and Su et al. (2013)) were also near the institutions that had
developed the software, both for GFDL-CM3 and MIROC5; these are in-
stitutions in the United States and Japan, respectively. It might be that
the physical parameters of these models were tuned for Tas simulations
based on their own locations as a priority.
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3.1.3. Mean seasonal cycle amplitude (SeasonAmp)
Figure 5 shows Tas gradient spatial patterns for all simulations

ranging from -5 �C to 15 �C. Numbers in each sub-image are the changes
of spatial annual Tas in each simulation. Out of the 13 GCMs, all obvi-
ously showed that the northern region of Thailand had more Tas changes
than the southern region; these results were consistent with the reality of
Thailand's climate (Tan and Pereira, 2010). This study found that
CNRM-CM6-1-HR was the best in simulating the mean Tas changes, with
the value closest to the mean reference data in terms of magnitude
(higher only 0.1 �C). Although CNRM-CM6-1-HR was the best GCM that
could simulate the change of mean Tas in terms of magnitude (total of the
area), it was not the best simulation in terms of shape. 13-MODEL
ENSEMBLE was the best simulation showing consistency with the
mean reference data in terms of shape, noticeable in the northern region
of the study area, while its mean change value was only 0.35 �C lower
than themean reference. FGOALS-f3-L, generated by CAS institution, was
GCM that had the highest change from the mean reference data, with the
change value of 6.29 �C (2.45 �C higher than the mean reference).

The SeasonAmp metric was reported by Rupp et al. (2013) as one of
the highest confidence metrics for CMIP5 ranking over Pacific Northwest
USA. They reported that multi-model simulation could simulate the
severity of T change close to the observed data, with Tas gradient as well
as Tas change value of the multi-models within 1 �C (Rupp et al., 2013).
In addition, they found that CNRM-CM5 and CNRM-CM5-1 created by
CNRM-CERFACS institution were similarly ranked 11th and 13th out of
Figure 5. Comparisons of the mean seasonal cycle amplitudes of Tas (SeasonAm
2000–2014, with corresponding SeasonAmp values at the bottom-right of each sub-
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41 models, respectively. FGOALS -s2 was found to have the worst per-
formance for simulating the severity of Tas change. FGOALS-s2 was
ranked 41st out of 41 models (lowest ranked), consistent with the
ranking in this current study, as FGOALS-s2 of this study also was ranked
the lowest. Although the latest model from the CAS institution partici-
pating CMIP6 had updated both the atmospheric and oceanic model (Guo
et al., 2020), FGOALS-f3-L still performed worst in simulating the
severity of Tas change when compared with the other GCMs, especially
over Thailand.

3.1.4. Correlation coefficient (r)
Correlation coefficient (r) was used in this study for measuring the

relationship level between model and reference data in each grid-cell.
Table 6 shows r values of mean Tas for the individual 13 GCMs and for
the 13-MODEL ENSEMBLE. These metrics were computed for the three
study cases including land-only, sea-only, and both land and sea. The
correlation coefficient is used for measuring the relationship level be-
tweenmodel and reference data in each grid cell. The correlation values in
Table 6 showed that most GCMs had correlations in the range good, with
coefficients in the numerical range from0.70 to 0.95. Evaluationof CMIP6
GCMs by r showed that three models from CNRM-CERFACS institution
had the highest correlations to the reference data. CNRM-CM6-1-HR was
the first rank for the land-only case, while CNRM-CM6-1 and CNRM-
ESM2-1 were the first rank for both land and sea case, presenting the
best correlation (r ¼ 0.96). For the sea-only case, 13-MODEL ENSEMBLE
p) (�C) of mean observations, 13-MODEL ENSEMBLE, and 13 GCMs during
plot.



Table 6. r and RMSE between observations and model simulations of mean annual Tas for years 2000–2014, for three cases: land only, sea only, and both land and sea.

Model land-only sea-only both land and sea

r RMSE (�C) r RMSE (�C) r RMSE (�C)

1. BCC-CSM2-MR 0.82 1.21 0.94 1.15 0.89 1.19

2. CAMS-CSM1-0 0.87 1.15 0.92 1.09 0.91 1.13

3. CanESM5 0.75** 1.51 0.83 1.34 0.84 1.44

4. CESM2 0.91 0.90 0.94 0.62 0.94 0.80

5. CNRM-CM6-1 0.94 0.75* 0.92 0.54 0.96* 0.67

6. CNRM-CM6-1-HR 0.95* 1.07 0.87 0.76 0.95 0.95

7. CNRM-ESM2-1 0.94 0.76 0.92 0.49* 0.96* 0.66*

0 FGOALS-f3-L 0.85 1.16 0.89 1.10 0.91 1.13

9. FIO-ESM-2-0 0.90 1.06 0.93 0.94 0.93 1.01

10. GFDL-CM4 0.88 1.11 0.95 0.75 0.91 0.98

11. IPSL-CM6A-LR 0.84 1.17 0.85 0.79 0.90 1.03

12. MIROC6 0.82 3.63** 0.14** 2.45** 0.74** 3.19**

13. MRI-ESM2-0 0.93 1.01 0.93 1.14 0.95 1.06

13-MODEL ENSEMBLE 0.92 0.88 0.96* 0.95 0.95 0.91

* is the best value for each metric's evaluation, ** is the worst value for each metric's evaluation, a significance level of 0.05 is shown in boldface.
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showed the best correlation, while only MIROC6 showed an obviously
unsatisfactory correlation (r ¼ 0.14) value in this case.

Zhou and Yu (2006) used the r metric to assess the performance of
CMIP3 GCMs and found that the CNRM-CM3 simulations had different
levels of relationship depending on the study area, ranging from mod-
erate to good. It was ranked 3rd to simulate the temperature over the
whole of China with a good correlation, but it was ranked 9th out of 19
models over global and the Northern Hemisphere, with a moderate
correlation (Table 4). Moreover, the r metric was used to assess the
performances of CMIP5 GCMs over the Tibetan Plateau (Xu et al., 2017)
and Lower Mekong Basin (Ruan et al., 2019). Xu et al. (2017) and Ruan
et al. (2019) found that CNRM-CM5 created by CNRM-CERFACS insti-
tution had correlations of 0.89 and 0.91, respectively, considered as
“good.” Xu et al. (2017) showed that CNRM-CM5 performed best in
simulating Tas and was ranked 1st. The CNRM-CM5 evaluated by Ruan
et al. (2019) had a high correlation of 0.91, but it was still ranked 23rd
out of 34 models. Hence, in the perspective of ranking-based perfor-
mance of Tas simulations, the previous studies found that the GCMs
created by CNRM-CERFACS institution under both CMIP3 and CMIP5
projects might depend on the study area. Moreover, previous versions of
CNRM performed well over subtropical and temperate zones, but pre-
dictions for the Lower Mekong Basin located in the tropical zone,
covering a part of this study area, had a poor performance. In this study,
CNRMCM6-1, CNRM-CM6-1-HR, and CNRM-ESM2-1 in CMIP6 were
listed as the three highest-ranked models by the r metric. S�ef�erian et al.
(2019) and Voldoire et al. (2019) reported that CNRM-family partici-
pating in CMIP6 project had updated atmosphere and land surface
components. This update of CNRM-family might improve the simulation
performance over Thailand.

The previous version of MIROC model under CMIP3 and CMIP5 in
former studies showed quite a satisfactory ranking for Tibetan Plateau
(Xu et al., 2017), global, Northern Hemisphere, China (Zhou and Yu,
2006), and Eastern Tibetan Plateau (Su et al., 2013). Moreover, MIROC5
in CMIP5 had outstanding ranking in the Lower Mekong Basin (Ruan
et al., 2019), ranking 5th out of 34 models.

In this current study, the r metric for MIROC6 was the worst for the
sea-only case and both land and sea, and was the second worst for the
land-only case. A major factor might be the design of MIROC6 as At-
mosphere General Circulation Model (AGCM), while MIROC5 in CMIP5
project was Coupled Atmosphere-Ocean General Circulation Model
(AOGCM). This difference might be the reason that climate simulation in
MIROC5 was better than in MIROC6; however, AOGCMs had disadvan-
tage in requiring more data and computation time than AGCMs (Tatebe
et al., 2019).
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3.1.5. Root mean square error (RMSE)
RMSE was used to compare between GCMs and reference data, to

indicate the magnitudes of errors in each grid cell. The evaluation of
GCMs by RMSE for the three study areas revealed that 12 of 13 CMIP6
GCMs showed magnitudes of overall error less than 2 �C. The two GCMs
with the lowest errors were CNRM-ESM2-1 and CNRM-CM6-1, with
magnitudes of error less than 1 �C. CNRM-ESM2-1 performed the best for
sea-only case and for both land and sea case, with RMSE of 0.49 �C and
0.66 �C, respectively, while CNRM-CM6-1 performed the best for the
land-only case, with RMSE of 0.75 �C (Table 6). In contrast, the GCM that
showed the largest errors was MIROC6, with RMSE higher than 2 �C.

GCM rankings of Ruan et al. (2019) and Grose et al. (2014) by RMSE
showed that CNRM-CM5 could perform very well over the Lower
Mekong Basin and the Pacific Ocean, ranking 6th out of 34 models and
8th out of 27models, respectively, whereas Lovino et al. (2018) and Xuan
et al. (2017) found that GCMs from the CNRM-CERFACS institution had
good-to-moderate performance for Tas simulation. The evaluation of
GCMs by RMSE by these former studies showed that the CNRM-CM
family of models as a group had good performance for simulating Tas
over the tropical zone and moderate performance over the subtropical
zone. Moreover, this study confirmed that the three new GCMs generated
by the CNRM institution under the CMIP6 project had an obvious
improvement having the first rank for three metrics: SeasonAmp, r, and
RMSE.

MIROC5 performed poorly in simulating the LowerMekong Basin and
was ranked 30th out of 34 models, as reported by Ruan et al. (2019).
However, MIROC5 could perform satisfactorily and had a moderate
ranking over Northeastern Argentina (Lovino et al., 2018) and Eastern
Tibetan Plateau (Su et al., 2013), while MIROC5, according to Xuan et al.
(2017), performed 2nd best for annual maximum Tas over Zhejiang
Province in China. Therefore, the evaluation of GCMs with RMSE in
previous studies and this study indicate that MIROC6 might not be
suitable for simulating Tas over the tropical zone.

CMIP6 GCMs generated by the NOAA GFDL and the CNRM-CERFACS
institution were clearly prominent in this study area. Looking at the
GFDL-CM4 and CNRM-CM families, it was discovered that their evolu-
tion was focused on the sub-model component.

The physical climate system of GFDL-CM4 has evolved from CM3 to
CM4.0. In addition, the horizontal resolution in the atmosphere of GFDL-
CM4 is about 100 km, which is the finer resolution than GFDL-CM3
(~200 km) (Held et al., 2019). The Atmosphere Model version 4
(AM4) for GFDL, used as the atmospheric component of CM4.0, has
improved horizontal resolution, new convection and mountain drag
parameterization with radiative transfer, and aerosol-cloud interactions
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significantly updated (Zhao et al., 2018). Thus, the horizontal resolution
and model physics in AM4 are the key factors to improve the tropical
temperature simulation capability of the model.

The physical core of CNRM-CM6-1-HR and CNRM-ESM2-1 is similar
to that of CNRM-CM6-1, but CNRM-CM6-1-HR is a higher resolution
version, while CNRM-ESM2-1 adds a representation of the global carbon
cycle, atmospheric chemistry, and aerosols. All sub-model components in
three CNRM models were updated. However, there were no significant
changes in the parameterizations for the ocean and sea ice components;
on the other hand, the atmospheric and land surface components were
completely redesigned using new parameterizations. Voldoire et al.
(2019) reported that the equilibrium climate sensitivity of three CNRMs
in CMIP6 is much higher than that of the previous version in CMIP5.
These major upgrades are most likely a key reason for the better per-
formance over older GCMs in the same institution.

In MIROC6, the atmospheric component is a sub-model component
that has major changes compared to the last version of MIROC5 in
CMIP5, which is the implementation of a parameterization of shallow
convective processes, the higher model top, and the vertical resolution in
the stratosphere. The sub-models of MIROC6 consist of three main
components (atmosphere, land, and sea ice–ocean), while that of
MIROC5 consist of four main components (atmosphere, land, ocean, and
sea ice) (Tatebe et al., 2019; Watanabe et al., 2010). The reduced per-
formance of MIROC6 is most likely due to the combination of sub-model
components for the ocean and sea ice.

Compared to previous versions, FGOALS-f3-L has higher resolution as
well as a larger upgrade in the sub-model component of the atmospheric
and ocean model (Guo et al., 2020). However, these changes are not
sufficient to improve the performance of the model, considering the
difference between the warmest and coldest months.

For all the above reasons, the different performances of GCMs might
depend on spatial resolution and sub-model components; in addition, the
performance of GCMs might depend on the area where the GCM devel-
oper had the highest interest, via parametrizations in components of the
climate system. These are just some noteworthy aspects found in this
study; however, in order to improve the poorly performing GCMs, further
investigation is needed.

3.2. Model ranking by Tas performance metrics

In Figure 6, the GCMs are sorted from highest to lowest total relative
error from top to bottom. The evaluation of GCMs by five performance
metrics showed that 13-MODEL ENSEMBLE, CESM2, and CNRMCM6-1
were the best GCMs for land-only, sea-only, and both land and sea
cases, with total relative errors 0.51, 0.56, and 0.43, respectively.
Figure 6. Relative error metrics of Tas variable for five statistical metrics (horizontal
(a) land-only, (b) sea-only, and (c) both land and sea. The last column is total score
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Besides, the CNRM group performed well for simulating Tas over
Thailand because they had good ranks. The results of the CNRM group for
both land and sea cases of this study were consistent with the CNRM-CM5
evaluation results over Northwest USA by Rupp et al. (2013) and
CNRM-CM5-2 over Southeast Asia by Kamworapan and Surussavadee
(2019). On the other hand, MIROC6 performed the worst in all study
cases. Moreover, the findings also reveal that the performance of
13-MODEL ENSEMBLE was obviously outstanding. It was discovered to
be consistent with the reference data and to be capable of reducing
simulation biases and uncertainties, especially its performance ranking
result in land-only cases and both land and sea cases. The evaluation of
the general metrics of 13-MODEL ENSEMBLE is quite good, while that of
a single model fluctuate significantly. Frequently, some metrics from a
single model perform well, while the other metrics from that also
perform poorly.

4. Conclusion

This study evaluated the performances of 13 CMIP6 GCMs in simu-
lating Tas over Thailand for the 15- year period of 2000–2014. Ground-
based products (UDEL v5.01 and CRU TS v.4.02) and reanalysis products
(MERRA2 and ERA-interim) were used to evaluate the GCMs. GCM
ranking in this study was calculated by taking the summation of relative
errors from five performance metrics including MA, MBE, SeasonAmp, r,
and RMSE. Most CMIP6 GCMs (except for MIROC6) were able to simulate
Tas over Thailand reasonably well. However, CMIP6 GCMs (except
GFDL-CM3) tended to overestimate (positive direction of error). Differ-
ences of highest and lowest temperatures from the GCMs were larger
than in the reference data, especially in the northern part of Thailand.
Twelve out of 13 models (except MIROC6) had high correlations with the
reference data. RMSE values showed that the GCMs had very similar
performances, except for MIROC6. The evaluation of the 13 CMIP6 GCMs
by five performance metrics indicated that GFDL-CM4 and CNRM group
participating under the CMIP6 project were the best by performance. In
particular, GFDL-CM4 was ranked first by MA and MBE, while the CNRM
group was ranked first by SeasonAmp, r, and RMSE. On the other hand,
MIROC6 performed the worst in almost all measures (except for Sea-
sonAmp, where MIROC6 was third ranked out of 13 models). In sum-
mary, model ranking by the total relative error showed that CNRM-CM6-
1 was the best performing model followed by CNRM-ESM2-1, CNRM-
CM6-1-HR, 13-MODEL ENSEMBLE, IPSLCM6A-LR, and CESM2 in this
order, while MIROC6 was the worst performing model. The results of this
study can benefit regional climate scientists. Input datasets from the best
GCMs of this study could be downscaled to a finer spatial resolution over
Thailand, for simulating the other climate variables (for example,
ordinate) for each CMIP model and model ensemble mean (vertical ordinate) for
of relative error over five performance metrics.
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temperature, precipitation, wind) and for projections of future climate. In
future work, this study could be extended to 1) cover other areas in
tropical zone and 2) to include other latest CMIP6 GCMs releases.
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