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Abstract
1. Reliable estimates of abundance are critical in effectively managing threatened 

species, but the feasibility of integrating data from wildlife surveys completed 
using advanced technologies such as remotely piloted aircraft systems (RPAS) and 
machine learning into abundance estimation methods such as N-mixture modeling 
is largely unknown due to the unique sources of detection errors associated with 
these technologies.

2. We evaluated two modeling approaches for estimating the abundance of koalas 
detected automatically in RPAS imagery: (a) a generalized N-mixture model and 
(b) a modified Horvitz–Thompson (H-T) estimator method combining generalized 
linear models and generalized additive models for overall probability of detec-
tion, false detection, and duplicate detection. The final estimates from each model 
were compared to the true number of koalas present as determined by telemetry-
assisted ground surveys.

3. The modified H-T estimator approach performed best, with the true count of 
koalas captured within the 95% confidence intervals around the abundance esti-
mates in all 4 surveys in the testing dataset (n = 138 detected objects), a particu-
larly strong result given the difficulty in attaining accuracy found with previous 
methods.

4. The results suggested that N-mixture models in their current form may not be the 
most appropriate approach to estimating the abundance of wildlife detected in 
RPAS surveys with automated detection, and accurate estimates could be made 
with approaches that account for spurious detections.
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1  | INTRODUC TION

Abundance data allow monitoring of population trends that can be 
used to determine management priorities and inform implemen-
tation of interventions for the conservation of threatened species 
(Anderson, 2001; Renwick et al., 2011). While surveys to obtain direct 
counts are widely used to obtain abundance data (Anderson, 2001), 
every form of wildlife survey has its own source of errors that may 
lead to error in abundance estimates (Hone, 2008). These errors 
include inability to perfectly detect individuals, as well as false de-
tection when other animals or objects are mistaken for the target 
species (Mackenzie, 2005). Threatened species are often elusive, 
widely dispersed, and commonly occur in complex environments 
or inhabit inaccessible areas which increase the potential for im-
perfect detection and false detections during counts (Hone, 2008). 
Therefore, statistical modeling approaches that can account for 
these errors are critical to achieving reliable and informative es-
timates of abundance for vulnerable species (Mackenzie, 2005; 
Sollmann et al., 2013).

The modeling methods that have shown to be the most effec-
tive in accounting for imperfect detection are methods that require 
repeated visits to survey sites over time (Ficetola et al., 2018). This 
includes capture–mark–recapture, removal sampling, and N-mixture 
modeling approaches. Although there is debate around which ap-
proach is most accurate, evidence has been provided supporting 
the reliability of each method for estimating abundance, predicting 
trends in populations over time, and highlighting key factors that in-
fluence individual survival and population declines (Barker, Schofield, 
Link, & Sauer, 2018; Chao, 2001; Link, Schofield, Barker, & Sauer 
2018; Petranka & Murray, 2001; Royle, 2004). For cryptic, widely 
dispersed species, N-mixture models in which repeated counts at 
survey sites are used to estimate both probability of detection and 
population size are often considered the most useful and practical 
(Ficetola et al., 2018; Royle, 2004). This is because they are the only 
repeat visit approach that allows estimation of abundance without 
needing to physically mark individuals, a task that is challenging and 
costly for elusive species particularly if they occur in private or inac-
cessible areas (Royle, 2004). Therefore, N-mixture modeling is less 
time, cost- and labor-intensive than other repeat visit approaches, 
estimates can be made over larger areas and the approach is suitable 
for protected species (Kery et al., 2009).

Some potential issues in applying N-mixture modeling to wildlife 
abundance have been highlighted such as a lack of identifiable pa-
rameters when abundance, probability of detection, or the number 
of visits to survey sites is low (Kery, 2017). Additionally, although 
N-mixture approaches have been shown to be effective for count 
data from several common survey methods including point counts, 
plots, and transects, it is currently unknown whether they can 
be applied to data gathered from emerging survey methods and 
technologies (Brack, Kindel, & Oliveira, 2018). For example, there 
has been increasing interested in applying N-mixture modeling 
techniques to data from remotely piloted aircraft systems (RPAS), 
or drone, are surveys of wildlife (Brack et al., 2018; Kellenberger, 

Marcos, & Tuia, 2018). This is because RPAS surveys are often em-
ployed for species that are difficult to access or easily disturbed by 
researchers on the ground and therefore are more practical to sur-
vey through methods that do not require individuals to be marked 
(Anderson & Gaston, 2013; Christie, Gilbert, Brown, Hatfield, & 
Hanson, 2016; Hollings et al., 2018; Kellenberger et al., 2018). 
Drone data have also recently been used with automated wildlife 
detection techniques rather than manual identification to reduce ob-
server bias and save time completing surveys and analysis (Chretien, 
Theau, & Menard, 2016; Corcoran, Denman, Hanger, Wilson, & 
Hamilton, 2019; Hodgson, Baylis, Mott, Herrod, & Clarke, 2016; 
Seymour, Dale, Hammill, Halpin, & Johnston, 2017). However, de-
spite the potential advantages of using these new technologies 
to survey cryptic, widely dispersed and inaccessible species, the 
unique sources of error that each introduces have not previously 
been considered in N-mixture modeling approaches (Baxter & 
Hamilton, 2018). In particular, the increased potential of spurious 
detections inherent in using these new survey technologies has 
not been evaluated as N-mixture models of abundance assume low 
probability of detection will be the greatest source of error in sur-
veys and that the effect of false and duplicate detections on counts 
will be negligible (Ficetola et al., 2018; Royle, 2004).

False and duplicate detections may prove to be more problem-
atic for surveys conducted with RPAS and automated detection than 
has previously been considered. Spurious detections are prevalent 
in automated detection studies, particularly in methods that re-
sult in a high probability of detection (Brack et al., 2018; Longmore 
et al., 2017). Recent research demonstrates that when probability 
of detection reaches 80%, between 3 and 20 false or duplicate de-
tections are likely to be found for each true detection (Kellenberger 
et al., 2018; Rey, Volpi, Joost, & Tuia, 2017). Additionally, the flight 
paths (transect lines) in RPAS surveys are often close together to 
allow the creation of orthomosaic imagery leading to overlap in the 
field of view (FOV) of sensors between transects of 85% or more. 
This increases the likelihood of duplicate detections arising from in-
dividuals being viewed at different angles (Baxter & Hamilton, 2018; 
Brack et al., 2018; Denes, Silveira, & Beissinger, 2015; Riddle, 
Stanislav, Pollock, Moorman, & Perkins, 2010). Previously there have 
been very limited opportunities to ground truth automated counts 
of wildlife derived from RPAS imagery, and therefore, it remains 
an open question whether the aforementioned attributes of these 
technologies meaningfully impact on the suitability of contemporary 
N-mixture models for estimating abundance from the data they pro-
vide (Brack et al., 2018; Ficetola et al., 2018; Royle, 2004).

Koalas (Phascolarctos cinereus) have been declared threatened 
throughout the majority of their range and accurate abundance data 
are needed to inform the management of this species (McAlpine et al., 
2006; Scheele et al., 2018). Due to their cryptic nature and wide, 
patchy distribution conventional ground and aerial surveys of koalas 
are costly and time-consuming to conduct and the capacity to iden-
tify individuals in repeated visits is typically limited (Adams-Hosking 
et al., 2016; Dique, Thompson, Preece, de Villiers, & Carrick, 2003). 
It has recently been shown that using RPAS and machine learning 
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can result in higher rates of detection for vulnerable koalas than 
traditional ground survey methods but there remains a margin of 
uncertainty in these counts that is yet be accounted for in order to 
accurately estimate abundance (Corcoran et al., 2019). The aim of 
this paper is to assess the reliability of N-mixture models for abun-
dance estimation method of wildlife surveyed using RPAS-derived 
thermal imagery and automated detection. The abundance of koalas 
in Petrie, Queensland, in 2018 was estimated using two modeling 
approaches. A generalized N-mixture model was developed using 
the standard approach in the literature (see, e.g., DiRenzio, Che-
Castaldo, Saunders, Grant, & Zipkin, 2019; Kwon et al., 2018). This 
was compared to an approach using a modified Horvitz–Thompson 
(H-T) estimator (Marques, Thomas, Ward, DiMarzio, & Tyack, 2009) 
incorporating generalized linear models (GLMs) and generalized ad-
ditive models (GAMs) for overall probability of detection, false de-
tection, and duplicate detection.

2  | MATERIAL S AND METHODS

2.1 | Survey design and automated detection

A detailed description of the survey design and algorithmic workflow 
used to generate automated detections for this study are available in 
Corcoran et al. (2019). In summary, two sites in Petrie, Queensland, 
were selected for this study as they contained a relatively isolated 
population of 48 koalas all of which have been fitted with radio col-
lars and tracked extensively by field ecologists, allowing for a rare 
opportunity to verify when individually identified koalas were de-
tected or missed, and whether individuals were detected multiple 
times (Hanger, 2017; Waugh et al., 2016). A total of eleven RPAS sur-
veys (six at the south site and five at the north site) were conducted 
between February and August 2018. RPAS surveys were conducted 
at first light with a Matrice 600 Pro drone and A3 flight controller 
(DJI, Shenzhen, China), and a FLIR Tau 2 640 thermal camera (FLIR, 
Wilsonville, OR, USA) mounted to the underside. A thermal sensor 
was used because they have been shown to be useful in conjunc-
tion with RPAS to increase the probability of detection of cryptic 
mammals (Hodgson et al., 2016; Seymour et al., 2017). Expert koala 
trackers conducted ground surveys on the same day as RPAS sur-
veys and the GPS locations of all collared koalas present within the 
survey site were recorded. The image detection algorithm presented 
in Corcoran et al. (2019) was then applied to thermal images col-
lected during RPAS and a list of possible koala detections and their 
GPS co-ordinates generated. The possible detections were manually 
examined in order to confirm that the detected koalas matched the 
co-ordinates of ground-surveyed koalas. This allowed verification of 
the number that had been successfully detected, those that were 
duplicate detections, the number of false detections, and how many 
had been missed.

A total of 385 observations from RPAS and group surveys were 
used in this study. This was split into a training dataset of 247 ob-
servations derived from seven surveys (four at the north site and 

three at the south site) which was used in model development, and a 
separate dataset comprising a total of 138 detected objects from the 
four remaining surveys (two at the north site and two at the south 
site) which was used to test the accuracy of the model at predicting 
the abundance of koalas from new data. The data were divided this 
way for two reasons. First, to the best of our knowledge, this site is 
unique in having such a large number of radio-collared koalas that 
are regularly ground surveyed. Population testing data could not 
therefore be drawn from an entirely separate sampling campaign, 
and the data from the single campaign at Petrie, Queensland, needed 
to be divided into distinct groups (Schuwirth et al., 2019; Wenger & 
Olden, 2012). As many of the covariates explored, in particular am-
bient temperature and wind speed, are likely to be temporally linked, 
it seemed most appropriate to divide the data based on survey date 
(Roberts et al., 2016; Schuwirth et al., 2019; Wenger & Olden, 2012). 
The four surveys from July 2018 were therefore used in testing and 
kept separate from the training data to minimize the likelihood of the 
model relying on temporal autocorrelation to make accurate predic-
tions (Harris, 2015; Roberts et al., 2016). Second, this division of data 
also allowed comparison between abundance estimates generated 
by the modified Horvitz–Thompson estimator for each survey date 
in the testing dataset and corresponding true counts from ground 
surveying for that date (Terletzky & Koons, 2016).

The training dataset included 97 unique detections of collared 
koalas, 44 duplicate detections of collared koalas, 26 radio-collared 
koalas that were not detected by the algorithm in RPAS survey foot-
age, and 81 objects falsely misidentified as koalas by the algorithm. 
The testing dataset included observations of all objects identified as 
koalas by the algorithm, or the raw count of koalas generated by the 
automated detection method for each survey. Observations of ko-
alas that were determined to be present through ground surveying 
but not detected by the algorithm were not included in abundance 
estimation.

2.2 | Generalized N-mixture model

The first approach taken to modeling abundance of koalas involved 
generalized N-mixture modeling conducted using the “unmarked” 
package in R (Chandler, Royle, & King, 2011; Fiske & Chandler, 2011). 
To reduce the potential impact of duplicate detection on abundance 
estimates, only detections from flight paths spaced 75 meters apart 
were entered into this model. This spacing ensured there was no 
overlap in the images, with the FOV of the drone-mounted camera 
essentially forming 150 wide strip transects covering the entirety of 
each site with a single pass. As a result, there was a total of 9 sites 
or transects that were visited 5 times between February and August 
2018.

For this approach, abundance of koalas was modeled on three 
distinct processes or formulae. First, the “p-formula” modeled the 
impact of distance from observer, in this case the drone, in meters on 
the probability of detecting koalas (Chandler et al., 2011). To model 
this, counts of koalas were binned into five distance classes (0–15 m, 
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15–30 m, 30–45 m, 45–60 m, and 60–75 m) which represented how 
far away animals were from the position of the drone at the time 
of detection. A half-normal detection function, in which detection 
decreased with increased distance from the drone, a uniform detec-
tion function, in which detection did not decrease with increased 
distance from the drone, and a model in which detection decreased 
with distance with the effective detection distance depending on 
percentage forest cover within the transect were investigated as 
possible p-formulae (Table 1).

The second formula of the generalized n-mixture models was the 
phi-formula, which modeled the impact of covariates that differed be-
tween visits, in this case changing weather conditions, on probability 
of detecting koalas (Chandler et al., 2011). Possible covariates included 
ambient temperature and wind speed at the time of survey as in-
creases in both of these have shown to negatively affect image quality 
for thermal and RPAS-derived imagery and therefore lower probability 
of detection (Table 1) (Chretien et al., 2016; Seymour et al., 2017).

The final formula was the lambda formula, which modeled the 
underlying abundance of koalas depending on differences in habitat 
structure between transects (Chandler et al., 2011). Percentage cover 
of different land-use classes including forest, grass, road (north site 
only), and water (south site only) was investigated as possible habitat 
structure covariates for this formula (Table 1). These covariates were 
selected as forested areas were more likely to be suitable habitat for 
koalas compared to cleared grass-covered areas and water, and koalas 
have been shown to be more likely to be present further from road 
edges (McAlpine et al., 2006). For all three formulae, the response 
variable was modeled with a negative binomial error distribution.

2.3 | Modified Horvitz–Thompson estimator

Separate models for probability of detecting koalas, probability 
of false detection, and probability duplicate detection were con-
structed for this approach to modeling koala abundance. A total 
of 123 observations of koalas that were successfully detected or 
missed by the algorithm in RPAS survey images were used to model 
probability of detecting koalas (pi) as:

where Yi = 1 for successfully detected koalas, Yi= 0 for missed koalas, 
�0 is the intercept, and � j is the change in Yi for every unit change in 
covariate xi,j. Duplicate and false detections were not included in de-
velopment of this model.

As shown in Table 2, covariates for this model included three 
factors that have been suggested to negatively affect the quality of 
thermal images captured by drones which could impact on likelihood 
of detecting koalas: ambient temperature, wind speed at the time of 
surveying, and distance of the detected objects to the habitat edge 
(Chretien et al., 2016; Christie et al., 2016; Seymour et al., 2017). 
Higher values for distance to habitat edge indicated objects were 
further from the edge and closer to the forest core. This was in-
cluded as a possible covariate because animals situated closer to for-
est cores, where there is typically more overhead obstruction, have 
been found to be less likely to be detected in RPAS surveys (Chretien 
et al., 2016; Witczuk, Pagacz, Zmarz, & Cypel, 2018). Ambient tem-
perature and wind speed were included because the quality of im-
ages can be negatively affected when either is high which can reduce 
probability of detection (Witczuk et al., 2018).

To investigate probability of false detection observations of koa-
las that were not detected by the algorithm was omitted from model 
development. Using the remaining 221 observations, the probability 
that koalas detected by the algorithm were false (fi) was modeled as:

where Wi = 1 for an object misidentified as a koala and Wi = 0 for a 
verified true detection of a koala, �0 is the intercept, and �k is the 
change in Wi for every unit change in covariate ai,k. Observation of 
koalas that were missed was not included in construction of this 
model. The possible covariates explored for this model were the 
same as for the model of overall probability of detection (Table 2). 
The main reason for this was that previous studies have shown 
as probability of detection for automated wildlife counting meth-
ods increases, false detection typically increases; therefore, it is 
likely variables affecting probability of detection would also in-
fluence false detection rate (Kellenberger et al., 2018; Longmore 
et al., 2017; Rey et al., 2017). Furthermore, previous surveys of 
koala distribution suggest they are more likely to be found closer to 
forest cores, so animals detected closer to habitat edges are more 

Yi∼Bernoulli
(

pi
)

= log

(

pi

1−pi

)

=�0+

J
∑

j=1

� jxi,j

Wi∼Bernoulli
(

fi
)

= log

(

fi

1− fi

)

= �0+

K
∑

k=1

�kai,k

TA B L E  1   List of covariates investigated for each formula of generalized N-mixture models of koala abundance at north and south sites at 
Petrie Mill, Queensland

Formula Response Variable

Covariates

North Site South Site

P-formula Probability of detecting koalas Distance to observer (m), forest cover (%) Distance to observer (m), forest cover (%)

Phi-formula Probability of detecting koalas Ambient temperature (℃), wind speed 
(km/hr)

Ambient temperature (℃), wind speed 
(km/hr)

Lambda formula Abundance of koalas Forest cover (%), Grass cover (%), Road 
cover (%)

Forest cover (%), Grass cover (%), Water 
cover (%)
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likely to be false detections (Ellis, Rhind, Smith, & Lunney, 2017; 
Januchowski et al., 2008).

To develop models of duplicate detection, only observations that 
were successfully detected by the algorithm and verified to be ko-
alas were included (n = 140); false detections and koalas that were 
missed in RPAS surveying were not included. The probability that 
koalas detected by the algorithm were duplicates of previously de-
tected individuals (di) was modeled as:

where Zi = 1 for detections of koalas that had been successfully de-
tected previously in a survey and Zi = 0 for the first detection of a 
unique koala,�0 is the intercept, and �m is the change in Zi for every unit 
change in covariate bi,m. Distance to nearest detection and time elapsed 
since the previous detection were investigated as potential covariates 
(Table 2). These covariates were intended to capture the effect of the 
overlap in FOV of the RPAS during surveys, as detections that were 
closer to other detections in time and space were more likely to be du-
plicates of the same animal viewed from a different angle by the RPAS 
sensor (Potvin & Breton, 2005; Terletzky & Koons, 2016; Table 2).

Model selection for probability of detection, false detection, 
and duplicate detection occurred in a stepwise manner. First 
univariate GLMs were constructed and ranked along with their 
null models according to p-value, reduction in residual deviance 
yielded by each model, and Akaike information criteria (Burnham 
& Anderson, 2002; Posada & Buckley, 2004). All possible com-
binations of covariates found to explain a significant amount of 
variance in each response variable were then used to construct 
multivariate GLMs and ranked against the top-performing uni-
variate model using the same criterion. Multivariate generalized 
additive models (GAMs) were also investigated and assessed by 
AIC ranking. Generalized linear mixed-effects models (GLMMs) 
were also explored incorporating random effects of the survey 
site, but they produced a singular fit given the available data. The 
percentage of variance explained by the top-performing model 
for overall probability of detection, false detection, and duplicate 
detection was determined by calculating the pseudo R-squared 
(McFadden, 1974). All model selection and analysis were com-
pleted using R statistical software (R Core Team, 2018).

Estimates of the abundance of koalas at north and south Petrie 
Mill, Queensland, during each survey were made using a Horvitz–
Thompson (H-T) (Steinhorst & Samuel, 1989; Williams, Nichols, & 
Conroy, 2002) estimator modified to include duplicate detections 
based on corrections by Marques et al. (2009) and a novel modifi-
cation to include the influence of false detection rate. The modified 
H-T estimator allowed calculation of the estimated abundance of ko-
alas present during each survey (N) using the equation:

where C is the number of objects in thermal images from RPAS surveys 
that were detected and identified as koalas by the algorithm, Ii is an 
indicator variable with a value of one for each object identified by the 
algorithm as a koala, di is the estimated probability of detected object 
i being a duplicate, fi is the estimated probability of detected object i 
being a false detection, and pi is the estimated probability of detection 
for individual i.

95% confidence intervals around the abundance estimates 
were created by first predicting the fitted values of pi, fi, and di 
plus or minus 1.96 times the standard error (representing the 
97.5th quantile of the standard normal distribution) on the link 
scale, and then using the inverse of the link function to map the 
fitted values, upper and lower limits back to the response scale. 
The upper confidence limit of estimated abundance (N) could then 
be calculated by including the lower confidence limits of pi, fi, and 
di into the modified H-T estimator as N increases when the chance 
that detected objects are false or duplicates is low and the like-
lihood that all koalas were successfully detected in the survey is 
low (Marques et al., 2009; Steinhorst & Samuel, 1989; Terletzky & 
Koons, 2016; Williams et al., 2002). Conversely, the lower confi-
dence limit of N could be calculated as using the upper confidence 
limits of pi, fi, and di as estimated abundance increases when the 
probability that detected objects were falsely identified as koalas 
or duplicates is high and the likelihood that all koalas present were 
successfully detected is high (Marques et al., 2009; Steinhorst & 
Samuel, 1989; Terletzky & Koons, 2016; Williams et al., 2002). The 
proportion of surveys for which the true count verified by ground 
surveying was captured within the 95% confidence intervals was 
used to assess the accuracy of modified H-T estimator (Clement, 

Zi∼Bernoulli
(

di
)

= log

(

di

1−di

)

=�0+

M
∑

m=1

�mbi,m N=

C
∑

i=1

Ii ∗
(

1−
(

d̂i+ f̂i
))

p̂i

TA B L E  2   List of covariates investigated for inclusion in models of probability of overall detection, false detection, and duplicate detection 
for koalas automatically identified in RPAS-derived thermal imagery

Covariate Unit of Measurement
Probability of Detection 
Model False Detection Model

Duplicate 
Detection Model

Ambient temperature Degrees Celsius(℃) Yes Yes No

Wind speed Kilometers per hour (km/
hr)

Yes Yes No

Distance to habitat edge Meters (m) Yes Yes No

Distance to nearest detection Meters (m) No No Yes

Time since previous detection Seconds (sec) No No Yes
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O’Keefe, & Walters, 2015; Gerber, Ivan, & Burnham, 2014; Hickey 
& Sollman, 2018; Terletzky & Koons, 2016).

3  | RESULTS

3.1 | Generalized N-mixture model

At both sites, the p-formula model with the lowest AIC was the uni-
form detection function model, suggesting detection probability did 
not meaningfully decline with increased distance from the drone 
(Table 3).

Temperature did not significantly impact detection of koalas at 
the north (p = .459) or south (p = .518) site. Similarly, wind speed 
did not significantly impact detection or koalas at either site with 
p = .265 at the north site and p = .283 at the south site. Adding these 
covariates to the phi-formula model also increased AIC compared to 
a uniform detection function model, and therefore, the null model 
was retained for the phi-formula (Table 4).

The model that provided the best fit at the north site was a model 
with a uniform detection function p-formula, null phi-formula, and 
percentage of road cover and percentage of grass cover as lambda 
covariates (Table 5). Percentage of road cover (βpercentage road cover = 
−0.0985, SE = 0.0330, p = .0397) and percentage of grass cover (βper-

centage grass cover = −0.0308, SE = 0.0129, p = .017) were found to have 
significant negative impact on the underlying abundance of koalas.

For the south site, a model with the same p-formula and phi-for-
mula but with percentage forest cover and water cover was found 
to have the best fit (Table 6). Forest cover (βpercentage forest cover = 
−0.0510, p = .024) and water cover (βpercentage water cover = −0.0255, 
p = .018) both had a significant negative impact on the underlying 
abundance of koalas at the site. Based on parametric bootstrapping 
with 500 simulations, the Freeman–Tukey p-values for the north site 
model (p = .517) and south site model (p = .407) were both over 0.10 
indicating adequate model fit.

3.2 | Modified Horvitz–Thompson estimator

Ambient temperature and distance of koalas from habitat edges were 
both found to make significant contributions to variation in overall 
probability of detection (Table 7). Wind speed did not account for a 

significant amount of variance in probability of detection for koalas 
(p = .1782). Ambient temperature was shown to negatively impact 
probability of detection, with objects less likely to be detected dur-
ing surveys when the temperature was higher (βTemperature = −0.1879, 
SE = 0.0550). There was also a negative relationship between dis-
tance to habitat edge and probability of detection in which objects 
that were further from habitat edges and closer to forest cores were 
less likely to be detected (βDistance to habitat edge = −0.0233, SE = 0.0076).

A multivariate GLM with ambient temperature and distance 
from habitat edge as covariates which explained 13.33% of variance 
in probability of detecting koalas in RPAS-derived thermal imag-
ery using automated methods was found to be the top performing 
model (Table 7). This model was incorporated into the modified 
Horvitz–Thompson estimator as a GAM with the same covariates did 
not meaningfully reduce AIC by more than 2 points (Table 7).

Distance to habitat edge was found to significantly affect the 
probability that a detection was false with detections that were 

TA B L E  3   Ranking of p-formula models for impact of distance 
from RPAS platform on probability of detecting koalas at north and 
south sites in Petrie, Queensland

Model

AIC

North Site
South 
Site

Uniform Detection 202.62 216.95

Half-normal Detection 204.62 218.95

Half-normal Detection + Forest Cover (%) 206.62 220.95

TA B L E  4   Ranking of phi-formula models for impact of covariates 
on variability of probability of detection between surveys

Model

AIC

North Site
South 
Site

Uniform Detection (Null) 202.62 215.24

Wind Speed 203.24 216.00

Temperature 204.04 216.82

Temperature + Wind Speed 205.24 217.50

TA B L E  5   Top-performing lambda-formula models of underlying 
abundance of koalas at North Petrie Mill, Queensland, compared to 
uniform detection function null model

Model AIC

Road Cover (%) + Grass Cover (%) 198.10

Road Cover (%) + Forest Cover (%) 198.11

Forest Cover (%) + Grass Cover (%) 198.13

Road Cover (%) 200.30

Uniform Detection (Null) 202.62

Forest Cover (%) 203.71

Grass Cover Percentage (%) 204.55

TA B L E  6   Top-performing lambda-formula models of underlying 
abundance of koalas at South Petrie Mill, Queensland, compared to 
uniform detection function null model

Model AIC

Forest Cover (%) + Water Cover (%) 215.31

Forest Cover (%) + Grass Cover (%) 215.32

Grass Cover (%) + Water Cover (%) 215.34

Uniform Detection 216.95
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further from the habitat edge found to be less likely to be false (βDis-

tance to habitat edge = −0.0324, SE = 0.0071, Table 8). Wind speed was 
also found to have a significant effect with the probability that a 
detection was false decreasing when wind speed was greater (βWind 

speed = −0.1925, SE = 0.0886). However, the univariate GLM includ-
ing distance to habitat edge was incorporated into the modified 
Horvitz–Thompson estimator as it provided the best fit with the 
lowest AIC compared to the null model was found to explain 9.23% 
of the variance in likelihood of false detection (Table 8).

Distance to nearest detection was found to significantly influ-
ence the likelihood of detected objects being duplicates (p = .006), 
while times since previous detection did not (p = −.3720). Detections 
that were closer to other detections in space (βDistance to nearest detec-

tion = −0.0228, SE = 0.0060) were more likely to be duplicates. The 
univariate GLM of the effect of distance to nearest detection on the 
likelihood of duplicate detection had an AIC of 160.35 compared 
to 174.70 for the null model and was found to account for 9.47% 
of variation in the likelihood of duplicate detection. Therefore, 
this model was selected for incorporation into the final modified 
Horvitz–Thompson estimator.

3.3 | Abundance estimation

The true ground count of radio-collared koalas was contained within 
the 95% confidence interval obtained using the modified H-T esti-
mator for all four surveys in the testing dataset (Table 9). The con-
fidence intervals were found to larger at the north site compared 
to the south site (Table 9). The estimated abundance of koalas at 
both the north site (85) and south site (124) based on the generalized 
N-mixture modeling method was much higher than the true abun-
dance at each site confirmed by ground surveys (Table 9).

4  | DISCUSSION

The generalized N-mixture method overestimated abundance at 
both sites, likely because false and duplicate detections were not 
accounted for in the model (Brack et al., 2018; Ficetola et al., 2018). 
The algorithm described in Corcoran et al. (2019) yielded raw counts 
with a lower number of false and duplicate detections compared 
to previous studies on automated wildlife detection (Corcoran 
et al., 2019; Kellenberger et al., 2018; Rey et al., 2017). Nonetheless, 
there were still a number of spurious detections that may have led to 
overestimates of abundance.

In contrast, the relatively simple modified H-T estimator ap-
proach performed well at estimating the abundance of koalas, with 
the true number of koalas contained within the 95% confidence in-
tervals in 4 of the 4 surveys. This was due to the modified H-T esti-
mator enabling probability of detection error across detected koalas 
to cancel out the combined effects of false and duplicate detections 
(Marques et al., 2009; Terletzky & Koons, 2016).

Originally developed for abundance estimation from fixed-wing 
aircraft, this is apparently the first time that the H-T estimator has 
been adapted for use with automated ID data collected from a RPAS 
survey and extended to include the likelihood that detections may 
be false, misidentified objects rather than duplicates detections of 
target animals. The performance of this approach seems promising 
even when compared to many previous attempts to model abun-
dance from conventional aerial surveys that accounted for prob-
ability of detection and duplicate detection. In these surveys, the 
true count was only found within 33% and 38% of surveys, with the 
majority of counts inflated due to very low probability of detection 
(Potvin & Breton, 2005; Terletzky & Koons, 2016). Other models 
that only accounted for probability of detection found 50%–83% 
of abundance estimates were significantly below the true ground 

Model Type Covariates
Null 
deviance

Residual 
deviance p-value AIC

GAM Temperature, distance to 
habitat edge

126.88 83.81 .0231, .0412 115.7

GLM Temperature, distance to 
habitat edge

126.88 111.00 .0081, .0303 116

GLM Temperature 126.88 114.67 .0006 118.67

GLM Distance to habitat edge 126.88 117.13 .0022 121.13

Null model N/A 126.88 126.88 N/A 128.88

TA B L E  7   Top-performing models 
of probability of detection for koalas 
automatically identified in RPAS-derived 
thermal imaging from Petrie, Queensland, 
in 2018

Model 
Type Covariates

Null 
deviance

Residual 
deviance p-value AIC

GLM Distance to habitat 
edge

290.43 267.62 .000005 267.62

GLM Distance to habitat 
edge, wind speed

290.43 269.37 .000005, .6120 269.37

GLM Wind speed 290.43 285.31 .0297 289.31

Null model N/A 290.43 290.43 N/A 292.43

TA B L E  8   Top-performing models of 
probability of falsely detecting koalas 
in RPAS-derived thermal imaging using 
automated methods
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counts (Lee & Bond, 2016). The results also demonstrate an im-
provement upon commonly used methods for koala abundance esti-
mation as conventional koala ground surveys typically result in their 
numbers being underestimated by up to 25% (Dique et al., 2003).

Another advantage of the modified H-T estimator method was 
that it did not generate any abundance estimates where the true 
count was below the lower confidence limit. This is important as 
overestimating the abundance of threatened species, such as koa-
las, has been shown to lead to poor decision-making based on the 
false impression that a population was stable or recovering (Ficetola 
et al., 2018; Siddig, Ellison, & Jackson, 2015). It also did not rely on 
multiple visits to survey sites to achieve reliable estimates and there-
fore may be better suited to monitoring species for which population 
data are needed to aid management urgently, or for which resource 
to conduct monitoring is scarce (Scheele et al., 2018).

As predicted, increased ambient temperature and increased 
distance of animals to habitat edges negatively impacted the prob-
ability of detection, likely due to the decreased contrast between 
koalas and their background, and potentially greater obstruction 
between the sensor and the target (Chretien et al., 2016; Hodgson 
et al., 2016; Seymour et al., 2017). These covariates are likely to 
play an important role in determining probability of detection for 
all wildlife surveys using RPAS and thermal imaging, which increase 
the potential applicability for the modified H-T estimator approach 
to a wider range of survey sites and situations, where abundance 
is unknown and the capacity to mark and ground truth individuals 
is limited (Chretien et al., 2016; Kellenberger et al., 2018; Seymour 
et al., 2017). Estimating reasonable values of the covariates for each 
application would be required unlike using N-mixture methods, but 
this trade-off may be beneficial for species requiring very urgent 
monitoring. Further collection of data on the types of error in sur-
veys of other species and in different habitat types could widen the 
applicability of the modeling method (Brack et al., 2018; Chretien 
et al., 2016; Hodgson et al., 2016; Seymour et al., 2017)

Distance to the nearest detection was a significant predictor of dupli-
cate detection error, as expected, suggesting that the overlap in FOV of 
the RPAS during survey can lead to accidental double-counts of the same 
animal when viewed from different angles (Baxter & Hamilton, 2018; 
Brack et al., 2018; Denes et al., 2015; Riddle et al., 2010). However, the 
modified H-T estimator was able to account for this in most instances, 
suggesting there is potential for this approach to be used to reliably 

estimate population size of many species. Further investigation into 
how RPAS FOV overlap contributes to detection error in surveys of 
more mobile species is recommended in order to ensure accurate abun-
dance estimates can be made for a wider range of wildlife (Terletzky & 
Koons, 2016; Witczuk et al., 2018). The existing tracking method used 
by the algorithm to generate detections could be also be modified based 
on the parameter estimate for distance to nearest detection to eliminate 
more duplicate detections at the initial detection stage and reduce the 
likelihood of inaccurately estimating abundance (Corcoran et al., 2019).

Overall, the results of this study suggest that current N-mixture 
modeling techniques may lead to substantial overestimates of 
abundance of wildlife in RPAS surveys with automated detection 
(Kellenberger et al., 2018; Longmore et al., 2017; Rey et al., 2017). If 
these approaches were modified to account for the impact of false and 
duplicate detections as has been previously suggested (DiRenzio et al., 
2019; Kidwai, Jimenez, Louw, Nel, & Marshal, 2019), N-mixture mod-
els may become more useful in conjunction with this particular kind of 
data, although a satisfying solution to this problem is yet to emerge. 
Alternatively, the modified H-T estimator approach developed here may 
be a promising way forward, as it yielded substantially more accurate 
estimates than generalized N-mixture modeling (Dique et al., 2003; 
Lee & Bond, 2016; Potvin & Breton, 2005; Terletzky & Koons, 2016). 
This suggests that with auxiliary data collected to determine detection 
probabilities, counts of wildlife detected using automated methods in 
RPAS-derived thermal imaging could be integrated into wildlife moni-
toring plans in order to efficiently and reliably estimate abundance of 
cryptic and widespread species (Barker et al., 2018; Brack et al., 2018; 
Link et al. 2018). While no survey method is universally applicable and 
RPAS surveys cannot be used in all cases, habitats, or weather con-
ditions, the management of koalas and other threatened species that 
are difficult to survey through conventional ground or aerial methods 
could potentially benefit from the improved understanding of their 
population numbers that could be gained through this powerful new 
modeling approach (Adams-Hosking et al., 2016; Scheele et al., 2018).
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compared to the raw number of detections generated by the algorithm and the true number of koalas present as determined by ground 
counts

Survey site Survey date
Raw 
count

Estimated abundance ± 90% CI 
(aerial survey method)

Estimated abundance (generalized 
N-mixture method)

True 
count

North Petrie Mill 10 July 2018 41 15(6,27)* 85 15

24 July 2018 55 23(10,40)* 18

South Petrie Mill 11 July 2018 17 5(2,9)* 124 9

24 July 2018 25 9(3,15)* 11

Note: True count (verified with telemetry) within the estimated confidence interval (*).
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