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Abstract: Phytohormones play an essential role in plant growth and development in response to
environmental stresses. However, plant hormones require a complex signaling network combined
with other signaling pathways to perform their proper functions. Thus, multiple phytohormonal
signaling pathways are a prerequisite for understanding plant defense mechanism against stressful
conditions. MicroRNAs (miRNAs) are master regulators of eukaryotic gene expression and are also
influenced by a wide range of plant development events by suppressing their target genes. In recent
decades, the mechanisms of phytohormone biosynthesis, signaling, pathways of miRNA biosynthesis
and regulation were profoundly characterized. Recent findings have shown that miRNAs and
plant hormones are integrated with the regulation of environmental stress. miRNAs target several
components of phytohormone pathways, and plant hormones also regulate the expression of miRNAs
or their target genes inversely. In this article, recent developments related to molecular linkages
between miRNAs and phytohormones were reviewed, focusing on drought stress.
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1. Introduction

Abiotic stresses are common problems of every ecosystem and rely on various environ-
mental factors [1,2]. Drought is among the most hazardous stresses among all other abiotic
stresses that affect crop plants throughout the world [3,4]. A recent study has revealed
that the total yield loss triggered by drought is approximately 7% worldwide [5,6]. It was
estimated that by 2050, water stress will severely affect cultivated land and ultimately affect
the two-thirds of the global population [7,8]. Drought affects crops in different ways, and
even crops with the same drought tolerance might have different gene expression and
metabolism. As a result, identification of drought-tolerant genetic resources and deter-
mining the best technique to avoid crop loss are critical [9]. Adverse effects of drought
can be eliminated by post-transcriptional regulation of genes associated with signal trans-
duction, protein biosynthesis, energy metabolism, photosynthetic activity, and membrane
trafficking [8,10]

Phytohormones are key signaling molecules responsible for all biological and metabolic
regulators in the plant’s life cycle [11]. Critical phytohormones include ethylene (Et), ab-
scisic acid (ABA), salicylic acid (SA), cytokinin (CK), gibberellic acid (GA), auxin (Aux),
indole acetic acid (IAA), brassinosteroids (BR), jasmonic acid (JA), and strigolactones
(SL) [11,12]. Among these plant hormones, five hormones (ABA, IAA, CK, GA and ET)
are classical hormones, whereas the rest (JA, SA, BR and SL) are recognized as putative or
growing phytohormones. In plants, phytohormones are synthesized via various pathways
and are perceived by specific receptors, triggering intracellular signal transduction [12].
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Phytohormones work together to alter multiple cellular processes, such as elongation of
cells, vascular root patterning, and management of abiotic and biotic stress response.

Intracellular phytohormones are important growth regulators, but they have signifi-
cant functions in plant drought stress tolerance by regulating physiological processes and
molecular interactions [13]. Drought stress has an impact on phytohormone generation,
accumulation, and distribution throughout the plant body [13]. After signal perception,
ABA is the most critical phytohormone and the most important hormone produced in
response to water scarcity [14,15]. Jasmonates have a key function in fruit ripening, root
growth, and reproduction. This hormone also plays an important function in regulating
plant water stress reactions [13]. Salicylic acid (SA) was established by several researchers
to play a significant function in plant under drought stress [13]. Low amounts of SA boost
plant antioxidant capability, but greater levels can kill cells or make plants more vulnerable
to abiotic stress [11]. SA stimulates genes with roles in the production of secondary metabo-
lites, chaperones, organic acids, and heat shock proteins [16,17]. Cell elongation, vascular
tissue improvement, and apical dominance are all known impacts of indole-3-acetic acid
on plant elongation and development [18]. During drought conditions, IAA appears to
assimilate plant development and upregulate gene expression linked with root meristem
initiation, enhancing root branching, and increasing plant stress tolerance [13,18].

Plant microRNAs (miRNAs) are 20–24 nucleotide-long post-transcriptional regulatory
molecules [19,20]. These highly conserved molecules play a function in various systems of
mature plants, including plant growth, development, and stress tolerance. miRNA is a small
RNA that control the expression of different genes involved in biological and metabolic
processes. Because it induces divergence in the expressed gene, the interaction between
miRNA and its mRNA target is particularly significant [21]. A single miRNA can target
various additional genes in the same cell signaling pathway. Through endonucleolytic
cleavage or translational inhibition of mRNA cognate targets, miRNAs operate as a negative
gene expression regulator [19,22].

Stress response modulation via the miRNA pathway was found in several plant
species [23,24]. To combat with severe environmental conditions, plants have evolved
many strategies for modifying the expression of genes that regulate physiological processes.
Drought stress was demonstrated to boost plant miRNA expression [25]. It has an impact on
several biological processes, including stem, root, leaf, and flower production. In response
to miRNA regulation, plants are affected by biotic and abiotic stress, hormone signaling,
and nutritional balance [26].

Plants naturally have different processes to acclimatize to changes in harsh conditions,
including pathways in which miRNAs play a vital role in biotic and abiotic stress condi-
tions. miRNA genes are up- or downregulated in a variety of species, including soyabean
(Glycine max), sugarcane (Saccharum officinarum), rice (Oryza sativa), and maize (Zea mays),
under different stresses [24,27,28]. Multiple evidences are available in literature that in-
dicate the expression or accumulation of these miRNAs to further explain the regulatory
networks connected with stress defense mechanisms [23]. Several miRNAs have critical
role in the morphological development of the fruit. miR164, miR156/miR157, miR396, and
miR160 expression, for example, can cause abnormal fruit, such as fused carp and reduced
fruit size and morphology [29,30].

This review focused on the recent knowledge about phytohormones, miRNAs, and
their involvement in responses to drought stress in crop plants. We have tried to outline
the impacts of miRNAs and phytohormones on the expression of drought-related genes.
Another section addresses the crosstalk among miRNAs and plant hormones during
drought conditions. At the end, we discuss about the potential of miRNAs to improve
abiotic stress, such as drought, tolerance in crop plants.

2. Drought-Responsive Genes Are Regulated by Plant Hormones

Plant hormones are chemical messengers that control growth, development, and
metabolic activities in plants under different biotic and abiotic stimuli [31]. Plant survival is
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strongly linked to hormone-mediated main regulatory mechanisms, which is a complicated
process involving multiple interactions at the transcriptional, translational, and cellular
levels [10,16]. Plant hormones and miRNA-mediated gene regulation are critical regula-
tors of gene expression in both normal and stressful situations [32]. Plants response to
environmental stress differs due to variations in phytohormone levels.

Plant hormones, such as abscisic acid (ABA), auxins (IAA), gibberellin (GA), cy-
tokinin (CTK), salicylic acid (SA), and jasmonic acid (JA), regulate the drought stress
in plants [10,33,34]. However, the mode of action of various phytohormones to elim-
inate/escape the drought stress is diverse, depending upon the developmental stage,
plant tissues and drought prevailing conditions. During drought stress, some plant hor-
mones help modify the root architecture of plants, influence the photosynthetic machinery,
modulate the water balance, enhance the antioxidant defense system and control the
drought-related gene expression in plants [10].

Abscisic acid (ABA) is a crucial phytohormone that have a significant role in regulating
different signaling pathways under environmental stresses [35,36]. During drought stress,
ABA accumulates in guard cells via ABA biosynthesis pathway. ABA synthesis reduces
turgor pressure and causes the closure of stomata, decreasing the transpirational water
loss [37]. ABA is absorbed in plant leaves at the morphological level, improving cell wall
extensibility, tissue turgidity, and root hydraulic transmission [36]. ABA content enhances
drought resistance by improving total chlorophyll contents, more stem dry weight and high
regulation of drought-tolerant genes such as RD22, RD29B and bZIP [33]. ABA regulates
root growth to reach the deep water in the soil during osmotic stress. Interaction of ABA
with other plants hormones leads to developing the lateral roots in plants necessary to
tolerate dehydration stress [33]. Accumulation of ABA during drought conditions was
observed in wheat, rice, sorghum, barley, and soybean [35,38].

ABA influences and controls the regulation of several genes by forming osmoprotec-
tants and defensive proteins [35]. Upregulation of rice guard cell genes (SNAC1) enhances
ABA sensitivity, drought stress tolerance, and closure of stomata [39]. Overexpression of Os-
bZIP72 and OsbZIP46, which boosted the expression of ABA sensitive genes, improved rice
drought tolerance considerably [40]. In rice plants, upregulation of OsMYB48–1 boosted
the expression of genes produce ABA such as OsNCED4 and OsNCED5 [41]. GmHP08
improves drought tolerance in soybeans via ABA-dependent pathways [42]. Drought
resistance in Arabidopsis thaliana is improved by overexpression of the AtSAUR32 gene,
which accumulates ABA and IAA hormones [43]. By inducing ABA and ROS scavenging,
Arabidopsis ascorbic acid peroxide genes such AtAPX2 increased water usage efficiency and
drought resistance [44,45].

Auxin/Indole 3-acitic acid (IAA) was the first phytohormone discovered to have
important functions for plant growth and development through cell elongation, tissue
differentiation, axial elongation, and apical dominance [36]. Auxin regulates all aspects
of plant life, from embryogenesis through senescence [32] although an increase in auxin
levels was linked to a decrease in growth, indicating that a change in hormonal balance is
to blame for a decrease in growth under stress [32,37]. Auxin also promote roots branching,
potentially significant for increasing drought tolerance [46]. Studies proved that miRNAs
could control the auxin signal transduction, and on the other hand, various auxin signaling
genes were observed to target the miRNAs. In addition to genes, some auxin-responsive
factors (ARFs) were reported as miRNA targets, i.e., ARF10, ARF16 and ARF 17 were
upregulated by miRNA160 and miRNA167 where they were downregulated by ARF2,
ARF3, ARF6 and ARF8 [47]. Activation of the OsGH3-2 gene encoding the IAA inactivation
enzyme decreases free IAA content and various changes in the pattern of drought resistance
in transgenic white clover (Trifolium repens) [33]. Drought stress was observed to upregulate
two OsPIN rice genes, OsPIN2 and OsPIN5b [48]. TLD1/OsGH3 overexpression enhances
the expression of LEA genes, resulting in greater drought tolerance in Oryza sativa plants,
suggesting that auxins activate a number of interrelated metabolic pathways [49].
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According to previous study, miRNAs could be a suitable pathway for incorporating
auxin. Auxin genes such as OsIAA6 were found to be induced by drought stress and are
involved in dehydration stress resistance [50]. In white clover, upregulation of auxin and
drought-responsive genes such as bZIP11, MYB14, MYB48, DREB2, GH3.1, GH3.9, IAA8,
WRKY2, WRKY56, WRKY108715, and RD22 was found [33]. OsGH3-2, an auxin and ABA
regulating gene, was implicated in rice drought stress regulation [51].

Ethylene is a methionine-derived metabolite that is sensitive to biotic and abiotic
stressors. Stage ethylene controls shoot growth, stem thickness, root elongation, stom-
atal density, and leaf abscission at the seedling level [52]. It has, however, been exten-
sively researched in the process of plant senescence, although it is less well understood
in drought-induced senescence [53]. Under drought stress, ethylene was proven to cause
leaf abscission, which reduces water loss [54]. Water stress stimulates the de novo syn-
thesis of 1-aminocyclopropane-1-carboxylate (ACC) synthase, an ethylene biosynthesis
rate-controlling enzyme [53]. Furthermore, ethylene and its metabolic process induce
plant responses to flooding and water scarcity, and it is involved in a variety of abiotic
stress-related plant metabolic activities [55]. Drought stress tolerance/resistance mediated
by ethylene was seen in (Glycine max), rice (Oryza sativa), and maize (Zea mays), potato
(Solanum tuberosum), and Arabidopsis plants [56]. Rice proline synthesis and drought tol-
erance have both been linked to OsEBP89, a member of the AP2/ERF family [55]. The
gene SlERF36 was found to play a role in stomal density, plant growth, and photosynthetic
activities in potato (Solanum tuberosum) plants [57].

The phytohormone ethylene has a regulatory role in root elongation under drought
conditions by interacting with auxin. During the seedling stage in rice plants, ethylene
interacts with the auxin biosynthesis gene OsELI1 to inhibit the enlargement of roots [58].
A mutant etol1 was identified in Arabidopsis and rice, which accumulates more ethylene ad
affect the stomatal closure and ROS production in guard cells [59].

The plant hormone cytokinin (CK) was first found in maize crop. Plants produce
CKs in their root tips, which are then transferred to the xylem. Cell division, vascular and
shoot differentiation, nutrient mobilization, anthocynin production, photomorphogenic
development, and leaf senescence are all pathways in which CK is required [60,61]. CK
was reported to trigger in response to drought stress and exert positively or negatively on
drought regulation, depending on stress interval and frequency in plants [10].

CKs are considered a crucial regulator of root length, root branching; hence it plays
a significant role for elongation of primary roots and branching in response to drought
stress [62]. Transgenic cotton (Gossypium hirsutum) enriched isopentenyl transferase (IPT)
expression has resulted in higher endogenous CK levels, deferred plant senescence and
enhanced drought tolerance [63]. CK improved drought tolerance in the transgenic barley
lines through overexpressing the CK dehydrogenase gene [64].

The transgenic roots of barley also demonstrated significantly greater auxin produc-
tivity. Functional analyzes of CK receptor mutants revealed that certain Arabidopsis and
Brassica napus CK receptors, namely AHK2, AHK3, CRE1/AHK4, BnCHK1 and BnCHK3, and
BnCHK5 perform as negative osmotic stress regulators [65]. ARR1, ARR10, and ARR12,
Arabidopsis type B CK response regulators, were shown to promote drought stress tolerance
by improving cell membrane integrity, ABA hypersensitivity, anthocyanin production, and
stomatal aperture reduction [66]. Similarly, type A CK response regulators (AHK2, AHK3
and AHK4) expressed higher ABA sensitivity and drought stress tolerance [67,68]. The
higher expression of CKs from type B triple mutants arr1, arr10, and arr12 suggested that
they play a role in ABA–CK crosstalk and were triggered by water stress [44,66].

Plants produce salicylic acid (SA), a phenolic molecule that works as a growth regulator
and controls plant maturity, and abiotic interactions [69,70]. According to current research,
SA plays a critical role in plants under different abiotic stresses such as drought stress [34,71].
SA improves drought resistance through influencing plant physiological systems such as
photosynthetic activity, the production of antioxidants, and stress tolerance genes [70].
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SA application in Arabidopsis regulates the ICS1 gene and confirms the drought toler-
ance. Many WRKY TFs such as WRKY70 and WRKY54 are widely distributed among plant
species are governed by SA application [72,73]. Overexpression of WRKY70 TFs regulates
HD-zip-I genes under limited water conditions [72]. WRKY70 and WRKY54 cooperate
as a negative regulator of osmotic stress tolerance and stomatal closure in Arabidopsis,
showing their importance in abiotic stress signaling [73,74]. Drought resistance in rice,
tomato, wheat, and bean (Phaseolus sp.) plants was confirmed by exogenous SA treat-
ment [75,76]. A putative method for maintaining the water content in plant leaves was
suggested: SA-induced stomatal closure [75]. AP2/ERFs, leucine zipper, Zn fingers, and
other transcription factors, according to gene expression profiling studies, have responded
to SA and drought stress, showing that this phytohormone plays a substantial role in
drought stress response. In Arabidopsis, SA-dependent miRNA167 influenced flower and
root growth as well as osmotic stress resistance [77].

Jasmonic acid (JA) is an important phytohormone produced in the chloroplast, cyto-
plasm, and peroxisomes. JA and its derivatives are known as jasmonates with significant
roles in biotic and abiotic stresses in plants [2]. JAs are widely found in plant blooms [34,69].
This plant hormone regulates development and is involved in flowering, fertilization, and
main root growth [34]. During drought stress JA enhances water uptaking capacity of
pants by altering root hydraulic conductivity [78]. JA moderate the effect of low moisture
conditions by regulating the signaling of secondary metabolites. Moreover, JA improves
antioxidant activities by enhancing the production of osmoprotectants and compatible
solutes [79]. The first ever response of JA against dehydration stress was reported in barley,
where it was noted that an increased level of JA enhanced the transaction induction of
relevant downstream genes [80].

Drought tolerance mediated by JA has since been found in wheat [79], rice [81],
maize [82], and chickpea (Cicer arietinum) [83]. The major precursor of JA, 12-OPDA,
is involved in stomatal closure regulation in a model plant [84]. The gene OsbHLH148
interacts with OsJAZ in rice plants under drought stress, and high levels of OsDREB1
expression promote drought tolerance [37]. Another study found that upregulation of the
OsbHLH148 gene makes rice plants more resistant to desiccation stress [85]. According to
the findings, JA is involved in plant defense not only during injury and pathogen attack,
but also during drought. Despite a lot of research on the role of JA in drought tolerance,
more research is needed to fully understand drought tolerance in plants [37].

Gibberellic acids (GA) are important plant hormones which are involved to control
the growth-related traits, i.e., cell expansion, cell elongation, leaf, stem, root and fruit
growth [71]. Plants synthesize various GAs but GA1 and GA4 are the most active types of
these hormones [37]. These phytohormones respond to drought stress by affecting photo-
synthetic enzymes, nutrient use efficiency, leaf area index and stomatal conductance [71].
GAs are synthesized in cytoplasm, plastids and endoplasmic reticulum [53]. Application of
GAs to improve low moisture stress tolerance was observed in maize [71,86] wheat [87] and
sunflower [88]. The Arabidopsis methyl transferase gene 1 AtGAMT1 was overexpressed
in tomato plants to create drought-resistant transgenic tomatoes [37]. It was also found in
another study that the GA 2-Oxidase gene (OsGA2ox) was found to improve rice drought
resistance [89]. In a recent study, soybean TF GmTGA15 was shown to be overexpressed in
plants with low moisture content [17].

Brassinosteroids (BRs) belong to a novel group of steroidal plant hormones that play
role in morphological and physiological changes of plant by altering their growth and
development [90,91]. Plant BRs are synthesized in immature seeds, pollens, flowers and
roots and play indirect role to modulate the drought by stimulating the H2O2 level of
plants [92,93]. In Arabidopsis, wheat, clover, tomato, and brassica, BRs have depicted
positive functions under drought stress [94,95]. BRs interact with other plant hormones,
such as ABA, to reduce the severity of drought stress in tomato plants [91]. BR precur-
sor’s 24-Epibrassinosteroid and 28-homobrassinolide include favorable modifications in
Arabidopsis, brassica, purple mustard, and pepper (Capsicum annuum) plants’ photosyn-
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thetic antioxidant system during restricted water stress [90,96]. Overexpression of the
Arabidopsis BR biosynthesis gene AtDWF4 in canola boosted growth, yield, and water stress
tolerance, according to research [97]. Furthermore, whereas RNA interference improved
drought stress tolerance in Brachypodium [98], overexpression of the SlBRI1 gene reduces
drought tolerance in tomato plants, suggesting that drought tolerance is reliant on defective
BRs production pathways. [91,95]. The genes AtDREBD2A and AtNCED3 were elevated in
Arabidopsis plants after exogenous BR treatment [90]. Various phytohormones that regulate
drought responsive genes are listed in Table 1.

The BR-related gene OsLAC, which is connected to grain yield during osmotic stress,
is inhibited by upregulation of miR397 in O. sativa and Arabidopsis. [99,100]. Strigolactones
(SLs), which are generated from carotenoids, are a recent addition to the phytohormones
family [101]. SL, a carotenoid-derived terpene lactone, was isolated from a G. hirsutum root
culture solution in the 1960s [102]. Under environmental limits, SLs are biosynthesized
at the plant root and induce the production of lateral roots and root hairs to increase the
absorption of restricted inorganic nutrients by the roots [101]. Simultaneously, these SLs are
transported to above-ground plant sections, limiting the growth of lateral buds or branches
and lowering the branches’ inorganic nutritional requirements. Because they are generated
in plant roots and transported to the rhizospheric zone, these plant hormones are best
known for their role in the rhizospheric zone. The primary types of SLs analogues that are
chemically produced are GR5, GR7, and GR24 [93,101]. Recently, the functions of SLs in
reducing the negative effects of abiotic stressors were documented [93]. In Arabidopsis ex-
ogenous GR24 has several regulatory functions for drought tolerance. When drought stress
was applied to SL depleted Arabidopsis and tomato mutants, plants revealed alterations
in stomata and ABA levels. When lettuce plants were drought stressed, the Arbuscular
mycorrhiza symbiosis changed the level of SLs in the root systems, according to other stud-
ies [103]. SLs were found to initiate and control stomatal closure in response to stressors,
and the corresponding molecular mechanism for controlling stomatal closure was also
elucidated [104]. Drought tolerance in Arabidopsis was proven to be positively regulated by
strigolactone DWARF14, which modulates abscisic acid response, cell membrane integrity,
accumulation of epicuticular waxes, stomatal closure and biosynthesis of anthocyanin [105].

Table 1. Phytohormones regulate the drought-responsive genes in various plant species.

Plant Hormone Gene Regulation Crop Name Reference

IAA Upregulation of drought-resistant TFs and genes White clover [33]
IAA, ABA, GA, BR Upregulation of drought-responsive genes Tea [106]

CK Overexpression of cytokinin oxidase genes Tobacco [31]
ET, ABA Overexpression of ethylene-responsive factors (ERF9) Tobacco [107]

CK Overexpression of cytokinin dehydrogenase genes Barley [108]
CK Cytokinin biosynthesis gene IPT Cotton [63]

Aux, ABA, ET Ectopic expression of GhWOX4 Cotton [109]
ABA Overexpression of GhABF2 Cotton [110]
ABA Overexpression of drought resistance genes OsbZIP72 Rice [111]
ABA Overexpression of drought resistance genes OsbZIP46 Rice [40]

ABA, JA Overexpression of OsJAZ1 Rice [81]
ABA, JA Overexpressing of OsbZIP42 Rice [112]

ABA, GA, JA, IAA Overexpressing of OsSAP Rice [113]
GA Expression of GA2-specific mutants Rice [89]
ET Expression of OsERF109 Rice [114]

ABA Ectopic expression of OsSAPK2 Rice [115]
ET Overexpression of ethylene response factors (ERFs) Tomato [116]

GA, ET Downregulate the expression of SlDREB Tomato [117]
ABA Upregulation of SlGRAS4 Tomato [118]
BR Upregulation of brassinosteroid biosynthetic gene DWF4 Brassica [97]

ABA Upregulation of LOS5/ABA3 Soybean [119]
SA, ABA, GA Overexpression of GmTGA15 TFs Soybean [17]

ABA Ectopic expression of CaGol Chickpea [120]
ABA, BR Expression of AtCAMTA1 Arabidopsis [121]
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3. Drought Stress Regulation by miRNAs in Diverse Crop Species

Physiological, molecular and transcription levels of drought tolerance were well char-
acterized in crop plants [3,122]; however, miRNA mediation has not yet been properly
explained [11]. In addition to plant development, miRNAs also regulate abiotic stress-
responsive genes in plant species [123]. So, by understanding the mechanism through
which miRNAs respond to stress-responsive genes and which genes are the targets of miR-
NAs will help to develop more resistant plants [124,125]. As an important regulator of the
plant regulatory network, prior importance was given to miRNAs for post-transcriptional
regulation of drought tolerance [125]. Due to their salient features, drought-responsive
miRNAs were characterized in Arabidopsis, cereals and oil seed crops [126–130]. Role of var-
ious miRNAs to overcome the drought tolerance traits has been shown in Figure 1. A study
about the miRNA transcriptome using high-throughput sequencing technologies in wild
barley may be an effective way to determine the drought resistance attributes of miRNAs
and their target genes [9]. When maize plants were subjected to drought stress, various
miRNAs were upregulated, and some miRNAs were downregulated [131]. Drought stress
also upregulated the expression of miRNAs in wheat [132] and rice [133,134]. In Arabidopsis,
the gene expression of miR393, miR397, and miR402 increased, while the expression of
miR319c and miR389a decreased under dehydration stress [99]. miR398 and miR408 are
thought to induce drought tolerance in pea (Pisum sativum) [135] and clover [136]. In
tomato plants, miR159, miR169, miR160, miR167, miR393 are associated with dehydration
stress tolerance, by controlling hormonal signal transduction, stomatal closure and auxin-
responsive genes [137,138]. miR164 was expressed in the leaf and roots of orchard grass
when these plants were exposed to dehydration treatments [139]. A significant decrease in
the expressions of miR530a, miR1445, and miR1447 in Populus trichocarpa was observed in
plants under limited water stress, which varies from the expression pattern of miR1450 un-
der drought conditions [140]. Similarly, when sugarcane plants were subjected to drought,
several miRNAs showed higher expression and some were downregulated [141]. Further,
it was observed that the expression pattern of miRNAs is also plant tissue growth stage and
cultivars dependent. ABA treatment in rice downregulates the expression of miR167 [142];
however, drought stress upregulates it in Arabidopsis [143]. miR169 was downregulated
in Arabidopsis and clover during drought, while it was upregulated in rice [144]. Drought
stress reduced the expression of miR398 in maize [130], whereas its expression increased in
clover [144].

Figure 1. Functions of miRNAs in response to drought stress in crop plants.
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4. Crosstalk between Plant Hormones and miRNAs during Drought Stress

Hormone signaling and gene expression possess probabilistic roles in plant growth un-
der miRNA control [145]. The first link between miRNAs and phytohormones (ABA, IAA
and CK) was observed in the Arabidopsis plant [146]. After that, it was also confirmed that
GA controls miR159 during anther development. [147]. In addition, during Arabidopsis seed
germination, it was revealed that miR160 promotes the production of the auxin response
transcription factor ARF17 [148] and that miR159 induces ABA to bind to MYB (MYB33
and MYB101) mRNAs [149]. Many mRNAs involved in hormonal reactions, such as TIR1
and negative auxin signaling, are likely targets for miRNAs, and recent research has shown
that TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF), the miR319 target, regulates the
biosynthesis of the hormone jasmonic acid [150]. Despite the fact that the expression of
miRNAs in plant hormone signaling is still poorly understood, no miRNAs were linked to
cytokinin or ethylene signaling [142]. Three miRNAs, miR162, miR167, and miR413, are
controlled by ABA during environmental stress and are responsible for stress tolerance and
stress-related gene expression [142]. Furthermore, GA signaling downregulates two miR-
NAs, miR166 and miR319, which confer drought stress tolerance in plants [142]. According
to available research, ABA regulates miRNA expression and influences the expression of
some miRNA. For example, ABA regulates the expression of miR159, miR169, and miR172
in the embryonic callus of the Japanese larch (Larix kaempferi) [125].

In Arabidopsis, the higher gene expression of miR160 reduces ABA sensitivity during
germination and tends to cause unusual root morphology, leading to the promotion of
adventitious roots and lack of gravitropic responses [151]. During osmotic stress over-
expression of miR172b reduces leaf water loss, increased ABA sensitivity and increase
survival rate in soybean and Arabidopsis [152]. Researchers suggested that miR394 is impli-
cated in ABA or ABA-dependent drought reactions in Arabidopsis [153]. Drought resulted in
the miR393-dependent regulation of AUX signaling by the downregulation of AtTIR1 and
AtAFB2 genes, which are growth inhibitors and associated with increasing ABA levels [154].
The overexpression of miR393, which inhibits the expression of OsTIR1 and OsAFB2, causes
alterations in rice root development and drought tolerance [155].

Some miRNA expression is also affected by exogenous ABA, with miRNA controlling
the downstream genes of ABA. ABA hypersensitivity and drought tolerance increase on the
overexpression of miR168a, while hyposensitivity and dry hypersensitivity are observed in
knockout miR168a-2 [156]. In Arabidopsis, ABA promotes the expression of mature miR394
and precursor miR394a/b [156]. This is also linked to the overexpression of miR396 in
plants, which is responsible for reduced root length [157]. It has also been suggested that
miR396 expression influences root expansion via the ABA/ET pathway. Because it was
demonstrated to influence the expression of numerous ethylene response factor (ERF)-
and ABA-related genes, miR396-GRF regulation of the ET and ABA pathways may have
persisted [156]. Drought tolerance has also been enhanced by AtmiR396a and AtmiR396b
by influencing morphology of leaf [142]. Draught conditions in plants are thought to be
influenced by miR396 in ABA-mediated plant adaptation. Overall, the findings revealed
that miR396 has a key role for control of cell propagation by ABA and ET in response to
abiotic and biotic stresses [157].

Transgenic plants expressing the miR160-resistant AtARF10 form demonstrate the
higher expression of several ABA-regulated genes as well as dose-dependent hypersen-
sitivity to ABA, pointing to AUX as a possible ABA response modulator. ABA reduces
the expression of miR167 in rice seedlings [142]. When this regulation occurs during ger-
mination, the production of miR167 is increased due to miR160′s suppression of the ABA
pathway, which promotes lateral root formation by IAR3 depression caused by AUX [53].
When rice seedlings were exposed to ABA treatment, the expression of miR167 was signifi-
cantly reduced [142]. Similar regulation during the germination stage may restrict the ABA
pathway, causing miRNA160 and miR167 production to increase. Despite the fact that ABA
inhibits LCR (LEAF CURLING RESPONSIVENESS), which is a target of miR394a/b, and
overexpression of miR394a/b results in ABA hypersensitivity and ABA-related phenotypes,
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overexpression of LCR results in ABA-resistant phenotypes [153]. Role of miRNAs via
plant hormones to control the drought related genes/traits in various plant species is listed
in Table 2.

Furthermore, wild-type and LCR overexpressing plants collect more ABA-induced
hydrogen peroxide and superoxide anion radicals than miR394a/b-expressing plants [153].
Drought-responsive miRNAs were found in barley [142]. Under dehydration stress,
Arabidopsis showed upregulation of miR393, miR397b, and miR402, but downregulation of
miR319c and miR389a [99]. It was discovered in another study that during dehydration
stress in rice seedlings, 17 miRNAs were downregulated, including miR164c, miR319b,
and miR1861d, while 16 miRNAs (miR166h, miR172d, miR408, and others) were up-
regulated [128]. MiR398 and miR408 are downregulated in pea under restricted water
stress [135]. The crosstalk and co-expression network of miR396 and miR397 reveal a link
between BR sand auxin in rice growth and yield control [158]. Gibberellin (GA), which accu-
mulates with BR, can trigger elongation by interacting with miRNAs and target genes such
SCR (Scarecrow), DELLA, and GRF. BR affects rice yield via interacting with auxin and/or
GA [159]. Depending on the abiotic stress, different miRNAs influence the expression of
phytohormone-related genes. In response to drought stress, slymiR160, slymiR2199, and
slymiR6426 targeted the stress response gene ARF, which is associated with auxin signaling.
After selenium treatment in Astragalus, however, miR167 targeted auxin-responsive factor
(ARF) [134]. Drought resistance is aided by ABA, among the most significant phytohor-
mones, which regulates key transcriptional pathways. AtARF2, AtARF3, and miR390,
Arabidopsis ARF transcription factors, contribute to diverse phytohormonal regulation
through their downregulation [156].

Table 2. miRNAs response to drought stress via phytohormonal signaling.

miRNA Gene/Trait Effected Hormone Involved Plant Species Reference

miR165 Drought tolerance ABA Arabidopsis [160]
miR166 Drought stress tolerance ABA Arabidopsis [160]
miR160 Leaf development Aux Arabidopsis [160]
miR167 ARF6, AFR8 Aux Arabidopsis [77]
miR398 Upregulation Aux Tomato [134]
miR952 Overexpression Aux Tomato [134]
miR155 ROS homeostasis ABA Millet [21]
miR156 Antioxidant enzymatic activities ABA Millet [21]
miR399 9-cis-epoxycarotenoid dioxygenase1 proteins ABA Millet [21]
miR164 9-cis-epoxycarotenoid dioxygenase1 proteins ABA Millet [21]

miR444d IF3 genes ABA Wheat [161]
miR169d ABA-responsive TFs ABA Wheat [161]
miR156 Biosynthesis of anthocyanin genes ABA [162]
miR172 Upregulate AP2 TFs Safflower [19]
miR398 Detoxification of ROS Safflower [19]

miR164-MYB Module drought stress ABA Maize [163]
miR164-NAC Module drought stress ABA Maize [163]

miR159 Proline accumulation Tomato [164]
miR167 Downregulated ABA Rice [142]
miR162 Slightly downregulated ABA Rice [142]
miR413 Upregulated ABA Rice [142]
miR166 Downregulated GA Rice [142]
miR319 Downregulated GA Rice [142]

5. Conclusions

miRNAs are a type of small non-coding RNA of 22 nucleotides in length and are
considered critical gene expression regulators at the post-transcriptional stage. Various
plant miRNAs are conserved across species. Such observations suggest that genetic changes
based on miRNA in important crops can change environmental stress. The major function
of miRNAs is the regulation of plant hormones. A complex network operates between
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protein-coding genes, phytohormones and miRNAs, regulating various plant development
processes. They are significant key regulators for the proper development and growth
of plants under both optimal and stress conditions, through phytohormone and miRNA-
mediated gene expression regulation. In this review article, we compared the available
miRNA literature with six phytohormone classes in crop development through genetic
modulation of abiotic stress tolerance, including cytokinin (CK), gibberellic acid (GA),
abscisic acid (ABA), ethylene (ET), auxin (AUX), and jasmonic acid (JA).
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