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Long-term immunity to many viral and bacterial pathogens 
requires CD8+ memory T cell development, and the induc-
tion of long-lasting CD8+ memory T cells from a naïve, un-
differentiated state is a major goal of vaccine design. For-
mation of the memory CD8+ T cell compartment is highly 
dependent on the early activation cues received by naïve 
CD8+ T cells during primary infection. This review aims to 
highlight the cellularity of various niches within the lymph 
node and emphasize recent evidence suggesting that dis-
tinct types of T cell activation and differentiation occur 
within different immune contexts in lymphoid organs. 
 
 
TRADITIONAL VIEWS: NICHES IN STEM CELL BIOLOGY 
1 
Successful development and maintenance of tissues within the 
body relies on the progeny of undifferentiated or less-differ- 
entiated stem cells within the population to maintain their line-
age (Knoblich, 2008; Morrison and Kimble, 2006; Neumuller 
and Knoblich, 2009). During the early stages of development, 
cell division is characterized by the asymmetric segregation of 
cell fate determinants into daughter cells to promote cellular 
heterogeneity and differentiation through an evolutionarily con-
served mechanism known as asymmetric cell division (ACD). 
For continuous survival and renewal, it is essential that parent 
cells retain their stemness after division and daughter cells 
integrate intrinsic and extrinsic cues from a highly regulated 
microenvironment referred to as a niche. Niches provide an 
intimate spatial association surrounded by highly cellular and 
vascularized stroma that produce extracellular matrix proteins, 
chemokines, and cytokines to maintain the environment and 
support cellular identity, survival, and division (Jones and 
Wagers, 2008). Cellular and chemical borders maintain the 
anatomy of the niche, and the expression of specific receptors 
and ligands coordinate interactions and functional processes. 
Stem cells interact with the niche through integrin-dependent 
contacts, receiving homeostatic, survival, and proliferation sig- 
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nals. Integrins play a key role in regulating stem cell homing, 
migration, and retention, as well as a close interaction with the 
support cells within the niches (Andressen et al., 1998; Benitah 
et al., 2005; Frye et al., 2003; Fuchs et al., 2004; Hirsch et al., 
1996; Watt, 2002; Yang et al., 2015). Furthermore, integrins, 
specifically those containing a β1 subunit, can modify the axis 
of cell division in stem cells so that the two daughter cells are 
located in different microenvironments (Goulas et al., 2012; Gui 
and Homer, 2012; Metchat et al., 2015; Petridou and Skourides, 
2016; Streuli, 2009; Watt, 2002), which has lasting implications 
for lineage determination. 
 
LYMPHATIC NICHES  
 
The immune system is comprised of primary and secondary 
lymphoid organs. Both the thymus and the bone marrow are 
sites of immune cell origin, giving rise to the myeloid and lym-
phoid lineages. Development within and egress from these 
sites is dependent on several factors, including cell-cell interac-
tions, cytokine and chemokine signals, and receptor expression 
level. Lymphoid organs support identity of undifferentiated cells 
during homeostasis, maintaining quiescence and multipotency, 
while also giving rise to differentiated cells capable of an im-
mune response upon pathogenic challenge. The primary con-
stituents of niches are stromal cells, providing integrin, chemo-
kine, and cytokine cues. Both the thymus and the lymph node 
host a number of stromal cells that segregate into specific re-
gions and create macroniches, guiding cell-cell interactions. 
Lymphatic niches must also stimulate activation, differentiation, 
and proliferation while retaining a subset of multipotent cells. A 
successful niche integrates signals to balance a cellular re-
sponse with the needs of the organism, preventing depletion of 
low-frequency cells while restricting excessive expansion. 
Therefore, lymphatic niches must maintain a stable pool of cells 
poised for an immune response while tightly regulating quies-
cence and activation to avoid inappropriate immune responses 
and autoimmunity. 

As primary sites of immune cell maintenance and initiation of 
immune responses the lymph nodes act as a niche for various 
immune cells. The lymphatic architecture can be divided into 
several regions both anatomically and functionally (von Andrian 
and Mempel, 2003). The outermost layer of the lymph node is 
the subcapsular sinus (SCS), where the afferent lymph enters 
the tissue and macrophages reside for access to soluble fac-
tors in the lymph (Berney et al., 1999; Carrasco and Batista, 
2007; Junt et al., 2007; Kuka and Iannacone, 2014; Phan et al., 
2007; 2009). Below this layer is the cortex, which can be divided 
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into two regions – the follicular cortex (outer cortex) and the 
paracortex (inner cortex). The outer cortex, known as the B cell 
zone, is rich in B cells, CD4+ follicular T helper cells, and follicu-
lar dendritic cells (FDCs), while the paracortex, referred to as 
the T cell zone, includes CD4+ and CD8+ T cells, antigen-
presenting cells (APCs) known as dendritic cells (DCs), and 
fibroblastic reticular cells (FRCs) (Marchesi and Gowans, 1964; 
Mondino et al., 1996). It is here that adaptive immunity is initiat-
ed by interactions between T cells and DCs. Finally, the inner-
most region of the lymph node is the medulla, comprised of 
macrophages and plasma cells and containing medullary cords, 
arterial and venous vessels, and sinusoidal vessels that flow 
into the efferent lymphatics (Gretz et al., 1997; Kelly, 1975; 
M'Rini et al., 2003). Expression of specific receptors and lig-
ands by resident stromal and lymphatic cells provides entry and 
guides interactions within these macroniches. The importance 
of these cues for niche development and maintenance has 
been demonstrated in studies where chemokine receptor and 
chemokine knockout mice exhibit reorganized lymph node 
structure and altered cell localization and responses (Förster et 
al., 1999; Junt et al., 2005; Khader et al., 2007; Okada et al., 
2002; Voigt et al., 2000). 

Over the last 15 years, intravital multi-photon imaging has led 
to many pivotal studies characterizing the interactions and be-
havior of cells within the lymph node during immune responses 
(Bajenoff et al., 2006; Beuneu et al., 2006; Bousso and Robey, 
2003; Castellino et al., 2006; Garcia et al., 2007; Henrickson et 
al., 2008; Hugues et al., 2004; 2007b; Lindquist et al., 2004; 
Miller et al., 2002; 2004a; 2004b; Stoll et al., 2002; Wei et al., 
2007). While these groundbreaking studies have provided in-
sight into important migration patterns and interactions during 
both homeostasis and infection, their measurements are limited 
to specific regions and relatively narrow time periods. In addi-
tion to its macroniches, the lymph node grows more complex 
under inflammatory conditions, with global changes to structure 
and the formation of microniches that guide immune responses. 
Following sections will focus on the changes in lymphatic nich-
es that regulate T cell differentiation.  
 
STROMAL CELLS  
 
The lymphatic stroma makes up ~1% of the cellularity in the 
lymph node and comprises several cell types: blood endothelial 
cells, lymphatic endothelial cells, FRCs, integrin α7 pericytes 
(IAPs), and FDCs (Girard et al., 2012; Malhotra et al., 2012; 
Turley et al., 2010). These cells are distinguished by expression 
of podoplanin (gp38) and platelet endothelial cell adhesion 
molecule-1 (CD31), and they provide structural support and 
form various venules within the lymph node (Malhotra et al., 
2012). Blood endothelial cells form capillaries and high-
endothelial venules (HEVs), which are entry sites for leukocytes 
leaving the blood (Girard and Springer, 1995; Marchesi and 
Gowans, 1964). Lymphatic endothelial cells construct the affer-
ent and efferent lymphatic vessels, which act as entry sites for 
DCs exiting the lymph (afferent) and egress sites into the lym-
phatics (efferent) (Förster et al., 2012; Grigorova et al., 2009; 
2010; Sinha et al., 2009). FRCs and FDCs ensheath the reticu-
lar collagen network and scaffold the T and B cell zones, re-
spectively. Here, they act as a network of fibers covered in 
chemokines, exploited as a track for migrating lymphocytes 
(Bajenoff et al., 2006; Link et al., 2007; Luther et al., 2000). A 
small fraction of FRC-like cells, known as marginal reticular 
cells, reside within the SCS and express CXCL13, RANK-L, 
and MAdCAM-1, molecules that are essential for lymph node 

development, initial regionalization, and stromal cell growth 
(Katakai et al., 2008; Roozendaal et al., 2009). Finally, IAPs are 
the most recently characterized lymphatic stromal cell, compos-
ing a small portion of the stroma (~10%). They are located 
throughout the cortex and medulla and uniquely express integ-
rin α7. Their location within the lymph node suggests various 
interactions and explains their expression of a mix of T cell, B 
cell, and APC molecules, such as chemokines CCL21/19 and 
CXCL9/10/13 and APC stimulating factors Flt3L, BAFF, and 
CSF-1 (Malhotra et al., 2012). 

Stromal cells are not merely physical support for the lymph 
node; they serve many functions during homeostasis and in-
flammation. FRCs and FDCs form a conduit system that chan-
nels small molecules under 70 kDa in size from the SCS to 
HEV, including chemokines, antigens, and cytokines (Gretz et 
al., 2000; Roozendaal et al., 2009; Sixt et al., 2005). This is 
especially important considering that chemokine decoration of 
HEVs leads to leukocyte adhesion and transmigration from the 
blood into the lymph node, promoting an immune response. 
Conduits in the lymph node can process soluble antigens pro-
vided through the conduit system, supplying APCs with tissue-
derived antigens for stimulation. FRCs can produce extracellu-
lar matrix (ECM) proteins and CCL21/19 to guide T cell motility 
as well as cytokines IL-7 and IL-15 to provide homeostatic sur-
vival signals (Link et al., 2007; Luther et al., 2000). FRC ex-
pression of CCL21/19 also attract DCs through chemokine 
receptor CCR7, thereby allowing DCs to migrate to and adhere 
within the T cell zone (Seth et al., 2011). This enhances the 
probability of successful encounters between naïve T cells and 
antigen (Ag)-bearing DCs. On the other hand, FDCs express 
CD35, CD23, and MAdCAM-1 and play and important role in B 
cell recruitment and antibody production (Ansel et al., 2000). 
Additionally, FRCs can dampen the T cell response by upregu-
lating transcription of the enzyme inducible nitric oxide synthase 
(iNOS) in response to T cell-produced interferon-γ (IFNγ) 
(Lukacs-Kornek et al., 2011; Siegert et al., 2011). This subse-
quently blocks T cell proliferation, acting as a control mecha-
nism for inflammation (Khan et al., 2011). FRCs secrete factors 
such as vascular endothelial growth factor (VEGF) to stimulate 
HEV growth (Webster et al., 2006), increasing lymphocyte ac-
cess to the lymph node entry points. The lymphatic stromal 
cells also contribute to peripheral T cell tolerance, as both 
FRCs and IAPs are capable of presenting self-antigens (Cohen 
et al., 2010; Fletcher et al., 2010). These cells express Aire and 
relevant peripheral tissue-restricted antigens under homeostatic 
conditions, but following inflammation, IAPs strongly alter tran-
scription of peripheral tissue antigens.  

Following infection, migratory DCs enter the lymph node from 
the periphery through the afferent lymphatic vessel, inducing 
inflammatory signals in the lymph node and triggering lymphatic 
stromal response. Afferent lymphatic vessels expand to en-
hance the recruitment of Ag-bearing DCs from the tissue 
(Mionnet et al., 2011). FRCs detect increase in lymph flow, 
inflammatory cytokines, and DCs, as well as mechanical stress 
and hypoxia induced by trapped lymphocytes (Yang et al., 
2014). In response, FRCs produce VEGF to increase the per-
meability, number, and size of HEVs, enabling lymphocyte entry. 
FRC growth also extends into the medulla, which increases in 
size to accommodate short-lived plasma cells. Under these 
conditions, the lymph node expands several folds in size sev-
eral fold while leaving the dense organization intact. This ex-
pansion of the lymphatic stroma is intended to support the im-
pending increase of lymphocytes due to activation and prolifer-
ation, as the space available to lymphatic cells remains similar 
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to homeostatic conditions (Bajenoff et al., 2006). 
 
LYMPHOCYTES 
 
The response orchestrated by the lymphatic stromal cells 
guides subsequent responses in different lymphatic regions. 
Chemokines, cytokines, and growth factors normally expressed 
by APCs and lymphocytes are upregulated to ensure their re-
cruitment and localization (Chyou et al., 2011; Yang et al., 
2014). During activation, lymphocytes undergo several chang-
es, including increases in size and altered protein expression 
patterns. Alterations in chemokine and integrin expression pat-
terns during this process allow the cells to migrate and localize 
within different regions of the lymph node (Chtanova et al., 
2009; Groom et al., 2012; Hickman et al., 2008; 2011; 
Kastenmuller et al., 2013; Sung et al., 2012). Both the T cell 
and B cell zones provide excellent examples of lymphatic mac-
ro- and microniches. A portion of CD4+ T cells downregulate 
CCR7 and upregulate CXCR5 expression, allowing them to 
respond to CXCL13 produced in the B cell zone macroniche 
and localize at the T-B border to interact with B cells (Breitfeld 
et al., 2000; Schaerli et al., 2000). Furthermore, regulation of 
CXCR4 levels on T cells allows them to enter germinal centers, 
which act as specialized microniches for T-cell-dependent B cell 
proliferation and differentiation (Victora et al., 2010). In the par-
acortical macroniche, expression of CCL21/19 recruits both T 
cells and DCs to adhere and migrate along the FRC network. 
During T cell activation, multiple T cells can swarm a single DC 
(Mempel et al., 2004), forming microniches enriched in cyto-
kines produced by both T cells and DC at levels unique to the 
cluster. Growing evidence suggests that localization within both 
macro- and microniches regulates cytokine and costimulatory 
signals and subsequent cell differentiation. 

Early in vivo imaging studies revealed that T cell activation 
occurs in distinct phases defined mainly by migratory patterns 
of the T cell (Mempel et al., 2004) (Fig. 1A). Importantly, the 
CD8+ T cell response is dependent on the interactions that 
occur during these phases. The initial phase of high motility 
allows for antigen scanning, a process where dynamic synapse 
relocation allows T cells to find an APC bearing a cognate lig-
and. Upon contact with such an APC, T cells decrease in speed 
to enable transient, motile encounters referred to as kinapses 
(Azar et al., 2010; Fooksman et al., 2010; Moreau et al., 2012). 
During these serial encounters, T cells accumulate signals from 
different APCs to reach the signaling threshold for immunologi-
cal synapse (Grakoui et al., 1999) formation and stable conju-
gation (Pryshchep et al., 2014). T cells enter the second phase, 
characterized by low-motility T-APC interactions in spatially 
confined swarms (Mempel et al., 2004; Moreau et al., 2015). 
After some time of signal accumulation, T cells regain their 
motility and enter the third phase of activation, a period in which 
T cells undergo massive proliferation; transient contacts with 
DCs, other CD8+ T cells, and CD4+ T cells; and cytokine pro-
duction (Eickhoff et al., 2015; Hor et al., 2015; Mempel et al., 
2004). 

Differences in initial priming events, such as patterns of tran-
sient and stable encounters with Ag-bearing APCs, has lasting 
implications on T cell activation, cytokine production, and effec-
tor function, both qualitatively and quantitatively. Additionally, 
downstream signaling is essential for the upregulation of integ-
rin affinity, which mediates cell adhesion, costimulation, and 
actin reorganization critical for T cell activation, proliferation and 
adhesion, and the mobilization of transcription factors to the 
nucleus to promote the expression of genes necessary for T 

cell growth and differentiation. Although costimulation is primari-
ly provided by CD28 and LFA-1 during stable T-APC interac-
tions, transient contacts with APCs and other lymphocytes in 
the third phase provide CD8+ T cells additional proliferation, 
differentiation, and survival cues through CD40-, CD27-, CD30-, 
4-1BB-, OX40-, and TNFR2-mediated signals (Alzona et al., 
1994; Cannons et al., 2001; Hendriks et al., 2003; Redmond et 
al., 2009; Twu et al., 2011). Importantly, these encounters pro-
vide feedback through reciprocal signaling to influence cytokine 
secretion by DCs, reinforcing the niche milieu. 
 
FACTORS LEADING TO CELL DIFFERENTIATION  
 
Recent observations have demonstrated that CD8+ T cells fully 
activate and expand with as little as 24 hours of antigen stimu-
lation (Bevan and Fink, 2001; Blattman et al., 2002; Kaech and 
Ahmed, 2001; van Stipdonk et al., 2001). Unlike CD4+ T cells, 
proliferation and differentiation into effector T cells could occur 
without the need for additional antigen, and this fate was inher-
ited by daughter cells without additional antigenic stimulation. 
These findings suggest that CD8+ T cell fate may be imparted 
during early T cell activation through T-APC interactions (Fig. 
1B). Although a limited number of factors influence CD8+ T cell 
differentiation, APCs produce inflammatory cytokines IL-12, 
IFNγ, and IFNα, which regulate expansion, cytokine production, 
and effector programs (Joshi and Kaech, 2008). Additionally, IL-
2 exposure enhances CD8+ T cell proliferation and expansion. 
The role of cytokines is especially apparent considering that the 
presence of these inflammatory cytokines during weak antigen 
stimulation can rescue the response to a similar level as that 
obtained with strong antigenic exposure (Ahlers et al., 2001; 
Schurich et al., 2013). Furthermore, there are several cell-
intrinsic factors affected by T-APC dwell time, signal accumula-
tion, and cytokine exposure, including T-bet, Blimp-1, Bcl-3, Bcl-
6, ID2, p27kip, and Bmi-1 (Cui and Kaech, 2010; Hand et al., 
2010; Heffner and Fearon, 2007; Lu et al., 2014; Xin et al., 
2016; Yeo and Fearon, 2011). Alternatively, localization of acti-
vating CD8+ T cells in microniches within the lymph node may 
regulate their differentiation (Figs. 1C and 1D). In this case, 
CD8+ T cells are exposed to varied costimulation, cytokines, 
chemokines, ECM, CD4+ T cell help, and APC and stroma inter-
actions, providing cues for cell fate and differentiation. 

These scenarios are not mutually exclusive, and an integrat-
ed model best fits the experimental data. The presence of in-
flammatory cytokines during stable T-APC interactions can 
induce cell fate programs in CD8+ T cells. The amount of cyto-
kine exposure and costimulation received during these interac-
tions can change chemokine receptor and integrin expression 
patterns. T cells can be guided to different microenvironments 
due to their sensitivity to various external cues, enabling locali-
zation to microniches within the lymph node that reinforce or 
modify the initial activation and fate signals. For instance, APCs 
and both activated CD4+ and CD8+ T cells migrate to the inter-
follicular region of the lymph node. This is in part due to CCR5 
upregulation on newly activated CD8+ T cells and their subse-
quent recruitment to CCL3/4-rich microenvironments created by 
CD4+ T cell-APC interactions (Castellino and Germain, 2006; 
Hugues et al., 2007a). During this time, FRCs downregulate the 
expression of CCL21/19, shifting motility patterns from a ran-
dom walk to chemotactic migration. Additionally, studies have 
demonstrated that terminal effector differentiation occurs in the 
outer regions of the lymph node. CXCL9/10 attract newly acti-
vated CXCR3-expressing CD8+ T cells to Ag-rich DC and mac- 
rophage microenvironments that favor commitment to a termi- 
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Fig. 1. Localization within the lymph node regulates differentiation. (A) CCR7+ naïve CD8+ T cells and Ag-bearing DCs localize in the paracorti-
cal region (Inner Cortex, blue) of the lymph node via stromal cell (blue lines) produced CCL21/CCL19 signals. Here, CD8+ T cells undergo 
three phases of activation characterized by their motility and DC interactions. Key signals guiding cell behavior and differentiation are high-
lighted. (B) After initial activation signals, T cells undergo cell division. Symmetric cell division (upper panel) accounts for a majority of cell divi-
sion and yields daughter cells with similar surface and intracellular protein content. Current dogma indicates that signals received during early 
activation, such as initial T-DC signal duration and cytokine exposure, regulate cell differentiation. Additionally, later in the immune response, 
activated T cells may receive additional signals to drive differentiation towards memory phenotypes. A small subset of recently activated T cells 
undergoes cell division while in contact with a DC (lower panel), allowing intracellular polarity dictated by signaling at the T-APC contact site to 
be maintained throughout division. Daughter cells proximal to the DC inherit surface and intercellular proteins that give rise to effector cells, 
while distal daughter cells acquire a memory phenotype. (C, D) During the inflammatory response, the lymph node undergoes chemical and 
physical changes that give rise to specialized cellular niches with unique cytokine and chemokine profiles. Microniche composition is deter-
mined by existing stromal cells and cells residing in the macroniche. Expression of chemokine receptors and integrins on recently activated T 
cells guide entry to microniches, allowing cells to receive distinct cytokine and costimulatory signals (highlighted in each panel). For example, 
recently activated T cells reduce CCR7 and increase CXCR3, CXCR4, and CXCR5 expression to various degrees. Diverse expression levels 
allow T cells to respond to chemokines expressed in the outer cortex (purple), B cell follicles (pink), and SCS (yellow), providing access to 
distinct microniches. Activated CD8+ T cells localize through CXCL9/10/11 signals to the SCS, which contains macrophages, neutrophils, natu-
ral killer cells, and marginal reticular cells. Additionally CD4+ T cells and DCs migrate to the outer cortex, which is rich in B cells, FDCs, and 
chemokines CXCL12 and CXCL13. While simplified, the schematic highlights the complexity of lymphatic organization and microniches (C-D), 
which should not be viewed as discrete entities, but rather overlapping gradients and cues. (E) Surface expression levels arising from early 
activation signals and cell division guide effector and memory cells into distinct regions of the lymph node. Interactions within distinct mi-
croniches provide diverse costimulation and cytokine exposure, reinforcing or altering early differentiation programs. 
 
 
 
nal effector phenotype and IFNγ production (Barbi et al., 2007; 
Hickman et al., 2015; Hu et al., 2011). Cumulatively, these data 
suggest that signals arising from both long-lasting and transient 
T-APC interactions and exposure to different microenviron-
ments regulate cell differentiation programming. The balance of 
cytokine exposure and costimulatory interactions coordinates 
the expression of surface receptors for localization (Fig. 1E). 
Subsequent signals activate transcription factors, inducing dif-
ferentiation and effector programs. While strong effector pro-

grams are beneficial for pathogen clearance, programs for 
memory cell differentiation must also initiate to provide long-
lasting protection. Microniches provide varied exposure levels 
for a range of memory and effector fate programs. 
 
DECIDING TO REMEMBER  
 
The expansion phase of a CD8+ T cell response gives rise to a 
large number of effector cells at its peak (Kalia et al., 2010; 
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Wherry and Ahmed, 2004). During the contraction phase, over 
90% of effector CD8+ T cells undergo apoptosis-mediated cell 
death. A small fraction of the cells, referred to as memory CD8+ 
T cells, survive. Memory T cells include central memory (TCM) 
cells, residing in lymphatic tissues; effector memory (TEM) cells, 
inhabiting non-lymphoid tissues and the spleen (Sallusto et al., 
1999); and tissue-resident memory (TRM), located in peripheral 
non-lymphoid tissues. While TCM cells lack immediate effector 
function and require stimulation to produce IL-2 and proliferate 
extensively, TEM and TRM cells possess immediate effector func-
tion but lack proliferative abilities. Under homeostatic and in-
flamed conditions, TCM cells proliferate and differentiate to main-
tain both TCM and TEM repertoires. Early in the response, CD8+ T 
cells are defined as memory precursor effector cells (MPECs), 
which go on to generate TEM and TCM cells, and short-lived ef-
fector cells (SLECs) (Masopust et al., 2004). 

The generation of memory cells can be affected by many fac-
tors, including the strength and duration of antigenic stimulus, 
inflammatory milieu, and the modulation of chemokine and 
homing receptors. There is an abundance of studies aiming to 
determine whether priming and the subsequent migratory cues 
of CD8+ T cells effects the differentiation of memory and effec-
tor cells. Some models suggest that a portion of effector CD8+ T 
cells receive additional signals at the end of the primary infec-
tion that allow them to differentiate into memory cells, while 
other models suggest that the effector CD8+ T cells that survive 
the contraction phase simply adapt to their new non-
inflammatory microenvironment and lose their effector pro-
grams due to a lack of further differentiation signals enforcing 
the new phenotype. Another model stipulates that all cells be-
come memory precursor cells to maintain the plasticity found in 
this population and that further differentiation is required to pro-
gram different effector functions (Allam et al., 2009; Bannard et 
al., 2009; Baumgartner et al., 2012; Buentke et al., 2006; 
Chang et al., 2007; Haining et al., 2008; Harrington et al., 2008; 
Huster et al., 2009; Joshi et al., 2007; Kaech et al., 2003; 
Lohning et al., 2008; Maris et al., 2003; Pearce and Shen, 
2007; Sarkar et al., 2008; Schulz et al., 2009; Seder et al., 
2008; Teixeiro et al., 2009; Vezys et al., 2009; Wherry and 
Ahmed, 2004; Williams et al., 2008). One of the more contro-
versial models states that effector and memory differentiation 
are two divergent pathways. Recent evidence showed that 
early and brief exposure to antigen is sufficient to direct both 
long-lived and short-lived effector CD8+ T cell fates (Bevan and 
Fink, 2001; Blattman et al., 2002; Kaech and Ahmed, 2001; van 
Stipdonk et al., 2001). Additional studies have revealed that the 
formation of MPECs and SLECs begin to diverge from a com-
mon pool of KLRG1low effector cells after 7-10 cell divisions 
(Joshi and Kaech, 2008) and that ACD is a mechanism for 
CD8+ memory T cell development (Chang et al., 2007). 

Data from our studies (in preparation) and others have 
shown that one set of daughter cells arising from ACD are ca-
pable of forming memory cells and clearing secondary infection 
(Chang et al., 2007). Taken together, these data suggest that 
one set of daughter T cells contains a specialized memory pre-
cursor cell that is capable of giving rise to long-lasting, less 
differentiated stem-cell-like memory cells. Recent studies have 
identified TCM cells as adult stem cells of the immune system 
that are capable of repopulating the CD8+ T cell compartment in 
response to pathogenic exposure as well as naïve CD8+ T cells 
(Gattinoni et al., 2009; 2011). We would hypothesize that ACD 
gives rise to this stem-cell-like population of TCM cells, which 
can go on to give rise to TRM and TEM cells to clear a secondary 
response while maintaining their plasticity through self-renewal 

and differentiation. 
It is important to emphasize that these models are not mutu-

ally exclusive. In fact, the divergent differentiation model does 
not require complete asymmetry in the first division, and com-
putational models have shown that asymmetric inheritance only 
occurs a fraction of the time (Thaunat et al., 2012). Our hypoth-
esis does not exclude the possibility that TRM and TEM cells can 
develop from symmetric cell division. While these cells provide 
some level of protection at the tissue site, they lack the ability to 
mount a complete secondary response and clear infections. 
The process of ACD is an evolutionarily conserved mechanism 
of stem cells in various tissues in the body. Our data and those 
of others suggest that ACD is also a conserved mechanism in 
the immune system, used to ensure that a less-differentiated, 
stem-cell-like memory precursor cell is established early on 
during primary infection. We would propose an inclusive model, 
suggesting that memory development incorporates a range of 
differentiation methods. The factors that affect the development 
of a memory compartment occur at each step of T cell activa-
tion. A combination of signals, T-APC dwell time, and mi-
croniche localization alter differentiation and cell fate, and it is 
tempting to speculate that different types of memory cells arise 
from various differentiation mechanisms. 
 
CONCLUSION 
 
The existing dogma states that a local milieu created by T cell-
APC interactions during T cell activation dictates T cell differen-
tiation and cell fate (Curtsinger et al., 1999). The effects of T-
APC interaction duration and frequency on T cell activation are 
still under debate, as some studies show that long-lived interac-
tions are required for full activation (Benvenuti et al., 2004; 
Huppa et al., 2003; Iezzi et al., 1998), while others show that T 
cell activation can occur as a result of transient interactions 
(Faroudi et al., 2003; Gunzer et al., 2000). While these signals 
are integral to T cell activation and differentiation, our recent 
work demonstrates that Rab27-mediated asymmetric inher-
itance of LFA-1 during CD8+ T cell division results in an unequal 
distribution of migratory and cellular adhesion factors into prox-
imal and distal daughter cells. These factors dictate the locali-
zation of daughter T cells to distinct lymph node microenviron-
ments, exposing them to different determinants (i.e., antigens, 
cytokines, interactions) in the lymph node to ensure T cell di-
versity during an immune response. While previous studies 
have noted the importance of LFA-1-ICAM-1 interactions in 
CD8+ T cell memory development (Bose et al., 2013; Cox et al., 
2013; Ghosh et al., 2006; Parameswaran et al., 2005; Scholer 
et al., 2008; Zumwalde et al., 2013), a direct link between LFA-
1 and memory formation had yet to be reported. 

Recent work highlights the importance of studying CD8+ T 
cell crosstalk with the stroma, other lymphocytes and APCs, the 
ECM, and the chemotactic and cytokine factors present in lym-
phatic niches during activation and differentiation. Unfortunately, 
the current methodology for studying T cell localization uses 
immunohistochemistry of thin tissue sections or whole tissue 
mounts. This leads to disruption of the tissue structure and 
cellularity, a loss of spatial relations between important epitopes 
due to extensive mechanical processing, and restrictions on the 
number of antibodies/fluorophores used in each imaging. To 
address these issues, a technique was recently developed that 
allows for antibody staining and imaging penetration into an 
intact organ through a process known as CLARITY (Chung and 
Deisseroth, 2013; Chung et al., 2013). Further developments 
have optimized the procedure (Murray et al., 2015) to allow 
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intact organs to be chemically processed and stained with dif-
ferent antibodies up to 22 times. Investigation of the lymphocyte 
localization within different cytokine and chemokine microenvi-
ronments through multiplexed labeling and imaging of intact 
lymph nodes will shed light on localization signals and differen-
tiation programs.  
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