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Abstract: Vortex beams have a typical characteristic of orbital angular momentum, which provides
a new degree of freedom for information processing in remote communication and a form of non-
contact manipulation for trapping particles. In acoustics, vortex beams are generally observed
on the surface of a metamaterial structure or in a waveguide with a hard boundary owing to the
characteristic of easy diffusion in free space. The realization of an acoustic vortex beam with a
long-distance propagation in free space still remains a challenge. To overcome this, we report a type
of acoustic Bessel vortex (ABV) beam created by a quasi-three-dimensional reflected metasurface
in free space based on phase modulation. By using the Bessel and vortex phase profiles, we can
realize an ABV beam with the high performances of both Bessel and vortex beams, and its effective
propagation distance is larger than 9.2λ in free space. Beyond that, we discuss the bandwidth and
topological charge of the ABV beam in detail, and the fractional bandwidth can reach about 0.28. The
proposed ABV beam has the advantages of a high-performance vortex, long-distance propagation,
and broad bandwidth, which provide a new pathway for designing multifunctional vortex devices
with promising applications.

Keywords: acoustic wave; vortex beam; Bessel beam; acoustic metasurfaces; phase modulation

1. Introduction

Recent years have witnessed the great development of acoustic vortex beams owing
to their extensive applications in a wide range of fields, such as sound communication [1,2]
and particle trapping [3–5]. The acoustic vortex beam can transfer different-order vortex
wavefronts with orbital angular momentum, opening up a new degree of freedom for
sound modulations [6–10]. Traditionally, by designing active sound arrays composed of
phased sources [2,11–13], researchers have experimentally realized acoustic vortex beams
to manipulate micro-particles underwater. However, the high cost and complex circuits of
the active systems create some difficulties for their further applications.

To overcome these restrictions, the emergence of acoustic metamaterials [14–20] and
metasurfaces [21–27] have provided alternative design schemes for passive acoustic lenses
of vortex beams. As examples, by designing thickness-gradient structures [28,29] or an
acoustic plate with a spiral shaped structure [30–32], the acoustic vortex beam can be
observed around structure surfaces. However, their structures must satisfy the geometric
characteristics of spiral distribution. On the other hand, by tailoring phase profiles of
acoustic metasurfaces, sound energy can also be formed as an acoustic vortex beam based
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on phase modulation [33–37]. For instance, by designing phase profiles of Helmholtz
resonators in a circular waveguide, acoustic vortex beams are also observed, and the sound
energy of vortex beams can propagate in the waveguide with a hard boundary [34,37].
Furthermore, multifunctional vortex beams of sound can also be obtained by changing
phase profiles, such as focusing vortices [38,39] and vortex beams with asymmetric prop-
agation [40], which have potential special applications. Additionally, the finite element
method based on the COMSOL Multiphysics software has been introduced to numerically
design and optimize different types of acoustic vortex devices, such as unidirectional vortex
beams through acoustic Weyl crystal with a topological lattice defect, and a vortex converter
composed of an acoustic metagrating in a waveguide [10,37,40], and the corresponding sim-
ulated results agree well with the measured ones. However, these aforementioned vortex
beams are generally observed on structure surfaces or in waveguides with a hard boundary
owing to the characteristic of easy diffusion in free space. The realization of an acoustic
vortex beam with long-distance propagation in free space still poses a great challenge.

In our work, we propose a type of quasi-three-dimensional (quasi-3D) reflected meta-
surface to realize an acoustic Bessel vortex (ABV) beam by phase modulation. Based on the
Bessel and vortex phase profiles, we can realize an ABV beam with the advantages of both
a high-performance vortex and long-distance propagation in free space, which overcomes
the limitations of easy diffusion in free space. Moreover, we discuss the working bandwidth
of the ABV beam in detail, and its fractional bandwidth can reach about 0.28, showing
the characteristic of broad bandwidth. Finally, we design and realize ABV beams with
different topological charges. The designed ABV beams with a high-performance vortex
and long-distance propagation may lead to important advances in diverse applications.

2. Design and Methods

As schematically shown in Figure 1a, we propose a type of quasi-3D reflected unit
composed of a cuboid solid with a groove on the upper side. The cross sections x-z and y-z
of the unit are the same, and the structure parameters are selected as w = 1.0 cm, h = 2.5 cm,
and d = 0.1 cm. The groove depth h0 is tunable to modulate reflected phase delays of sound.
The incident wavelength λ of sound is selected as 3.8 cm (viz., frequency f 0 = 9.0 kHz
in air). Throughout this work, the characteristics of sound reflections are numerically
simulated by the COMSOL Multiphysics software. Here, the pressure field is calculated
in the acoustic–solid interaction module, and the solid structure is made of epoxy resin to
satisfy the acoustic-structure boundary conditions. The material parameters are adopted as
follows: the density ρ = 1180 kg/m3, the longitudinal wave velocity cl = 2720 m/s, and
the transversal wave velocity ct = 1460 m/s for epoxy resin; ρ = 1.21 kg/m3 and the sound
velocity c = 343 m/s for air.
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Figure 1b shows the reflected phase delays of sound created by the quasi-3D units
with different values of h0. We can see that, in the range 0.1 < h0 < 2.4 cm, the theoretical
reflected phase delay (blue solid line) can cover the whole 2π range. Here, we select
16 discrete values of h0 (red open circles) to realize an equally spaced phase delay from 0
to 2π with a step of π/8.

Based on the selected 16 reflected phased units, we can design a type of planar quasi-
3D reflected metasurface of the ABV beam by phase modulation. Figure 2a shows the
normal incidence of an acoustic wave on the quasi-3D reflected metasurface, and the sound
reflections are formed as an ABV beam. To design it, we introduce the phase profile of a
vortex beam in free space, which is expressed as

ϕs(θ) = nθ, (1)

where n is the topological charge of the vortex beam [31], and θ is the azimuth angle which
is in the range from 0 to 2π in the x-y plane. To realize a vortex beam with long-distance
propagation in free space, we here introduce a non-diffracting Bessel phase profile. Based
on the 3D generalized Snell’s law [41] and Equation (1), the final phase profile of the
designed quasi-3D reflected metasurface in the x-y plane is given as

ϕ = −k sin α
√

x2 + y2 + nθ, (2)

where k = 2πf /c is the wave number in air, and c and f are the sound velocity and the
frequency, respectively. α is the base angle of the Bessel beam, and the parameter θ
satisfies tan θ = x/y. Here, the parameters α and n are selected as 15◦ and 1, respectively,
and the size of the quasi-3D metasurface in the x-y plane is 40 cm × 40 cm. Figure
2b,c show the theoretical continuous and discrete phase delays of the quasi-3D reflected
metasurface in the x-y plane, respectively. It is worth noting that the phase distribution
shows characteristics typical of a vortex beam, and both types of phase profiles agree well
with each other.
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Figure 2. Design of the reflected ABV beam. (a) Schematic of a quasi-3D reflected metasurface of ABV beam, and its
(b) theoretical continuous and (c) discrete phase profiles.

3. Results and Discussion
3.1. Performance of ABV Beam

Based on the two types of phase profiles, we realized an ABV beam by designing
a quasi-3D reflected metasurface. Figure 3a shows the simulated 3D reflected intensity
distribution created by the designed quasi-3D metasurface composed of 16 types of phased
units at 9.0 kHz. We observed that the sound reflections were concentrated into a long-
distance hollow cylinder along the z direction, which can cover a range from 28 to 72 cm
(|p|2 > 5.0 Pa2). On the other hand, the energy of the sound beam in the central region
was almost zero, showing typical features of both Bessel and vortex beams. To further
show the characteristics of the ABV beam, we also displayed the reflected acoustic intensity



Micromachines 2021, 12, 1388 4 of 8

and phase distributions of the ABV beam at 5 selected cross sections (z = 30, 40, 50, 60,
and 70 cm), which are shown in Figure 3b,c, respectively. It is obvious that, with the
increase of z, there existed a concentric ring-shaped region at the center of each cross
section (Figure 3b), which was the same as that in Figure 3a. Beyond that, the sound energy
in the ring-shaped region (|p|2 > 6.0 Pa2) was much larger than the central energy of
sound (|p|2 ≈ 0) at the 5 cross sections owing to the existence of a phase singularity at
the center (Figure 3c). The phase distributions in Figure 3c show the typical characteristics
of the vortex beam with n = 1, further verifying that the ABV beam had both advantages
of long-distance propagation and a high-performance vortex in free space. In addition to
the aforementioned results, we simulated the acoustic intensity and phase distributions
created by the theoretical continuous phase profile for comparison, which are shown in
Figure 3d–f. We can see that the characteristics of the observed ABV beam matched well
with those in Figure 3a–c, which further demonstrates the performance of the reflected
ABV beam by the quasi-3D metasurface.
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Figure 3. The performance of the reflected ABV beam with n = 1 at 9.0 kHz. (a) Simulated 3D reflected
intensity distribution of the ABV beam created by the quasi-3D metasurface, and its corresponding
reflected (b) intensity and (c) phase distributions at 5 selected cross sections z = 30, 40, 50, 60, and
70 cm. (d) Simulated 3D reflected intensity distribution of the ABV beam created by the theoretical
continuous phase profile, and its corresponding reflected (e) intensity and (f) phase distributions at
the 5 cross sections.

To quantify the performances of the ABV beam, we also display the simulated longi-
tudinal and transverse intensity distributions of the ABV beam (the lines I–III in Figure 3a),
which are shown in Figure 4. We observe that two acoustic energy peaks (|p|2 ≈ 12.0 Pa2)
existed on both sides of x = 0, while the sound intensity at x = 0 was close to zero (Figure 4a).
In addition, as shown in Figure 4b, the sound intensities along line II were much larger
than those along line III (|p|2 ≈ 0), which arose from the existence of the phase singularity
along line III. Moreover, the total width at half maximum of the sound intensity along line
II reached about 35 cm (9.2λ), showing that the energy of the ABV beam can propagate a
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long distance in free space. Therefore, we further verified the high performances of both
Bessel and vortex beams for the ABV beam created by the quasi-3D reflected metasurface.
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3.2. Bandwidth of ABV Beam

Next, we discuss the bandwidth of the quasi-3D reflected metasurface of the ABV
beam. Figure 5 shows the intensity and phase distributions created by the quasi-3D reflected
metasurface at different frequencies, in which the other parameters remain unchanged. It is
noted that, with the increase of frequency, the center position of the ABV beam moved along
the +z direction gradually. However, the characteristics of the ABV beam stayed the same
as those in Figure 3d–f. Moreover, we also simulated the intensity and phase distributions
of the ABV beam at both edge frequencies (8.0 and 11.0 kHz), which are shown in Section
Note 1 of the Supplementary Materials. Therefore, the working bandwidth of the designed
ABV beam can exceed 2.5 kHz, and its fractional bandwidth is larger than 0.28, showing a
broadband characteristic.
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3.3. Design of ABV Beam with Different Values of n

Based on Equation (2), we designed the quasi-3D reflected metasurfaces of the ABV
beam with different values of n, and their theoretical continuous and discrete phase delays
in the x-y plane are shown in Section Note 2 of the Supplementary Materials. Here, we
selected n = 2 as an example, and the simulated intensity and phase distributions created by
the quasi-3D reflected metasurface at 9.0 kHz, which are shown in Figure 6a,b, respectively.
We observe that the sound reflections were concentrated into a hollow cylinder region with
a height of 9λ, and the characteristics of the ABS beam were similar to those in Figure 3d
(n = 1). However, for the phase distribution in Figure 6b, we observe that the phase delay
shifted from 0 to 2π twice around in a circle at 3 cross sections z = 20, 40 and 60 cm, which
was different from that in Figure 3f (n = 1). Such a phenomenon is also obviously displayed
in Figure 6c. Beyond that, we also designed a fractional ABV beam with values of n = 1.25,
1.5, and 1.75, which is shown in Section Note 3 of the Supplementary Materials. Therefore,
by combining both phase profiles of Bessel and vertex beams, we realized an ABV beam
with different topological charges.
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Figure 6. The performance of the reflected ABV beam with n = 2 at 9.0 kHz. (a) Simulated 3D reflected intensity distribution
of the ABV beam created by the quasi-3D metasurface, and its corresponding reflected (b) phase distribution at 3 cross
sections z = 20, 40, and 60 cm. (c) Phase delays around in a circle with the radius of 6 cm (black open circles in (b)) as a
function of θ at the 3 cross sections.

3.4. Design of Underwater ABV Beam

Finally, we designed a type of planar quasi-3D reflected metasurface of an underwater
ABV beam, and simulated the intensity distribution of the underwater ABV beam at 30 kHz,
which is shown in Section Note 4 of the Supplementary Materials. The results show that
the simulated underwater ABV beam also exhibited characteristics typical of a vortex beam,
which can cover a range from 30 to 120 cm (|p|2 > 2.5 Pa2) along the z direction. The
propagation distance of the underwater ABV beam (about 22λ) was larger than that (about
10λ) of the holographic algorithm [42]. The designed underwater ABV beam with long-
distance propagation will be important for realizing advanced in vivo acoustic tweezers, as
it can penetrate deeper into a lesion location, which can be potentially applied to removing
broken bones, thrombus ablation, and nerve stimulation.

4. Conclusions

In conclusion, we have demonstrated a quasi-3D reflected metasurface of an ABV
beam. The results show that, by using the Bessel and vortex phase profiles, we realized
an ABV beam with a high-performance vortex, and its effective propagation distance can
exceed 9.2λ in free space, which overcomes the restriction of easy diffusion of vortex beams
propagating in free space. Additionally, the designed ABV beam had the characteristic of
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broad bandwidth, and its fractional bandwidth reached about 0.28. Finally, by modulating
the phase profile of the quasi-3D reflected metasurface, we observed ABV beams with
different topological charges, where n = 1.25, 1.5, 1.75, and 2. In contrast to the charac-
teristics of acoustic vortex beams [31,34], the proposed ABV beam with the features of
long-distance propagation, a high-performance vortex and broad bandwidth provides a
novel methodology for sound manipulations and a fertile ground for designing multi-
functional vortex devices, which also play an important role in the field of underwater
structure measurement.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/mi12111388/s1, Note 1: Intensity and phase distributions of ABV beam at both edge frequen-
cies. Note 2: Theoretical continuous and discrete phase delays of the quasi-3D reflected metasurface
with different values of n. Note 3: Intensity and phase distributions of fractional reflected ABV beam.
Note 4: Design of underwater ABV Beam
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