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Abstract

After iron, zinc is the most abundant essential trace metal. Intracellular zinc ([Zn]i) is maintained across a wide range of cells and 
species in a tight quota (100 to 500 µM) by a dynamic process of transport, intracellular vesicular storage, and binding to a large 
number of proteins (estimated at 3‑10% of human proteome). As such, zinc is an integral component of numerous metalloenzymes, 
structural proteins, and transcription factors. It is generally assumed that a vanishingly small component of [Zn]i, referred to as free 
or labile zinc, and operationally defined as the pool sensitive to chelation (by agents such as N, N, N’, N’-tetrakis [2-pyridylmethyl] 
ethylenediamine [TPEN]) and capable of detection by a variety of chemical and genetic sensors, participates in signal transduction 
pathways. Zinc deficiencies, per se, can arise from acquired (malnutrition, alcoholism) or genetic (mutations in molecules affecting 
zinc homeostasis, the informative and first example being acrodermatitis enteropathica) factors or as a component of various 
diseases (e.g., sickle cell disease, cystic fibrosis, sepsis). Hypozincemia has profound effects on developing humans, and all 
facets of physiological function (neuronal, endocrine, immunological) are affected, although considerably less is known regarding 
cardiovascular pathophysiology. In this review, we provide an update on current knowledge of molecular and cellular aspects 
of zinc homeostasis and then focus on implications of zinc signaling in pulmonary endothelium as it relates to programmed cell 
death, altered contractility, and septic and aseptic injury to this segment of the lung.
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The role of zinc was first reported in 1869 when it was 
discovered to be important for the growth of Aspergillus 
niger.[1] Zinc was not recognized to be important for human 
life until 1963 when zinc deficiency was discovered as a 
major contributing factor in nutritional dwarfism syndrome 
and hypogonadism.[2] It is now well established that zinc 
is important for numerous cellular functions including 
cell differentiation[3] and division,[3,4] DNA synthesis,[4,5] 
RNA transcription,[4,5] and maintaining plasma membrane 
integrity.[6] Recent approaches using bioinformatics 
methods to mine existing protein databases indicate 
that approximately 10% of the human proteome is zinc 
dependent.[7] Zinc plays three major biological roles: a 
structural component of at least 3,000 proteins,[8] including 
transcription factors,[8] cytokines, and receptors;[8] a 
catalytic component of more than 300 enzymes[9] that 
regulate many cellular activities including DNA synthesis 
and maintaining membrane stability;[10‑12] and a regulator of 

enzyme activity by acting as an activator or inhibitor ion.[10] 
Total intracellular zinc is maintained in a concentration 
range from 100 to 500 μM[13] across numerous cell types. 
Zinc is considered a trace metal; however, this is because 
more than 99% of intracellular zinc is protein bound. 
The concentration of labile [Zn]i is vanishingly small 
with estimates between 10‑9 M[14,15] to 10‑12 M[16] and it is 
this fraction that may act as a second messenger in cell 
signaling[17,18] in a fashion well supported for other divalent 
cations such as calcium.

Zinc has been referred to as a “double edged sword”[19] 
as both zinc deficiency and zinc excess are associated 
with adverse effects on cell physiology.[11,20‑25] Zinc 
deficiency stimulates inter‑nucleosomal DNA fragmentation 
and apoptosis in intestinal,[26] neural,[27] respiratory 
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epithelium,[28] and in systemic endothelium,[29] and high 
levels of zinc (> 250 µM) are associated with concentration 
dependent increases in cell death in cultured pulmonary[30,31] 
and cerebral[32] endothelia. In contrast, lower zinc 
concentrations (10 µM)[33‑35] have been shown to inhibit 
cadmium‑,[35], linoleic acid‑,[33] and tumor necrosis factor‑α 
(TNF‑α)‑[33] induced apoptosis in systemic endothelial cells. 
At the systemic level, the following occurred: labile [Zn]i 
levels were demonstrated to be affected by changes in fluid 
shear stress levels in mouse aorta and in human umbilical 
vein endothelial cells indicating that zinc dyshomeostasis 
in the systemic endothelium may contribute to the 
development and progression of cardiovascular diseases; 
and zinc supplementation was shown to reverse systemic 
inflammation and organ damage, with a positive effect on 
overall mortality in mouse model of sepsis.[36] Little is known 
about the signaling role of labile [Zn]i in the pulmonary 
endothelium in the context of lung diseases. In this review, 
we discuss the impact of zinc homeostasis and signaling, as 
well as its efficacy as a cyto‑protectant in pathophysiological 
processes of pulmonary endothelial cell injury and death.

Intracellular zinc homeostasis

Intracellular zinc concentration is maintained by the 
coordinated activity of a large family of zinc transporters 
(ZnT and ZIP)[37] and zinc binding proteins such as 
metallothionein (MT)[37] (Fig.  1). Zinc transporters are 
encoded by one of two of the solute‑linked carrier (SLC) 

gene families: SLC 30 (also known as zinc exporters or 
ZnT1‑10);[38] and SLC39 (also known as zinc importers 
or ZIP1‑14).[38] ZnT transporters reduce cytoplasmic zinc 
by promoting zinc efflux from cells or into intracellular 
vesicles, while ZIP transporters increase cytoplasmic zinc 
by promoting zinc influx from extracellular and, perhaps, 
from vesicular stores into cytoplasm.[39]

Metallothioneins
Metallothioneins (MT) are major zinc binding proteins that 
dynamically coordinate up to 7 mol Zn2+/mol MT via cysteine 
residues (approximately mol 30%).[40] MT is involved in the 
following: detoxification of heavy metals like mercury, 
cadmium, and alkylating cancer drugs;[41,42] scavenging 
free radicals;[41] and protection against DNA damage,[41] 
oxidative stress,[41] and apoptosis.[43] Mammals express at 
least four isoforms‑MT‑1, MT‑2, MT‑3, and MT‑4. In humans, 
there are at least 16 MT genes located in chromosome 16 
and most of them are associated with the MT‑1 isoform.[44] 
MT‑1 and MT‑2 are expressed in many tissues and are 
particularly abundant in the liver, pancreas, intestine, 
and kidney.[45] MT‑3 and MT‑4 are minor isoforms with 
specific expression patterns in brain (MT‑3) and stratified 
squamous epithelial cells (MT‑4).[46] At the subcellular level, 
MT can be localized to a number of cellular compartments 
(i.e.,  mitochondria, cytosol, and nucleus)[47] as well as 
in the extracellular space.[48] The reduction potential of 
MT (less than ‑ 366mV[40]), makes it highly sensitive to 
physiological oxidants. We[49] and others[50‑53] have shown 
that MT is sensitive to changes in cellular redox state 
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Figure 1: Regulators of intracellular zinc 
homeostasis. The labile pool of intracellular 
zinc is tightly controlled by zinc importers 
(ZIPs), zinc exporters (ZnTs), zinc storing 
vesicles, and zinc binding proteins such as 
metallothionein (MT). MT plays a critical 
role in zinc homeostasis acting as a buffer in 
the steady state while controlling the cellular 
distribution of transiently elevated zinc in 
response to perturbations and/or agonists such 
as nitric oxide (NO).[141] Modified figure from 
references.[74,142,143]
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and demonstrated that increases in reactive oxygen[54] or 
nitrogen[55,56] intermediates can oxidize or transnitrosate 
cysteines in its zinc sulfur clusters leading to liberation of 
zinc. As such, MT can be viewed as acting as a sensor and 
switch and connecting changes in cellular redox status with 
alterations in labile zinc (Fig. 1).

ZIPs
Fourteen ZIP family members have been reported in 
mammals.[57‑59] The majority of ZIP family members are 
located on the plasma membrane[60‑66] with the exception 
of ZIP7‑8 and ZIP13 (Fig. 1) that are present in intracellular 
organelles. Gene knock‑out technologies have provided 
valuable information regarding biological significance of the 
ZIP family members. Knockout (KO) mice lacking ZIP1, ZIP2, 
and ZIP3 are reported to have abnormal embryogenesis 
under zinc‑limiting conditions.[62,67,68] ZIP4 KO mice embryos 
die during early development, whereas heterozygous mice 
exhibit a phenotype similar to acrodermatitis enteropathica 
(AE) secondary to impairment of intestinal absorption of 
zinc.[69‑71] ZIP13 KO mice suffer from disorganization in hard 
connective tissue, including bone, teeth, skin, and eyes.[72] 
In humans, lack of ZIP13 is associated with spondylocheiro 
dysplasia, a form of Ehlers‑Danlos syndrome.[72,73] Mice 
lacking ZIP14 have impaired G‑protein coupled receptor 
(GPCR) signaling[74] and exhibit retarded growth and 
impaired gluconeogenesis. A  summary of phenotype in 
genetically ablated or spontaneous mutants in various 
species (including humans) is provided in Table 1. Recent 
reports on association of single nucleotide polymorphisms 
of various zinc transporters with human disease are 
summarized in Table 2.

ZnTs
Ten ZnT family members have been reported in mammals.[59] 
Most ZnTs are located on intracellular organelles (i.e., golgi, 
endosomes, and endoplasmic reticulum)[98] (Fig. 1). ZnT 1 
is the only ZnT exporter located at the plasma membrane, 
compatible with its role as the primary regulator of 
cellular zinc efflux.[99] ZnT1 knockout mice are embryonic 
lethal.[83] Disruption of the ZnT genes yields diverse 
phenotypes providing insight into the biologic function 
and specificity of the various family members. Mutations 
in ZnT2[82] and ZnT4[85] result in the production of zinc 
deficient milk in women and mice, respectively. ZnT3 
knockout mice are prone to seizures.[83] Mice lacking in 
ZnT5 show growth retardation and osteogenic problems[86] 
and exhibit impaired cytokine production in mast 
cells.[87] Single‑nucleotide polymorphism (SNPs) in ZnT8 are 
associated with type 2 diabetes in humans,[95] and deletion 
of the ZnT8 gene results in impaired insulin secretion in 
mice[89] (Table 1).

Manipulation of intracellular zinc levels have been shown 
to influence the expression and localization of zinc 

transporters[59] with reports of increased expression of 
members of ZIP family and decreased expression of ZnT 
family members in response to decreases in intracellular 

Table 1: Phenotypical profile (in mouse, *human, 
**drosophila, ***sheep) of mutants of zinc transporters
Gene 
name

Protein 
name

Type Phenotypes

SLC39A1 ZIP1 ‑/‑ Abnormal embryogenesis[62,67]

SLC39A2 ZIP2 ‑/‑ Abnormal embryogenesis[68]

SLC39A3 ZIP3 ‑/‑ Abnormal embryogenesis[62,67]

SLC39A4 ZIP4 ‑/‑ Death of embryos during 
development[71]

SLC39A4 ZIP4* +/‑ Inherited disorder acrodermatitis 
enteropathica (AE), in which the 
intestines ability to absorb zinc is 
impaired[69,70]

SLC39A6 ZIP6 +/‑ **Abnormal gonad formation[75] and 
E‑cadherin expression[76]

SLC39A7 ZIP7 +/‑ Impaired melanin synthesis[77]

SLC39A8 ZIP8 +/‑ Resistance to cadmium‑induced 
testicular damage[78]

SLC39A13 ZIP13 ‑/‑ i) �Disorganization in hard connective 
issue, including bone, teeth, skin 
and eyes[72]

ii) �*Spondylocheiro dysplastic, a form 
of Ehlers‑Danlos syndrome[78,79]

SLC39A14 ZIP14 ‑/‑ Impaired GPCR signaling. 
Growth retardation and impaired 
gluconeogenesis[80]

SLC39A14 ZIP14 KD i) �***Blocked extracellular 
zinc‑mediated protection against 
apoptosis in SPAECs[34]

ii) �***Lowered base level zinc in 
SPAECs[34]

SLC30A1 ZnT1 ‑/‑ Embryonic lethal[81]

SLC30A2 ZnT2 +/‑ *Zinc deficiency in milk[82]

SLC30A3 ZnT3 ‑/‑ Seizures[83,84]

SLC30A4 ZnT4 ‑/‑ Zinc deficiency in milk[85]

SLC30A5 ZnT5 ‑/‑ i) �Growth retardation and osteogenic 
problem[86]

ii) �Impaired cytokine production in 
mast cells[87]

SLC30A7 ZnT7 ‑/‑ Growth retardation, low body zinc 
status and low fat accumulation[88]

SLC30A8 ZnT8 ‑/‑  Impaired insulin secretion[89]

Table 2: Phenotypical profile (in humans) of SNPs of 
zinc transporters
Gene 
name

Protein 
name

Phenotypes

SLC39A2 ZIP2 i) �Associated with carotid artery disease in 
elderly population from central Italy[90]

ii) �Contributes to arsenic‑associated bladder 
cancer[91]

SLC39A8 ZIP8 i) �Associated with schizophrenia in European 
populations[92]

ii) �Elevated lipid levels in the circulation 
(dyslipidemias) and risk of coronary artery 
disease[93]

SLC30A2 ZnT2 Affects zinc homeostasis in mammary 
epithelial cells and contributes in the 
development and progression of breast 
disease[94] 

SLC30A8 ZnT8 Associated with Type 2 diabetes mellitus[95‑97]
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zinc.[100‑104] Most of these studies have been performed in 
intestinal and respiratory epithelial or immune cells. While 
reported increases in ZIP1 and ZIP14 mRNA were shown to 
be normalized by dietary zinc supplementation in a mouse 
model of acute lung inflammation,[101] the mechanisms 
underlying the association between zinc homeostasis 
and lung disease remain largely unknown. ZIP6 was 
shown to play a role in blocking LPS‑induced decreases 
in intracellular labile zinc and consequent maturation in 
mouse dendritic cells.[105] Zinc mediated cytoprotection 
against TNF‑α‑induced damage in human lung epithelial 
cells was shown to be dependent upon expression ZIP8.[38] 
We recently reported[34] the following in cultured sheep 
pulmonary artery endothelial cells (SPAECs): ZIP14 
is sensitive to changes in intracellular labile zinc; and 
exogenous zinc mediated protection against LPS‑induced 
apoptosis is dependent upon ZIP14.

Zinc homeostasis in the 
pulmonary endothelium

The Zalewski laboratory in Adelaide, Australia were the 
first to image labile zinc in the airway[12,106] and provide 
evidence that zinc chelation (via TPEN) enhanced hydrogen 
peroxide‑induced caspase activation.[106] As reviewed by 
Troung Tran et al.,[4] intracellular zinc has also been shown 
to be important for ciliary function, wound healing (via 
re‑epithelialization), and suppression of oxidative stress 
and apoptosis in the airway epithelium. Further evidence 
suggests that zinc deficiency sensitizes the lung to acute lung 
injury following alcohol induced epithelial dysfunction,[107] 
hyperoxia,[108] and polymicrobial sepsis.[36,109]

We have shown that zinc chelation (via TPEN) exacerbates 
LPS‑induced apoptosis in pulmonary endothelium 
(SPAECs).[30] TPEN also reversed the protective effect of 
nitric oxide (NO) donors on LPS‑induced apoptosis.[110] More 
recently, we reported that LPS induced time‑dependent 
decreases in intracellular labile zinc (Fig.  2) in SPAECs 
using both live cell imaging and fluorescence‑activated 
cell sorting (FACS) with the zinc‑sensitive fluorophore, 
FluoZin‑3 (Life Technologies, Grand Island, N.Y.).[111] 
We further verified the observed decrease in FluoZin‑3 
detectable zinc using a chimeric reporter encoding a 
zinc‑sensitive metal‑response element (MRE) fused to 
a luciferase gene.[111] The LPS‑induced changes in labile 
zinc were accompanied by increases in ZIP14 mRNA. 
These effects were blocked by addition of exogenous zinc, 
as was LPS‑induced apoptosis (increased caspase 3/7 
activity and PS externalization).[111] In separate studies in 
SPAEC, siRNA knockdown of ZIP14 decreased basal levels 
of intracellular labile zinc and blocked zinc uptake (as 
determined by FluoZin‑3), and abrogated zinc mediated 
protection against LPS‑induced apoptosis (observed in WT 

and scrambled control).[34] Collectively, these data suggest 
that endogenous levels of labile zinc can modulate the 
sensitivity of pulmonary endothelium to the proapoptotic 
effects of LPS (Fig.  2) and implicate ZIP14 in affecting 
the ability of extracellular zinc to inhibit LPS‑induced 
apoptosis in SPAEC (Fig. 3).

The results we obtained in pulmonary arterial endothelial 
cells isolated from mature sheep are distinct from those 
obtained in SPAEC from fetal sheep. We initially noted that 
addition of large concentrations of zinc to the medium 
of SPAEC was associated with necrosis.[30] In contrast, 
elevations in intracellular labile zinc (via addition of 

Figure 2: Functional role of labile zinc in LPS-induced apoptosis. LPS 
caused a decrease in labile zinc in SPAECs (as determined by zinc indicator, 
FluoZin-3, activity of zinc-sensitive MRE, and changes in steady-state mRNA 
of zinc importer, ZIP14). The contributory role of decreases in labile zinc in 
LPS-induced apoptosis (as determined by caspase-3/7 activation, cytochrome 
c release, and PS externalization) was verified by mimicking the effects of 
LPS with zinc chelator, TPEN. Blocking LPS- or TPEN- induced decreases 
in labile zinc inhibited consecutive increase in apoptosis and ZIP14 mRNA 
providing support for a signaling role of labile zinc in pulmonary endothelium.

Figure 3: Cytoprotective effect of exogenous zinc is ZIP14 dependent. LPS 
induced decreases in labile zinc are associated with increases in capsase-3 
activity and upregulation of zinc importer, ZIP14 to restore the loss of labile 
zinc mediated by LPS. Elevation in labile zinc via ZIP14 inhibits apoptosis 
by inhibiting caspase-3 activity. siRNA to ZIP14 blocked zinc uptake and 
abrogated zinc mediated protection against LPS-induced apoptosis.
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exogenous zinc[31] or after exposure to large doses of H2O2
[112] 

or NO[31]) were reported to induce apoptosis in fetal SPAEC. 
Alternatively, we have consistently noted that chelation 
of intracellular zinc with TPEN led to dose‑dependent 
apoptosis in mature SPACE whereas a similar maneuver 
inhibited apoptosis in fetal SPAEC.[31,112]

NO‑(MT)‑Zn2+ signaling in 
pulmonary endothelium

In aerobic conditions, NO (e.g., presumably via formation 
of nitrosonium ion intermediate) can S‑nitrosate 
metallothionein[113] and cause the release of Zinquin 
detectable changes in labile zinc in intact cells.[114] We[49,115] 
have confirmed these observations and demonstrated 
the following: (1) S‑nitrosation caused conformational 
changes of MT (via fluorescence resonance energy transfer 
techniques) in intact pulmonary endothelium consistent 
with zinc release;[49,116] (2) NO caused an increase in labile 
zinc in pulmonary artery endothelial cells;[115] and (3) MT 
was the requisite target for NO resulting in such changes 
in labile zinc.[115] Subsequent investigations supported 
the potential for MT to participate in intracellular signal 
transduction pathways in pulmonary endothelium.
1.	 Exposure of mouse lung endothelial cells (MLEC) 

to the NO donor, S‑nitroso‑N‑acetylpenicillamine 
(SNAP, 200  µM), caused nuclear translocation of 
the zinc dependent transcription factor, MTF‑1, and 
such activation was not apparent in MT null cells. 
Translocation of MTF‑1 was associated with NO 
mediated increase in MT gene expression itself[117] 
suggested that S‑nitrosation of zinc‑thiolate clusters 
in MT and subsequent alterations in zinc homeostasis 
are participants in intracellular NO signaling pathways 
affecting gene expression.

2.	 We observed that zinc chelation (TPEN) abrogated 
hypoxic vasoconstriction in isolated perfused mouse 
lungs (IPL), and that IPL from MT null mice showed 
significantly less constriction than wild‑type controls. 
Data obtained using NO‑sensitive FRET reporters 
supported both enhanced NO production and 
S‑nitrosation of MT during hypoxic exposure. These 
events were accompanied by NO‑dependent increases 
in labile zinc (Fluo‑Zin‑3) in subpleural vessels of MT 
+/+, but not MT ‑/‑ mice. These data supported a role 
for zinc thiolate signaling in pulmonary vasoregulation. 
Subsequent studies in cell‑based models revealed a 
link between hypoxia‑induced elevations in labile zinc 
and changes in myosin light chain phosphatase (MLCP) 
activity, ultimately leading to stress fiber formation and 
endothelial cell contraction.[118]

3.	 Most recently, we showed that zinc chelation abrogates 
NO‑mediated protection against LPS‑induced 
apoptosis.[34] Relative changes in labile zinc after 

exposure to cytoprotective doses of the NO donor SNAP 
(250 µM) or exogenous zinc (10 µM) were assessed by 
Fluozin‑3, and a comparable increase in intracellular 
labile zinc was noted in both conditions.[34] We, further 
showed that both NO‑mediated increases in labile 
zinc, and NO‑mediated protection against LPS‑induced 
apoptosis, are dependent on MT via siRNA to sheep MT 
isoforms,[34] thus implicating NO‑MT‑Zn2+ signaling in 
apoptotic pathways in the pulmonary endothelium 
(Fig. 4).

Zinc as an effector molecule in 
pulmonary endothelium

Decreases in labile zinc have been reported to precede 
the earliest detectable alterations in cell function,[119] 
morphology,[119] and apoptosis.[111,119] We and others 
have reported that chelation of zinc causes spontaneous 
apoptosis in pulmonary endothelia[30] and epithelia,[4] 
and elevations in labile zinc via ZIP14[34] or iNOS induced 
NO or NO donors[111,120‑124] inhibits apoptosis in cultured 
pulmonary endothelial cells. An anti‑apoptotic role of 

Figure 4: NO elevated zinc from MT inhibits apoptosis in pulmonary 
endothelial cells. Illustrates the link between apoptosis and elevation in labile 
zinc (via NO-MT signaling), which in turn inhibits capsase-3 activity in 
pulmonary endothelial cells. Modified figure from references.[34,40]
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zinc has been reported in relation to a variety of stimuli 
including TNF‑α,[125] cadmium,[126] cholesterol,[127] and 
linoleic acid[33] induced apoptosis. Although the molecular 
mechanism by which zinc inhibits apoptosis is not clear, 
several reports suggest that zinc inhibits the following: 
Ca2+/Mg2+‑dependent endonucleases that are responsible 
for DNA fragmentation;[128] the activity of caspase‑3, 
a critical protease in apoptosis;[129] the processing 
of caspase‑3;[130,131] and bax activation, cytochrome c 
release, and apoptosome function.[132] Zinc also increases 
the ratio of Bcl‑2 to Bax resulting in the inhibition of 
caspase activity.[133] We reported the following in SPAECs: 
decreases in labile zinc mediated by LPS cause casapse‑3 
activation;[104] LPS‑induced caspase‑3 activity is sensitive 
to pan caspase inhibitor;[104] and extracellular zinc inhibits 
LPS‑induced caspase‑3 activity.[104,106] We posed a question 
whether zinc directly binds capsase‑3 and modulates its 
activity. Our results in vitro confirmed that zinc directly 
inhibits caspase‑3 activity.[106] Although NO can S‑nitrosate 
caspase‑3 and inhibit its activity,[134] our results suggest that 
s‑nitrosation of MT by NO leads to a release of zinc that is 
associated with a TPEN dependent cytoprotective caspase‑3 
inhibition, leading us to suggest that direct S‑nitrosation of 
caspase‑3 alone is not likely to account for these results. 
Collectively, our observation adds to the elegant studies in 
airway epithelium[12,106] that revealed the following: labile 
zinc proximity with procaspase‑3 prevent the activation of 
procaspase‑3; and zinc depletion activates procaspase‑3.[106] 
These studies provide support for the antiapoptotic role of 
labile zinc in the lung.

Zinc homeostasis and acute 
lung injury: complexities of 
integrated response

Several studies have demonstrated that zinc deficiency 
sensitizes the lung to acute injury. In particular, dietary 
restriction led to enhanced sensitivity to polymicrobial 
sepsis.[36,109] Hyperoxic[135,136] lung injury in mice and 
macrophage and epithelial cell dysfunction in alcohol fed 
rats was ascribed to zinc deficiency.[107] Zinc repletion 
reversed phenotype in all three conditions. Although 
pulmonary endothelial cell dysfunction may have been a 
component of all these models, any supportive insight into 
the cellular contributions of zinc dyshomeostasis to these 
observations largely relates to background information on 
zinc in respiratory epithelium.

Nonetheless, hypozincemia in septic or aseptic[59,98] 
conditions is a somewhat underappreciated phenomenon. 
Transmigration of zinc from tissues, including lung to liver, 
has been noted in hyperoxia,[137] bacterial sepsis,[138] and 
turpentine injury[139] and has been presumed to subserve the 

following: gluconeogenesis in liver; new protein synthesis 
in acute phase response; or host defense in an analogous 
fashion to hypoferremia in bacterial pneumonia.[139] Hepatic 
expression of ZIP14 appears critical in this phenomenon.[140] 
We recently (in unpublished observations) noted that 
hepatic expression of metallothionein was important in 
transmigration of zinc from lung to liver during hyperoxic 
lung injury apparently contributing to the unexpected 
observation that MT null mice were resistant to hyperoxia. 
Collectively, these observations suggest that additional 
insight into the mechanisms underlying such transmigration 
may provide new therapeutic targets and strategies and 
potentially support exogenous zinc as a rational therapeutic 
agent in acute lung injury.

In summary, compelling evidence is emerging in pulmonary 
endothelium to complement a larger and growing body of 
experience in extrapulmonary tissue that labile zinc is a key 
effector molecule. Critical aspects of the magnitude of labile 
pool of intracellular zinc accounting for these signaling 
pathways awaits more refined ratiometric or quantitative 
fluorescent indicators. Genetic and acquired aspects of 
zinc dyshomeostasis and deficiencies await further insight 
into the function and cellular distribution of large family of 
zinc transporters and metal binding proteins. Nonetheless, 
it is apparent that the facile and common nature of zinc 
and nitric oxide chemistry support a role for NO‑MT‑Zn2+ 
pathway and the uqibuitous nature of these molecules in 
sepsis and acute lung injury make them a rational novel 
therapeutic target.
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