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Background. Moxifloxacin (MOX) is used as a first-choice drug to treat multidrug-resistant tuberculosis (MDR-TB); however, 
evidence-based dosing optimization should be strengthened by integrative analysis. The primary goal of this study was to evaluate 
MOX efficacy and toxicity using integrative model-based approaches in MDR-TB patients.

Methods. In total, 113 MDR-TB patients from 5 different clinical trials were analyzed for the development of a population phar-
macokinetics (PK) model. A final population PK model was merged with a previously developed lung-lesion distribution and QT 
prolongation model. Monte Carlo simulation was used to calculate the probability target attainment value based on concentration. 
An area under the concentration-time curve (AUC)-based target was identified as the minimum inhibitory concentration (MIC) of 
MOX isolated from MDR-TB patients.

Results. The presence of human immunodeficiency virus (HIV) increased clearance by 32.7% and decreased the AUC by 27.4%, 
compared with HIV-negative MDR-TB patients. A daily dose of 800 mg or a 400-mg, twice-daily dose of MOX is expected to be ef-
fective in MDR-TB patients with an MIC of ≤0.25 µg/mL, regardless of PK differences resulting from the presence of HIV. The effect 
of MOX in HIV-positive MDR-TB patients tended to be decreased dramatically from 0.5 µg/mL, in contrast to the findings in HIV-
negative patients. A regimen of twice-daily doses of 400 mg should be considered safer than an 800-mg once-daily dosing regimen, 
because of the narrow fluctuation of concentrations.

Conclusions. Our results suggest that a 400-mg, twice-daily dose of MOX is an optimal dosing regimen for MDR-TB patients 
because it provides superior efficacy and safety.

Keywords. lung lesion distribution model; moxifloxacin; multidrug resistance tuberculosis (MDR-TB); population pharmaco-
kinetics; QT prolongation model.

Tuberculosis (TB) treatment has improved in recent decades, 
such that approximately 85% of TB patients are effectively 
treated with a 6-month drug regimen consisting of isoniazid, 
rifampin, ethambutol, and pyrazinamide [1]. However, TB re-
mains one of the top 10 mortality-associated diseases world-
wide. Drug-resistant TB is one of the main factors contributing 
to this continued prevalence. Among the drug-resistant forms 
of TB, multidrug-resistant TB (MDR-TB) is resistant to iso-
niazid and rifampin [1]. Unlike the success rate of general TB 
treatment, the successful treatment of MDR-TB is dramati-
cally lower (approximately 57% worldwide) and the MDR-TB 

treatment period is also longer (up to 24 month) and involves 
complicated dosing regimens related on a higher incidence of 
drug toxicity [1]. Thus, there is a need to explore appropriate 
treatments for MDR-TB.

Moxifloxacin (MOX), a respiratory quinolone, has been an 
important drug for treating a wide range of infections, especially 
pneumonia and TB [2]. Moxifloxacin is strongly recommended 
as a first-line drug for MDR-TB because of its high suscepti-
bility [3]. Although several previous reports for optimal dose 
of MOX suggested 800 mg of MOX for MDR-TB patients, there 
were limitations to such a small dataset [4, 5], specific popu-
lation groups [6, 7], and inclusion of other drug-resistant TB 
strains [8]. Therefore, an integrated study that emphasizes the 
optimal dose of MOX is needed to merge the various datasets 
and build an integrative model that explains the efficacy and 
toxicity of MOX [9].

In addition, a population lung lesion pharmacokinetics 
(PK) model has not been applied to MDR-TB patients. This 
model is a known predictor of drug response based on its de-
scription of systemic exposure and lung lesion distribution of 
MOX in TB patients [10]. QT interval prolongation, which 
can lead to arrhythmia, has been a major adverse reaction 
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associated with quinolones, including MOX [11, 12]; it is 
strongly associated with MOX exposure [13]. The QT pro-
longation prediction has not been found to reduce toxicity in 
MDR-TB patients.

The main purpose of this study was to develop a population 
PK model with a dataset consisting of MDR-TB patients of var-
ious ethnicities; it also aimed to conduct population PK mod-
eling of lung lesion PK. Furthermore, a QT prolongation model 
was used to determine model-based efficacy and toxicity com-
parisons of MOX dosing regimens for MDR-TB.

METHODS

Study Population and Data Collection

Multidrug-resistant TB patients from 5 separate clinical trials 
were included in this study. The enrolled patients had been 
diagnosed with MDR-TB that exhibited resistance to isoniazid 
and rifampicin. Moxifloxacin (400 mg) was administered once 
daily for at least 2 weeks during the clinical trials. Patients were 
also administered a minimum of 2 additional MDR-TB medica-
tions. Blood samples were collected for analysis of MOX plasma 
concentrations by dense sampling after MOX administration. 
Plasma concentrations of MOX were determined using valid-
ated liquid chromatography-tandem mass spectrometry anal-
ysis [14–16].

Patient Consent Statement

All studies were approved by relevant national controlling 
bodies and ethical committees at the different sites and was 
done in accordance with Good Clinical Practice Guidelines and 
the principles of the Declaration of Helsinki (Table 1) (Study 1 
[B-130191-001] by Institutional Review Board [IRB] at Seoul 
National University Bundang Hospital in Republic of Korea; 

Study 2 [ClinicalTrials.gov Identifier NCT0081646] by IRB 
at Pusan National University Hospital, Asan Medical Center 
and National Medical Center in Republic of Korea; Study 3 
[ClinicalTrials.gov Identifier NCT01498419] by IRB at Karl 
Bremer Hospital, University of Cape Town Lung Institute Ltd, 
KwaZulu-Natal Research Institute for Tuberculosis and HIV, 
CHRU Themba Lethu Clinic, Klerksdorp Tshepong Hospital, 
Tembisa Hospital in South Africa and Ifakara Health Institute, 
Mbeya Medical Research Programme in Tanzania; Study 4 
[ClinicalTrials.gov Identifier NCT02193776] by IRB at Tembisa 
Hospital, Klerksdorp Tshepong Hospital, TASK Applied Science, 
University of Cape Town Lung Institute Ltd, Tuberculosis & HIV 
Investigative Network of KwaZulu-Natal, CHRU Themba Lethu 
Clinic, Helen Joseph Hospital in South Africa and Ifakara Health 
Institute, Mbeya Medical Research Programme in Tanzania 
and Uganda Case Western Reserve University Research 
Collaboration in Uganda; Study 5 [ClinicalTrials.gov Identifier 
NCT02342886] by IRB at National Center for Tuberculosis and 
Lung Diseases in Georgia, Keny Medical Research Institute 
in Kenya, Pusat Perubatan Universiti Kebangsaan, Universiti 
Teknologi MARA, Institute of Respiratory Medicine in Malaysia, 
Philippine General Hospital, Vincent Balang, Lung Center of 
Philippines in Philippines; TASK, University of Cape Town Lung 
Institute, Setshaba Research Centre, Tembisa Hospital, CHRU 
Themba Lethu Clinic, Durban International Clinical Trials Unit, 
Klerksdorp Tshepong Hospital, Synexus SA, Madibeng Centre 
for Research, Tuberculosis & HIV Investigative Network of 
Kwazulu Natal, Aurum Institute, Aurum Institute: Rustenberg in 
South Africa, Ifakara Health Institute, Mbeya Medical Research 
Programme, Kilimanjaro National Institute for Medical Research 
in Tanzania, Uganda CWRU Research Collaboration in Uganda 
and Centre for Infectious Disease Research in Zambia). All pa-
tients provided written informed consent before the study.

Table 1. Baseline Characteristics of the Study Participants

Characteristic Study 1 Study 2 Study 3 Study 4 Study 5 Total 

Sex

  Male 4 10 14 39 6 73 (64.6%)

  Female 5 5 8 16 6 40 (35.4%)

Ethnicity

  Black - - 12 48 8 68 (60.2%)

  Mixed ethnic - - 10 6 3 19 (16.8%)

  White and Asian 9 15 - 1 1 26 (23.0%)

HIV Status

  Negative 9 15 18 31 6 79 (69.9%)

  Positive - - 5 24 6 35 (31.0%)

Age (years) 43 (34–89) 44 (23–59) 28 (20–56) 34 (18–69) 29 (20–61) 34 (18–89)

Weight (kg) 59 (47–67) 58 (50–84) 58 (40–82) 51 (35–71) 56 (43–75) 54 (35–84)

BMI (kg/m2) 21.6 (17.6–23.2) 22.2 (17.3–29.4) 20.6 (16.4–29.7) 18.4 (12.2–27.1) 19.3 (16.9–27.8) 19.1 (12.2–29.7)

TB regimen Pas, Cs, Kan, Pto, Z Pas, Cs, Kan, Pto, Z Pa, Z J, Pa, Z Pa, Z -

Abbreviations: BMI, body mass index; Cs, cycloserine; HIV, human immunodeficiency virus; J, bedaquiline; Kan, kanamycin; Pa, proteomanid; Pas, p-aminosalicylic acid; Pto, prothionamide; 
TB, tuberculosis; Z, pyrazinamide.

NOTES: Study 1, B-130191-001; Study 2, NCT00816426; Study 3, NC002 (NCT01498419); Study 4, NC005 (NCT02193776); Study 5, NC006 (NCT02342886).
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Population Pharmacokinetics Model Development

A nonlinear mixed-effects model (NONMEM 7.4; ICON, 
Dublin, Ireland) was used to develop the population PK model 
for MOX; a first-order conditional estimation with interac-
tion option was used for the estimation method. Perl-speaks 
NONMEM (PsN) version 4.9.0 was used to assist the NONMEM 
in describing the graphical model evaluation; it was also used to 
perform automated covariate searching or bootstrap modeling 
[17]. Various compartment models, including one to multiple 
compartments, were explored as a structural model. A transit 
compartment model for the absorption phase [18], a flip-flop 
kinetics model for the absorption-elimination phase [19], and 
an allometric scaling model with body weight structural param-
eters [20] were also evaluated. An exponential relationship was 
used to explain interindividual variability (IIV). Furthermore, 
an additive, proportional, and combined model were tested to 
determine optimal residual variability (RV).

The selection of the model included both numerical cri-
teria (eg, objective function value [OFV], shrinkage of IIV, and 
RV and precision of estimation values), diagnostic plots (eg, 
goodness-of-fit plot), and simulation-based diagnosis (eg, visual 
predictive check). The stepwise covariate modeling method was 
used to identify statistically significant parameter-covariate re-
lationships, with P < .05 for forward selection and P < .01 for 
backward elimination. To figure out the final selected covariates, 
scientifical plausibility, clinical interest, and precision of param-
eter estimates were considered. The tested variables included 
sex, age, weight, body mass index (BMI), coadministration of 
TB drugs, and presence of human immunodeficiency virus 
(HIV). Nonparametric bootstrap modeling (n = 500) was per-
formed as an internal model evaluation method.

Lung Lesion Distribution and QT Prolongation-Linked Population 
Pharmacokinetics Model

Lung lesion distribution and QT prolongation based on MOX 
PK were described using previously reported lung lesion distri-
bution [10] and QT prolongation models [13]. Previous lung 
lesion distribution models of MOX indicated that lung lesion 
distribution is not connected to plasma concentration in a cen-
tral compartment with intercompartmental rate constants (Kpl) 
and penetration partition coefficients (Rpl) for each lesion. Lung 
lesions were separated into 9 independent lesions, and an ex-
ponential IIV relationship was assumed for each lesion’s par-
tition coefficient. The RV was based on a proportional error 
model used in a previous report [10]. A link among QT pro-
longation, the baseline, and placebo-adjusted QT prolonga-
tion was established using the Fridericia heart rate correction 
method (ΔΔQTcF) and MOX concentration-QTc model by 
Florian et al [13, 21]. According to Florian et al [13], the plasma 
MOX concentration-QTc relationships was confirmed as linear 
model having slope and intercept, and they demonstrated 
those relationships through pooled analysis of 20 different 

studies. ΔΔQTcF was predicted using the linear equation: 
ΔΔQTcF = Slope X Plasma concentration of MOX at time after 
dose + Intercept. Similar to the PK-lung lesion distribution, an 
additive relationship was assumed for IIV and RV. Additional 
information concerning all parameters and equations is pro-
vided in Supplementary Methods 1.

Simulation for Probability Target Attainment

A simulation-based probability target attainment (PTA) was 
performed with efficacy and toxicity targets to optimize the 
MOX dosing regimen for MDR-TB patients. The ratio of the 
area under the concentration-time curve (AUC) of unbound 
drug to the minimum inhibitory concentration (MIC) is a well 
known parameter for predicting efficacy; the criteria are ≥100 
for Gram-positive bacteria and ≥53 for Mycobacterium tubercu-
losis [7, 22–25]. Baseline MIC values for MOX were determined 
for isolated drug-resistant M tuberculosis from 194 patients in 
2 clinical trials (NCT01498419 and NCT02342886). The MIC 
for MOX was determined by liquid culture by the mycobacteria 
growth indicator tube (MGIT) method that was standardized 
and pretrained across the sites [26, 27]. The peak (~35 µg/mL) 
and trough (~0.3–0.7 µg/mL) levels were used as concentration-
based target levels for optimal MOX dose [4, 28]. QT prolonga-
tion toxicity was assessed using the change in ΔΔQTcF over 30 
and 60 ms to determine high-risk criteria, on the basis of MOX 
induction case reports [29]. In accordance with the reports, 5 
cases of moxifloxacin-induced Torsade de pointes have been re-
ported in 2009, and this was the clue for setting over 60 ms as 
crucial criteria.

The PTA was calculated using the Monte Carlo simulation 
(n = 1000) with the final model to optimize MOX dosage. 
The MOX free fraction of area under the concentration curve 
(fAUC) was calculated using the simulation results from 
noncompartmental analysis with ncappc R package [30]. The 
unbound fraction of MOX was assumed to be 75% [8, 31], and 
simulation scenarios were developed in accordance with the 
World Health Organization (WHO) recommendation for MOX 
dose regimen, as well as the final selected covariates [3].

RESULTS

Demographics for Study Population

The demographic characteristics for MDR-TB patients are 
summarized in Table 1. In total, 113 adult patients were 
diagnosed with MDR-TB and their PK profiles were strati-
fied according to HIV status (Figure 1). Patient plasma sam-
ples (1332) were collected from each clinical trial, along with 
covariate information concerning sex, age, weight, BMI, TB 
regimen, and HIV status. Covariate distributions were not 
skewed, and 16 samples (1.20%) below the limit of quanti-
tation among total 1332 samples were excluded during the 
model development process.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab660#supplementary-data
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Figure 1. Plasma concentration versus time profile of moxifloxacin (MOX) after 400-mg dose administrations. (Left) Human immunodeficiency virus (HIV)-negative 
Multidrug-resistant tuberculosis (MDR-TB) patients. (Right) HIV-positive MDR-TB patients. A solid line and colored dots connected with a gray broken line represent the 
median and individual profiles, respectively.
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Figure 2. Final population pharmacokinetics model scheme for moxifloxacin.
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Population Pharmacokinetics Model Development

A 2-compartment model with first-order absorption and elimi-
nation parameters was chosen as final structural model (Figure 
2). The absorption model with lag time and transit compart-
ment model were conducted; however, there was no significant 
improvement on OFV, visual predictive check (VPC), and the 
other diagnostic criteria. The other PK parameters related to 
absorption tended to be unstable with large relative standard 
errors. In addition, we observed unstable PK parameter estima-
tions with a 3-compartment model. The implementation of IIV 
into intercompartmental clearance (Q) and volume of distribu-
tion for peripheral compartment (Vp) calculations was robust 
because of the high correlation observed when separate IIV 
values were used, in contrast to Vd and CL. Bioavailability (F) 
was fixed at a value of 1, based on a previous reported MOX bi-
oavailability value (~86%) and because estimated values tended 
to be close to this value [32]. Human immunodeficiency virus 
status was selected as a covariate. The final estimated parameters 
and bootstrap results are reported in Table 2. The goodness-of-
fit and visual predictive check plot for the final model are pro-
vided in Supplementary Figures S1 and S2.

Concentration-Based Target Attainment for Optimized Moxifloxacin 
Dosing Regimens for Multidrug-Resistant Tuberculosis

Recent WHO recommendations for MDR-TB treatment sug-
gest a MOX dosing regimen of 800 mg per day [3]. We com-
pared the simulated results between a dosage of 400 mg twice 
daily (BID) and 800 mg once daily (QD). The simulated PK 
profiles and AUC are shown in Figure 3A and B. The change 
in plasma concentration was greater for the 800-mg QD reg-
imen than for the 400-mg BID regimen; however, the differ-
ence was not critical when considering differences in dose 
strength and frequency. The AUC was also not significantly 

different between the BID and QD regimens. The QD reg-
imen was generally better than the BID regimen for MDR-TB 
patients, regardless of HIV status. This was demonstrated by 
the concentration-based target level for peak plasma concen-
tration (Cmax), plasma concentrations at 2 hours (C2) and 6 
hours (C6) after dosing, and trough plasma concentrations 
(Ctrough). However, the overall PTA did not surpass 50% for 
any regimen (Figure 4 and Supplementary Table S1).

Area Under the Concentration-Time Curve- and Minimum Inhibitory 
Concentration-Based Target Attainment Depending on Plasma and Lung 
Lesion Exposure

The baseline MIC distribution from 194 MDR-TB patients 
ranged from 0.03 to 0.5 µg/mL, with a high MIC frequency of 
0.124 µg/mL (Supplementary Figure 3). Based on these results, 
the MIC range was set between 0.03 and 1 µg/mL to perform 
target attainment simulation. As the PK/pharmacodynamics 
target, fAUC/MIC values of  ≥53 and ≥100 were calculated using 
concentrations captured from plasma and each lung lesion. The 
PTA was based on plasma concentrations (Table 3 and Figure 
5). Human immunodeficiency virus-negative MDR-TB patients 
had better PTA values than HIV-positive patients in all ranges of 
MIC. However, all regimens within each group had inadequate 
PTA values at 1 µg/mL MIC. The PTA declined from over 0.25 
µg/mL MIC to below 50% PTA at 1 µg/mL in all groups and re-
gimens. No significant differences in PTA between BID and QD 
regimens were observed with respect to plasma concentration.

Time-versus-concentration profiles and fAUC/MIC values 
for each lung lesion are shown in Figure 6. The partition co-
efficient for MOX distribution between plasma and each lung 
lesion was >1; we observed higher exposure in all lung lesions. 
Therefore, the fAUC/MIC of each lesion had sufficient expo-
sure in all subtypes at 0.5 µg/mL MIC. The effects of MOX are 

Table 2. Final Estimated Parameters of Population Pharmacokinetics Models in MDR-TB Patients

Parameters 

Population Estimates Bootstrap

Value RSE (%) Shrinkage (%) Median 5th–95th Percentile 

Ka (hr–1) 1.07 20.2 - 1.05 0.775–1.664

Vd (L) 141 10.1 - 139 116–168

CL (L/h) 9.42 7.3 - 9.44 8.25–10.6

Q (L/h) 1.41 20.9 - 1.42 0.927–2.41

Vp (L) 886 24.4 - 862 523–1565

F (%)a 100 - - - -

Coefficient of CL for HIV-positiveb 0.327 33.3 - 0.321 0.131–0.548

Interindividual variability CV (%)

  IIV for Vd 55.2% 21.1 17.7 53.2% 29.9–82.5%

  IIV for CL 67.9% 12.0 7.91 65.5% 49.5–85.1%

  IIV for Q & Vp 373% 7.1 23.3 365% 243–518%

Residual variability (RV)

  Proportional error 24.3% 5.4 6.02 24.2% 20.4–28.9%

Abbreviations: CV, coefficient of variation; IIV, interindividual variability; MDR, multidrug resistant; RSE, relative standard error; TB, tuberculosis. 
aValue was fixed.
bEquation for power coefficient was as follows: CLHIV positive = CLHIV negative · (1 + Coefficient).

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab660#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab660#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab660#supplementary-data
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not expected because of sufficient exposure over 1.0 µg/mL. 
Moxifloxacin concentration should be maintained at a higher 
exposure level in HIV-negative patients. However, HIV status 
did not affect the target attainments for all subtypes of lung 
lesions.

QT Prolongation by Moxifloxacin Dosing Regimens in Multidrug-Resistant 
Tuberculosis Patients

The simulated ΔΔQTcF calculation using a model by Florian et 
al [13] and Cmax for each MOX dosing regimen are described 

in Figure 7. The results of the linear regression and simulation 
studies indicated that the intercept for the 800-mg QD dosing 
regimens was approximately 2-fold higher than the 400-mg BID 
dose. These results indicated that ΔΔQTcF was higher at con-
centrations <5 µg/mL for the Cmax group. Similar to the inter-
cept results, the proportion of changes over 30 ms for ΔΔQTcF 
was approximately 2-fold greater in the 800-mg QD dosing 
regimen group (Table 4). Multidrug-resistant TB patients with 
HIV displayed protection because of their high CL value. Only 
1% of MDR-TB patients without HIV were predicted to have a 
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Figure 3. (A) Simulation pharmacokinetics profiles for moxifloxacin (MOX) at steady state after a twice-daily dose (BID) in the top panels and a once-daily dose (QD) in the 
bottom panels. The left panels represent human immunodeficiency virus (HIV)-negative samples; the right panels represent HIV-positive samples. (B) Area under the concen-
tration curve (AUC) comparisons of MOX dosing regimens.
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ΔΔQTcF of >60 ms with the 800-mg QD dosing regimen; this 
value was <1% for other patients and regimens.

DISCUSSION

We successfully developed a population PK model, which we 
merged with the lung lesion distribution and QT prolongation 
model, to determine model-based efficacy and toxicity of MOX 
in MDR-TB patients. The MOX 400-mg QD dosing regimen is 
used as the standard treatment for TB patients, whereas WHO 
guidelines and previous reports suggest advantages to using 
high MOX dosing regimens for MDR-TB patients [3, 4, 7]. 
Previous studies indicate that a 400-mg QD MOX dosing reg-
imen is insufficient to treat MDR-TB patients, considering the 
concentration-based target and fAUC/MIC. We confirm here 
that a high MOX dosing regimen (800 mg QD or 400 mg BID) 
is sufficient for treatment of MDR-TB patients.

Based on previous MOX PK parameters, the CL of MOX 
is ~13.0  L/h (minimum value, ~11.6–15.0  L/h; maximum 
value, ~26–29  L/h) in healthy, non-TB patients [32–35]. 
An estimated 9.42  L/h (~8.25–10.6  L/h for the ~5th–95th 
percentiles) comprised a decrease of 27.5% in MDR-TB 

15 400 mg BID

400 mg BID

800 mg QD

800 mg QD

10

5

0

HIV(–) HIV(+)

15 400 mg BID

400 mg BID

800 mg QD

800 mg QD

10

5

0

HIV(–) HIV(+)

15 400 mg BID

400 mg BID

800 mg QD

800 mg QD

10

5

0

HIV(–) HIV(+)

15 400 mg BID

400 mg BID

800 mg QD

800 mg QD

10

5

0

HIV(–) HIV(+)

Figure 4. Concentration-based target attainment for (A) Cmax; peak plasma concentrations, (B) C2; plasma concentrations at 2 hours after dosing, (C) C6; plasma concentra-
tions at 6 hours after dosing, and (D) Ctrough; trough plasma concentrations. The solid lines in (A), (B), and (C) represent a target range of ~3–5 µg/mL, and 0.3–0.7 µg/mL for 
(D). BID, twice-daily dose; HIV, human immunodeficiency virus; QD, once-daily dose.

Table 3. Probability %Target Attainment Accordingly Moxifloxacin 
Dosing Regimens

Target 

Schedule BID Schedule QD Schedule

Status HIV Negative HIV Positive HIV Negative HIV Positive 

MIC (µg/mL) 400 mg 400 mg 800 mg 800 mg

fAUC/MIC Ratio ≥53

0.03 100 100 100 100

0.06 100 100 100 100

0.125 100 98.0 100 99.5

0.25 98.0 86.1 99.5 84.6

0.5 93.0 48.8 90.0 44.3

1 59.7 11.4 62.2 5.97

fAUC/MIC Ratio ≥100

0.03 100 100 100 100

0.06 100 100 100 100

0.125 99.5 98.0 99.5 99.5

0.25 93.0 86.1 91.0 84.6

0.5 62.2 48.8 65.2 44.3

1 20.9 11.4 19.4 5.97

Abbreviations: BID, twice daily; fAUC, fraction of area under the concentration curve; 
HIV, human immunodeficiency virus; MIC, minimum inhibitory concentration; QD, once 
daily. 
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Figure 5. (A) Target attainment (fraction of area under the concentration curve [fAUC]/minimum inhibitory concentration [MIC] ≥53 for tuberculosis or ≥100 for Gram-
positive bacteria) simulation for dosing regimens, and (B) the percentage of probability target attainment (PTA) on fAUC/MIC ≥53 and ≥100. The lower and upper solid lines 
in (A) represent fAUC/MIC ≥53 and ≥100. Solid and broken lines in (B) represent 90% and 80%, respectively. BID, twice-daily dose; HIV, human immunodeficiency virus; QD, 
once-daily dose.
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patients. These differences were not statistically significant 
because of the large variability in MOX CL, which may have 
resulted from ethnicity factors that contributed to low CL 
values in Korean MDR-TB patients. Moxifloxacin is me-
tabolized through glucuronide and sulphate conjugation by 
uridine diphosphate-glucuronosyltransferases (UGTs) and 
sulfotransferase, respectively [9]. UGT1A groups UGT1A1, 
UGT1A3, and UGT1A9 are responsible for MOX metabo-
lism; they are highly polymorphic enzymes. UGT1A allele 
frequency is dependent on ethnicity and affects MOX PK in 
healthy volunteers. The pattern of UGT1A allele frequency in 
Korean populations is different from the patterns observed 
in both Caucasian and African American populations [36–
38]. The dataset used for this study consisted of 20% Korean 
MDR-TB patients, which may have contributed to the low 
MOX CL. Further studies are needed to confirm the contri-
bution of ethnicity.

Human immunodeficiency virus status was chosen as the 
final covariate, which resulted in a 32.7% increase in CL and 
27.4% decrease in AUC. This phenomenon is explained by 
interactions with the drugs administered for HIV treatment. 

In a previous study by Naidoo et al [39], HIV treatment with 
efavirenz led to a drug interaction with MOX that increased 
CL by 42% and decreased AUC by 30%. Although informa-
tion regarding the HIV dosing regimens was not included in 
our dataset, HIV status is an important covariate because the 
efavirenz-based HIV treatment regimen is widely used. With 
high MOX dosing regimens (400 mg BID and 800 mg QD), 
PTA and fAUC/MIC values of ≥53 and ≥100, respectively, 
were reached approximately 99% of the time with an MIC of 
0.125 µg/mL, regardless of HIV status and dosing schedule. 
Patients with a maximum MIC (0.5 µg/mL) consisted of 7% 
of our dataset, and the 90th percentile of MIC was detected at 
0.25 µg/mL. Moxifloxacin exposure in HIV-positive patients 
affected the PTA in the MIC range of 0.25 to 0.5 µg/mL. The 
AUC is expected to be lower in HIV-positive patients than 
in HIV-negative patients. The PTA dropped dramatically to 
~50% at 0.5 µg/mL, whereas the PTA in HIV-negative pa-
tients remained approximately 90%. If the MIC was above 
0.5 µg/mL, we would not expect an appropriate MOX effect 
for MDR-TB treatment for all regimens, as observed in our 
dataset.
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minimum inhibitory concentration (MIC) ≥53 and ≥100 for each lung lesion. The solid line and colored area in (A) represent the median and 90th percentile. The solid and 
dashed line in (B) represent an fAUC/MIC ≥53 and ≥100. BID, twice-daily dose; HIV, human immunodeficiency virus; LES1, necrotic nodule; LES2, closed nodule casein; LES3, 
caseous fibrotic nodule; LES4, caseum from cavity; LES5, cavity wall; LES6, fibrotic tissue; LES7, small cellular nodule; LES8, fungal ball; QD, once-daily dose.
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Moxifloxacin exposure covered all subtype lung lesions at 
0.5 µg/mL MIC. This effect is not expected to be sufficient for 
samples of 1 µg/mL MIC, similar to the fAUC/MIC results in 
plasma. This is consistent with the finding by Sarathy et al [40] 
that a minimum 90% bactericidal concentration of MOX in ca-
sein was observed at a concentration of 2 µM (~5 µg/mL). The 
fAUC/MIC values of ≥53 and 100 were used as criteria, it must 
be considered that those kinds of scenarios came from the idea 
of Schentag et al [22, 23] studies what it originated from Gram-
negative bacilli. Since the binding kinetics of fluoroquinolones 
should be different in mycobacteria and Gram-negative bacilli, 

the PTA results have to take into account of those matter of fact 
[41, 42].

QT prolongation is known to change in a MOX plasma 
concentration-dependent manner [11, 13, 29]. Therefore, a 
high MOX dosing regimen may carry a risk of QT prolonga-
tion. Crucial QT prolongation (≥ 60 ms) is not expected with 
the 400-mg BID dosing regimen in HIV-positive patients. This 
treatment regimen for HIV-positive patients is also considered 
safer than the 800-mg QD regimen because of the narrow fluc-
tuation resulting from frequent and low dosing. Human immu-
nodeficiency virus-positive patients have a high CL, and drug 
concentrations should be maintained at lower levels than in 
HIV-negative patients to reduce the QT prolongation risk.

Five different studies, which comprised MDR-TB patients 
with different ethnicities, were merged to discern the optimal 
MOX dosing regimens using the unified PK model with lung 
legion exposure and QT prolongation. Considering previous re-
sults that were restricted by sample size and patients character-
istics, this approach could overcome the previous problems by 
merging the datasets. In addition, the first attempt to integrate 
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Figure 7. Relationship between ΔΔQTcF and Cmax for moxifloxacin (MOX) dosing regimens. The solid and broken line represent a ΔΔQTcF ≥60 ms and ≥30 ms, respectively. 
BID, twice-daily dose; HIV, human immunodeficiency virus; QD, once-daily dose.

Table 4. Proportion (%) of 30  ms and 60  ms of ΔΔQTcF in MOX Dosing 
Regimen

Target ΔΔQTcF ≥30 ms (%) ΔΔQTcF ≥60 ms (%)

Schedule 400 mg BID 800 mg QD 400 mg BID 800 mg QD 

HIV negative 9.45 24.4 0.50 1.49

HIV positive 5.97 12.9 0.00 0.00

Abbreviations: BID, twice daily; HIV, human immunodeficiency virus; QD, once daily.
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PK-lung legion-QT prolongation models supports our results 
because it gives us a perspective on the integrated consider-
ations for efficacy and toxicity.

Limitations in this study included the assumption that the 
unbound fraction of MOX was identical across plasma sam-
ples and lung lesion subtypes. The MIC value was determined 
without using the results of Studies 1 and 2, which included 
mostly Korean MDR-TB patients. The application of these 
results to other populations must be carefully considered. 
Furthermore, the lung lesion and QT prolongation model was 
evaluated with previous estimated parameters through com-
parisons with previous reports; those results were determined 
by simulations, rather than observable data, because lung lesion 
and QT data were not collected for this study. Therefore, the 
parameters’ re-estimation and recalculation for lung legion-QT 
prolongation models were not performed. The fact might be the 
limitation as well to expand the results to other population and 
conditions.

CONCLUSIONS

In conclusion, our results confirmed that a high MOX dosing 
regimen (800-mg daily dose) is effective for treatment of 
MDR-TB patients using simulation study with integrative 
model. In addition, a 400-mg twice-daily dose is expected to be 
safer than the 800-mg once-daily dose for reducing the risk of 
QT prolongation. Further clinical studies are needed to ensure 
the effectiveness and safety of MOX dosing regimens.
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