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Abstract: To screen, identify and study the genes involved in isothiazolone resistance and biofilm
formation in Citrobacter werkmanii strain BF-6. A Tn5 transposon library of approximately 900 mutants
of C. werkmanii strain BF-6 was generated and screened to isolate 1,2-benzisothiazolin-3-one (BIT)
resistant strains. In addition, the tRNA 2-thiocytidine (32) synthetase gene (ttcA) was deleted through
homologous recombination and the resulting phenotypic changes of the ∆ttcA mutant were studied.
A total of 3 genes were successfully identified, among which ∆ttcA mutant exhibited a reduction in
growth rate and swimming motility. On the other hand, an increase in biofilms formation in ∆ttcA
were observed but not with a significant resistance enhancement to BIT. This work, for the first time,
highlights the role of ttcA gene of C. werkmanii strain BF-6 in BIT resistance and biofilm formation.
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1. Introduction

The isothiazolones have been proven for their high efficacy against many fungal and bacterial
species [1,2]. Their mechanism of action includes the disruption of the metabolic pathways, inhibition
of growth, respiration and energy generation, the destruction of protein thiols and production of free
radicals [3]. Our previous study has reported that nitrogen metabolism and oxidative phosphorylation
contributed to isothiazolone resistance in Pseudomonas aeruginosa [4]. Likewise, a few outer membrane
proteins and genes responsible for peroxide-sensing in Burkholderia cepacia were shown to be involved
in the same resistance [5]. 1,2-benzisothiazolin-3-one (BIT), a typical representative of isothiazolones,
is an extremely effective biocidal agent often used as a preservative for controlling microbial growth and
biofouling in a variety of cosmetic preparations and industrial water treatment applications. However,
the complete and precise molecular mechanisms behind the bacterial resistance to isothiazolone,
especially for BIT, remain elusive.

The genus Citrobacter, belonging to the family Enterobacteriaceae, is a distinct group of aerobic,
Gram-negative, non-spore forming, rod-shaped bacteria [6]. Though commonly found in water,
soil, food and intestinal tracts of animals and humans, some strains of this genus can cause serious
opportunistic urinary and respiratory tracts infections [7]. In addition, Citrobacter sp. has been
associated with extra intestinal disorders and enteric diseases [8,9]. Contrarily, numerous reports
have shown the use of biofilm-immobilized Citrobacter sp. to combat environmental pollution or
to produce biological metabolites [10,11]. Through our previous study, we have isolated a strain
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of Citrobacter werkmanii BF-6 from industrial waste in our laboratory, exhibiting a high capacity for
biofilm formation. Interestingly, the processes and the resulting biofilms were found to be affected by
various antimicrobial agents, especially by isothiazolones [12,13]. However, the underlying molecular
mechanisms have not been elucidated.

In the present study, we have constructed a Tn5 insertion library of C. werkmanii BF-6 and
successfully screened three BIT-resistant strains. One of the sites inserted by Tn5 transposon was the
tRNA 2-thiocytidine (32) synthetase (ttcA) gene. With its deletion, the resulting phenotypic analysis
identified the involvement of ttcA gene in the growth rate, BIT resistance, biofilm formation and
swimming motility of C. werkmanii BF-6.

2. Results

2.1. Identification of the Insertion Sites of Tn5

To identify the genes contributing to BIT-resistance, a random mutant library of C. werkmanii
BF-6 was constructed using the plasmid pRL27 containing a Tn5 transposon. While screening for
BIT-resistant clones, 3 out of 900 mutants exhibited significant growths as compared to wild type C.
werkmanii BF-6 (Figure 1A). Successfully identified through the method of inverse PCR, the inserted
genes were found to be: tRNA 2-thiocytidine (32) synthetase (ttcA), LysR family transcriptional
regulator and HNH endonuclease (Table 1). In addition, a ttcA gene deletion strain (∆ttcA) was
successfully constructed through homologous recombination and a complementary strain of ∆ttcA-com
was created using the plasmid pSRK-GM and the recipient ∆ttcA. The PCR results for the identification
of ∆ttcA and ∆ttcA-com using primers ttcA-WJ-F/R and ttcA-BS-F/R (Table 2) are shown in Figure 1B.

Table 1. Identification of the random insertion sites of Tn5 transposon.

Number Locus Tag Gene Name Description

64 B2G73_RS05960 ttcA tRNA 2-thiocytidine(32) synthetase
94 B2G73_RS07535 - LysR family transcriptional regulator

111 B2G73_RS05205 - HNH endonuclease

“-”: no gene name.

Table 2. List of primers used for ttcA gene knockout and complementation.

Primer Names Forward Primer Sequences (5′-3′) Reverse Primer Sequences (5′-3′) Application

TnI-F/R GGAGAGGCTATTCGGCTATG GTAAGGTGATCCGGTGGATG Identification of Tn5 inserted sites
ttcA-WJ-F/R ATTATCGCTTCTCACCGACCTG AACGTCCAGCCACGGTAAAATC Identification of ttcA deletion

ttcAP-F/R GCTCTAGAGTGATGCATACTCTTCTGAT CCCAAGCTTTTACTTCACTTCCACAACGT ttcA complementation
ttcA-BS-F/R CTTCAATATGATCGAAGACGGC TTGGGTATCATCCTCTTCTGGC Partial sequence of ttcA gene
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Figure 1. Screening of random resistant mutants using a LB plate supplemented with 32 mg/L BIT
(A) and identification of ∆ttcA and ∆ttcA-com through PCR (B). Lane 1: C. werkmanii BF-6 (Control);
Lane 2: ∆ttcA; Lane 3: ∆ttcA-com.
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2.2. Characterization of ttcA Gene

Among the 3 mutants, we found that the mutant numbered 64 on BIT plates displayed the best
growth and thereby exhibited the strongest resistance to BIT (Figure 1A). The site of insertion for this
mutant was identified to be tRNA 2-thiocytidine (32) synthetase (ttcA, Table 1). In order to elucidate
the molecular function of ttcA, we first analyzed the gene structure and constructed a phylogenetic tree
using MEGA 4.0. As shown in Figure 2A, there are four typical motifs present in protein TtcA: PP-loop
motif (SGGXDS), M3 motif (GHXXDD), two CXXC motifs. Comparing the TtcA protein sequence of
C. werkmanii BF-6 with other reported proteins sequences downloaded from NCBI database revealed
the presence of the same motifs, thereby suggesting their conservation across the genus Citrobacter
(Figure 2B). However, despite the same motifs in their protein sequences, the evolutionary distances of
TtcA in the genus Citrobacter were not found to be close (Figure 2C).
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Figure 2. Analysis of the ttcA gene in C. werkmanii BF-6 and encoded protein sequence. Schematic
representation of the TtcA protein with its conserved motifs (A). Sequence alignment of reported TtcA
proteins representatives in the genus Citrobacter (B). The alignments were conducted with BioEdit
software and the conserved amino acid residues and motifs are framed. Phylogenetic tree of TtcA
protein of C. werkmanii BF-6 with the species of the same genus (C). This tree was constructed using
bootstrapping and Neighbor-Joining methods with MEGA 4.0.
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2.3. Effect of BIT on Bacterial Growth

The analysis of growth patterns of C. werkmanii BF-6, ∆ttcA and ∆ttcA-com in the absence or
presence of BIT demonstrated that the growth rates were inhibited in all the three strains with an
increase in concentration of BIT (Figure 3). No growth delays were observed in the presence of 8 mg/L
BIT except in the case of ∆ttcA-com. However, a dosage of 16 mg/L of BIT caused a notable growth
delay in all three strains and ∆ttcA exhibited the fastest speed to reach the exponential growth phase
with a lower plateau growth as compared to wild type C. werkmanii BF-6 (Figure 3B). Further, the
growths of C. werkmanii BF-6, ∆ttcA and ∆ttcA-com were found to be completely repressed by 32 mg/L
of BIT (Figure 3).
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Figure 3. Growth curves of C. werkmanii BF-6 (A), ∆ttcA (B) and ∆ttcA-com (C). The strains were
cultivated in LB medium supplemented with 0, 8, 16 or 32 mg/L BIT and incubated at 30 ◦C for 40 h.

2.4. Effect of BIT on Planktonic Growth and Initial Biofilm Formation

The formation of bacterial biofilms can induce a declined susceptibility of certain bacteria to
antimicrobial agents. Therefore, we detected the difference in the abilities of C. werkmanii BF-6, ∆ttcA
and ∆ttcA-com to form biofilms in the presence of BIT. The results demonstrated that initial biofilm
formations (including planktonic growth) were inhibited by BIT in a concentration-dependent manner
(Figure 4). For both C. werkmanii BF-6 and ∆ttcA, the biofilms formed in the presence of 4, 8 and
16 mg/L BIT were found to be same as their respective controls (Figure 4). However, ∆ttcA was
found to form more biofilms as compared to either C. werkmanii BF-6 or ∆ttcA-com at each detected
concentration of BIT (p < 0.05). In addition, the growth of planktonic cells and biofilms of C. werkmanii
BF-6, ∆ttcA and ∆ttcA-com were almost completely inhibited by BIT at concentrations of 32 and
64 mg/L (Figure 4).

2.5. Role of ttcA in Bacterial Motility

Swimming motility is considered as a flagellum-dependent form of movement observed in some
Gram-negative bacteria. In the present study, the swimming abilities of C. werkmanii BF-6 and ∆ttcA
were determined and compared with each other. Results showed that the diameter of ∆ttcA colony
reduced by about 66.7% as compared with that of C. werkmanii BF-6 (Figure 5C) and the ability to
swim by ∆ttcA was almost found to be lost in the presence of 4 mg/L BIT (Figure 5D), while BF-6
lost approximately 16.7% of its swimming colony diameter at the same BIT concentration (Figure 5B).
In addition, both BF-6 and ∆ttcA were found to entirely lose their swimming motility when the BIT
concentrations exceeded 8 mg/L (data not shown). Collectively, these results suggest that ttcA gene is
necessary for the swimming motility of C. werkmanii while the anti-microbiological agent BIT could
inhibit the same.
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2.6. Effect of BIT on Biofilm Architecture

Since biofilm formations of C. werkmanii BF-6 and ∆ttcA were found to be influenced by BIT, we
speculated its effect on biofilm architectures too. In this regard, CLSM images of C. werkmanii BF-6
and ∆ttcA biofilms in the absence or presence of BIT were analyzed to quantitatively calculate the
parameters of their topographies and architectures. When cultured for 4 days, typical biofilms were
formed by C. werkmanii BF-6 and ∆ttcA on the surfaces of their respective glass slides in LB medium
without BIT (Figure 6A,D). However, ∆ttcA formed smoother biofilms and displayed a higher coverage
when compared to C. werkmanii BF-6 (Figure 6). When supplemented with 4 and 16 mg/L of BIT, the
biofilms of C. werkmanii BF-6 alone were seen to become sparse in nature (Figure 6). Upon further
analysis of the CLSM acquired images using the COMSTAT 2.1 software, we noticed that the biofilm
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parameters comprising of average and maximum thickness, total biomass and average colony size
were all higher in ∆ttcA than in C. werkmanii BF-6, except for roughness coefficient, in all detected
conditions (Table 3). These observations were consistent with the data obtained from CLSM.Int. J. Mol. Sci. 2018, 19, x 7 of 14 
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Figure 5. Swimming motility of C. werkmanii BF-6 (A,B) and ∆ttcA (C,D) on semisolid agar plates
supplemented with 0 or 4 mg/L BIT. Aliquots of 5 µL suspensions were inoculated at the center of the
plate with a micropipette and then cultured for 24 h at 30 ◦C.

Table 3. Quantitation of biofilm architecture.

Parameters *
WT (Mean± SD) ∆ttcA (Mean± SD)

0 mg/L BIT 4 mg/L BIT 16 mg/L BIT 0 mg/L BIT 4 mg/L BIT 16 mg/L BIT

Maximum thickness (µm) 12.00 ± 2.00 11.33 ± 1.15 8.00 ± 0.00 20.77 ± 2.69 18.00 ± 4.00 16.67 ± 2.31

Average thickness (µm) 8.26 ± 1.40 5.86 ± 1.17 3.54 ± 1.29 17.33 ± 2.31 9.58 ± 1.72 5.79 ± 1.27

Total biomass (µm3/µm2) 12.06 ± 0.98 5.58 ± 1.20 3.42 ± 1.06 14.52 ± 0.14 9.78 ± 1.63 6.14 ± 1.27

Average colony size (µm2) 195.67 ± 17.65 182.18 ± 12.12 59.00 ± 6.58 213.75 ± 7.93 192.55 ± 18.54 155.90 ± 17.86

Roughness coefficient 0.22 ± 0.02 0.51 ± 0.02 0.82 ± 0.21 0.08 ± 0.02 0.11 ± 0.01 0.36 ± 0.06

* Quantitation of biofilm parameters including maximum thickness, average thickness, total biomass, average
colony size and roughness coefficient were evaluated using COMSTAT 2.1. The results are means of datasets
obtained from the analysis of eight CLSM images acquired at random positions in each of the biofilms. Standard
deviations (SD) are indicated along with the means.
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4 (B,E) or 16 (C,F) mg/L BIT, respectively. The biofilms were cultured on the cover slides and stained
with 5 µM SYTO9 dye and 30 µM propidium iodide. Magnification: 400×.

3. Discussion

It has been reported that isothiazolones are capable of interacting oxidatively with the accessible
thiols, such as glutathione or cysteine, within the microbial cells and thus lead to the inhibition of their
metabolism and loss of viability [3,14]. Further, it has been proven that certain growth factor receptors
and fibroblast cells along with several intracellular enzymes including transferases, oxidoreductases,
isomerases, ligases and hydrolases can be inhibited by these microbiocides [15]. In the present study,
we created a Tn5 transposon library of C. werkmanii BF-6 to screen and isolate BIT resistant strains.
During this process, the study of three random insertion sites identified from transposon mutants
(Table 1) revealed that ttcA as one of the genes that garnered further investigation. It is interesting to
note that among the translated protein sequence of ttcA gene, there are two CXXC motifs (Figure 1A),
within which the Cys residues coordinate a [4Fe-4S] cluster essential for the thiolation activity [16].
Based on data from the growth curves and resistance determination experiments (Figures 3 and 4),
we speculated that either these CXXC motifs or the internal cysteine (C, possesses S-H bond) could
be the binding sites for BIT. However, it is important to note that neither the motif nor the protein is
a unique binding site of BIT because the deletion of ttcA gene did not lead to the complete absence
of BIT action (Figures 3 and 4). Additionally, we found two CXXC motifs (CAYC and CAPC) in the
protein sequence of HNH endonuclease (data not shown), which could also play vital roles in the
binding of BIT and its subsequent development of resistance. However further study is needed to
verify this hypothesis.
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The protein tRNA 2-thiocytidine (32) synthetase (TtcA) is required for the thiolation of cytidine at
position 32 of tRNA to form 2-thiocytidine (s(2)C32). The TtcA protein family is characterized by the
presence of a PP-loop along with a CXXC motif in their central regions (Figure 2). Mutant analysis
showed that the cysteines in this centrally conserved CXXC motif are essential for the formation of
s(2)C32 [17]. It has been demonstrated that the TtcA enzymes in Escherichia coli contain a redox-active
and oxygen-sensitive [4Fe-4S] cluster which are chelated by only three cysteine residues and are
absolutely essential for their activity [16]. Meanwhile, it has also been proven that TtcA protein in
E. coli is originally a tRNA-thiolating enzyme proceeding via an ATP-dependent pathway depending
on a Fe-S cluster, as testified by in vivo and in vitro enzyme activity assays [16]. In another study, it
was revealed that the deletion of ttcA gene in the genome of Salmonella enterica did not affect the growth
rates of the ∆ttcA mutants in comparison to their congenic wild type strains and that the lack of s(2)C32
did not cause any growth disadvantage in a mixed-population experiment [17]. However, we found
that the inactivity of ttcA gene in C. werkmanii led to their delayed growth and lowered the growth
curves (Figure 3) which suggest that the ttcA gene could be involved in different processes in different
bacteria, with respect to their growth. In addition, the mutant strain was not isogenic with wild
type C. werkmanii BF-6 and therefore could have different physical properties but the purpose of this
manuscript was to determine the effect of the ttcA mutation, including all physical property changes.

Bacterial biofilms represent a life stage different from planktonic cells wherein individual cells
are encased in a self-produced matrix of hydrated extracellular polymeric substances (EPS) consisting
of polysaccharides, proteins, nucleic acids (eDNA) and lipids [18]. The EPS provide the mechanical
stability in biofilms, mediating their adhesion to surfaces and forming a cohesive, three-dimensional
polymer network that interconnects and transiently immobilizes biofilm cells [18]. In this study,
observations through CLSM demonstrated that both BF-6 and ∆ttcA could establish typical biofilms
on covers slides (Figure 6). However, with ∆ttcA displaying smoother biofilms with higher biomasses
as compared to the wild type BF-6 (Table 3 and Figure 6), it can be suggested that ttcA gene is perhaps
a negative regulatory factor for both biofilm formation and its structural organization in C. werkmanii.

It is known that the EPS matrix of biofilms can limit and further prevent the transport of
antimicrobial agents to the cells by either reacting with the bactericides through either sorption,
electrostatic or hydrophobic interactions, size exclusion or through the eventual degradation of
biocides [19–22]. In this study, ∆ttcA was seen to form denser biofilms as compared to C. werkmanii
BF-6, which indicate a slight increase in resistance to BIT by ∆ttcA (Figures 2 and 6, Table 3). However,
the barrier of biofilm to BIT only played a role at lower concentration of the drug, as higher dosages
could still completely inhibit the growth of planktonic cells and biofilms.

Swimming motility is a flagellum-dependent form of movement observed in Gram-negative
bacteria [23–25]. Through this study, we found that BIT could inhibit the swimming ability of C.
werkmanii. Although the ttcA gene was verified to be essential for the swimming motility in this
bacterium, the exact underlying mechanism needs to be elucidated.

4. Materials and Methods

4.1. Bacterial Strains and Chemicals

Wild type C. werkmanii BF-6 (WT) was previously isolated from industrial putrefaction in
our laboratory [26] and cultures have been stocked at the Guangdong Culture Collection Center
(Guangzhou, Guangdong, China) under the accession number GDMCC 1.1242. Escherichia coli
S17-1(λpir)/pRL27 mini-Tn5-Km [27] and pYG4 were kind gifts from professors Lian-hui Zhang
of South China Agricultural University, Guangzhou and Yan-guang Cong of Third Military Medical
University, Chongqing, China, respectively. The above strains were routinely grown in Luria Bertani
(LB) medium with or without the corresponding antibiotics (Kanamycin, 50 mg/L) at 30 ◦C or 37 ◦C
for necessary durations. All chemicals used in this study were of reagent grade and purchased from
Sigma (St. Louis, MO, USA), unless indicated otherwise.
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4.2. Construction of Transposon for Mutagenesis

Mutagenesis was performed according to the method described previously, with slight
modifications [28]. Both E. coli S17-1(λpir)/pRL27 mini-Tn5-Km and C. werkmanii BF-6 were cultured
overnight at 37 ◦C in LB media in a constant-temperature shaker incubator set to 165 rpm. The donor
E. coli S17-1(λpir)/pRL27 and the recipient C. werkmanii BF-6 were mixed in a ratio of 1:1 and then
spotted on a LB agar plate which was covered with a 0.45 µm cellulose membrane. The plates were
then cultured at 37 ◦C for at least 12 h to allow conjugational transfer of the plasmid pRL27 from
the donor to the recipient cells. Following this, the co-cultivated bacteria on the membrane surface
were washed and suspended in 2 mL of 10 mM MgSO4. About 100 µL of C. werkmanii BF-6 clones
with the integrated Tn5 cassette were then spread onto LB agar plates supplemented with kanamycin.
In addition, all the mutants were transferred onto LB plates supplemented with 32 mg/L BIT to screen
for BIT-resistance.

4.3. Identification of Transposon Insertion Site

An inverse PCR method was employed to identify the flanking sequence of the inserted mini-Tn5
transposon in the genomes of the mutants [28]. Briefly, the total genomic DNAs of C. werkmanii BF-6
mutants were extracted from 1 mL of LB medium cultures using the EasyPure Bacteria Genomic DNA
Kit (Transgen Biotech, Beijing, China). The isolated genomes were digested with TaqI (NEB, Beijing,
China), self-ligated with T4 DNA ligase (NEB) and then used as templates for inverse PCR using
the primers TnI-F and TnI-R (Table 2). The amplified fragments were separated by agarose gel
electrophoresis, purified using the EasyPure Quick Gel Extraction Kit (Transgen Biotech, Beijing, China)
and finally sequenced at the Invitrogen (Guangzhou, China). To verify the mutant genes, the obtained
sequences were used to search the nucleotide databases developed by the National Center for
Biotechnology Information (NCBI) and the available C. werkmanii BF-6 genome using the BLAST tool.

4.4. Construction of Gene Knockout Mutants and Complementary Strains

Upon analysis, we found that Tn5 was inserted into the tRNA 2-thiocytidine (32) synthetase gene
(ttcA) and the resulting mutant exhibited an increased resistance to BIT. In order to testify the molecular
role of ttcA in biocides resistance and biofilm formation, we deleted this gene from the genome of
C. werkmanii BF-6. The gene knockout and complementation of ttcA was performed according to
previously reported methods, with slight modifications [29]. Briefly, the flanking DNA fragments
(1059 bp upstream with BglII site; 792 bp downstream with NdeI site) of the gene ttcA (locus_tag =
“B2G73_RS05960”) were whole gene synthesized at GENEWIZ Biotechnology Co. Ltd. (Suzhou, China).
The resulting fragment was digested with the enzymes BglII and NdeI (NEB) and then cloned into
the pYG4 vector digested with the same endonucleases. The resulting plasmid of pYG4-ttcA was
used to transform E. coli S17-1 cells and was subsequently mobilized into C. werkmanii BF-6 via
biparental mating. The exconjugants were selected on LB medium containing kanamycin (50 mg/L)
and rifampicin (100 mg/L) and the deletion mutant candidates were recovered on LB medium
containing 5% sucrose and were finally confirmed by PCR using the primers ttcA-QJ-F/R (Table 2).
To construct the complementary strain, the genomic DNA was first extracted from C. werkmanii BF-6 by
using the EasyPure Genomic DNA Kit (Transgen Biotech, Beijing, China) following the manufacturer’s
directions and the full-length ttcA gene with its upstream sequence was amplified using the primers
ttcA-Com-F/R (Table 2). The PCR product was cloned into the shuttle vector pSRK-GM between the
XbaI and HindIII sites. The recombinant plasmid pSRK-GM-Com was transferred into E. coli S17-1 cells
and then subsequently mobilized into C. werkmanii BF-6 deletion strain of ∆ttcA. The complemented
strain was confirmed by PCR using the primers ttcA-BS-F/R (Table 2) and was designed as ∆ttcA-com.
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4.5. Determination of the Bacterial Growth Curves

The growth curves of C. werkmanii BF-6, ∆ttcA and ∆ttcA-com in the absence or presence of 0,
8, 16 and 32 mg/L BIT were determined in a total volume of 200 µL using a Bioscreen C microtiter
plate (Labsystems, Helsinki, Finland), starting with an initial bacterial density of approximately
2 × 104 cfu/mL. The cultures were incubated at 30 ◦C with constant shaking at medium speed for 40 h
in a Bioscreen C analyzer (Labsystems, Helsinki, Finland) following the instructions in the manual and
the bacterial growth was recorded every 30 min by measuring the optical density (OD) at 600 nm.

4.6. In Vitro Inhibitory Effect of BIT on Initial Biofilm Formation

A column of microtiter plate (Corning Inc., Corning, NY, USA) was inoculated with 100 µL
of either BF-6, ∆ttcA or ∆ttcA-com suspensions (OD600 = 0.10). Dilutions of BIT stock solution in
a total volume of 100 µL were added such that the final concentrations of BIT were as follows:
0, 4, 8, 16, 32 and 64 mg/L. Eight replicates were set for each drug concentration and the plates
were transferred into a static incubator where they were cultured at 30 ◦C for 4 days. Following
this, they were subsequently managed according to the previously described methods, with minor
modifications [12,30]. The growth rates of BF-6, ∆ttcA and ∆ttcA-com planktonic cells in the cultured
plates were measured using a Multiskan GO Reader (Thermo Scientific, Waltham, MA, USA) at 600
nm. The cultivation in each well was discarded gently and washed with 250 µL of sterile water for at
least three times to completely remove any of the floating cells. After drying the plate for 30 min at
room temperature, each well was filled with 250 µL of 0.1% crystal violet solution (Shanghai Chemical
Reagents Co. Ltd., Shanghai, China) to stain the sessile cells attached on the walls of the well for about
40 min. Subsequently, excess of the staining dye was washed away using sterile water for at least
three times. After drying the plate at room temperature again, the wells were filled with 250 µL of
95% ethanol (Shanghai Chemical Reagents Co. Ltd., Shanghai, China) to resolubilize the dye for at
least 30 min. The OD595 of each well was determined using the same Reader. Meanwhile, the cultures
without any BIT were considered as controls.

4.7. Motility Assay

The motility assay for C. werkmanii BF-6 and ∆ttcA was determined according to the methods
described previously, with slight modifications [24,31]. Briefly, several swimming plates (10 g/L
tryptone, 5 g/L NaCl and 0.3% agar) were inoculated with 2 µL of bacterial suspensions (OD600 = 0.05)
in the center of the plates, following which, they were transferred into an incubator set to 30 ◦C. After
24 h of incubation, the plates were taken out and the diameters of the colonies in each plate were
measured using a digital Vernier caliper (CD-20CP, Kawasaki, Japan). Additionally, the plates were
photographed using a digital camera (Nikon D7200, AF-S DX 18-140 mm; Nikon, Tokyo, Japan).

4.8. Observation of Biofilm Structures with Confocal Laser Scanning Microscopy (CLSM)

Biofilms of C. werkmanii BF-6 and ∆ttcA were first allowed to form on pre-sterilized glass
microscope slides and then observed with CLSM according to the method reported previously [32].
Briefly, aliquots of 2 mL of BF-6 or ∆ttcA suspensions (OD600 = 0.05) supplemented with BIT to final
concentrations of 0, 4 or 16 mg/L were added to a well of microtiter plate (12 wells, Corning, NJ, USA)
containing a cover slip. Following an incubation under static conditions at 30 ◦C for 4 days, the glass
slips were gently taken out and stained with 5 µM SYTO9 dye (Invitrogen, Carlsbad, CA, USA) and
30 µM propidium iodide (Sigma, St. Louis, MO, USA) in dark for at least 15 min at room temperature.
Finally, the stained biofilms were visualized using CLSM (LSM 710 Zeiss, Jena, Germany). In addition,
a quantitative analysis of biofilm parameters of the acquired images was analyzed using a COMSAT
2.1 software [33,34].
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4.9. Statistical Analysis

All the data collected in this study were recorded as the mean ± standard deviation (SD) and
were also subjected to one-way ANOVA test. This was followed by comparison of multiple treatment
levels with the controls using Fisher’s LSD test. All the statistical calculations were done using a data
processing system (DPS) software [35] and differences were considered statistically significant when
p < 0.05.

5. Conclusions

Our results from the present study demonstrate that ttcA gene in C. werkmanii is involved in its
planktonic growth, BIT resistance, swimming motility, initial biofilm formation and the underlying
structural stability. ttcA plays a significant role in the thiolation of cytidine at position 32 of tRNA.
This study, to the best of our knowledge, is the first attempt to construct a relationship between the
ttcA gene with isothiazolone resistances, swimming motility and biofilm formation in C. werkmanii.
However, the detailed molecular mechanisms of the biological processes demonstrated in this study
warrant further research.
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