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Abstract

 OBJECTIVES—With ENCODE epigenomic data and results from published genome-wide 

association studies (GWASs), we aimed to find regulatory signatures of obesity genes and discover 

novel susceptibility genes.

 METHODS—Obesity genes were obtained from public GWASs databases and their promoters 

were annotated based on the regulatory elements information. Significantly enriched or depleted 

epigenomic elements in the promoters of obesity genes were evaluated and all human genes were 

then prioritized according to the existence of the selected elements to predict new candidate genes. 

Top ranked genes were subsequently applied to validate their associations with obesity-related 

traits in three independent in-house GWASs samples.

 RESULTS—We identified RAD21 and EZH2 as over-represented, STAT2 and IRF3 as 

depleted transcription factors. Histone modification of H3K9me3 and chromatin state 

segmentation of “poised promoter” and “repressed” were overrepresented. All genes were 

prioritized and we selected the top five genes for validation at population level. Combined results 

from the three GWASs samples, rs7522101 in ESRRG remained significantly associated with BMI 

after multiple testing corrections (P = 7.25 × 10−5). It was also associated with β-cell function (P = 

1.99 × 10−3) and fasting glucose level (P < 0.05) in the meta-analyses of glucose and insulin-

related traits consortium (MAGIC) dataset.

 CONCLUSIONS—In summary, we identified epigenomic characteristics for obesity genes and 

suggested ESRRG as a novel obesity susceptibility gene.
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 INTRODUCTION

Obesity is a global health problem and it increases the likelihood of various diseases, 

particularly cardiovascular disease and type 2 diabetes. Moreover, worldwide obesity has 

more than doubled since 1980 according to the WHO report (http://www.who.int/

mediacentre/factsheets/fs311/en/) and it is becoming more widespread with a global 

projection of more than 1.12 billion obese individuals by 20301. Finding genetic 

components of obesity are becoming more critical in determining the risk of obesity.

Twin and family studies have established that obesity is highly heritable. The heritability of 

body mass index (BMI) was estimated to be 40–70%,2, 3 and other anthropometric measures 

of obesity show similar heritability.2-6 With the help of genome-wide association studies 

(GWASs), many obesity-susceptibility genes have been defined.7 Up to now, more than 100 

loci have been identified to be associated with obesity.8, 9 However, all these variants only 

explain a small proportion of the heritability for obesity.8 Association signals may be missed 

at genome-wide significance level due to the modest genetic effect size and inadequate 

statistical power.10, 11 Thus, novel methods are needed to detect such associations.

Recently, functional and regulatory data for the entire human genome have been generated 

rapidly.12-14 In particular, the Encyclopedia of DNA Elements (ENCODE) project has 

provided a large amount of regulatory data (epigenomic elements).15, 16 Considering the 

indisputable association of epigenomics with obesity,17-19 investigating the regulatory 

features of obesity-susceptibility genes may deepen our understanding of the causes on 

obesity. However, the understanding of common factors that regulate the expression of 

obesity genes is still lacking. A previous study suggested that autoimmune-related gene sets 

shared similar epigenomic features and other gene promoters (besides the known 

autoimmunity susceptibility genes) containing the same features also tended to be associated 

with the immune response.20 Therefore in this study, we hypothesized that obesity gene 

promoters may share similar regulatory features and prioritizing genes with these regulatory 

features may identify novel candidates that may play a role in obesity.

Investigations in this study were carried out with the following steps: 1) we annotated the 

promoter regions of known obesity genes with three groups of epigenomic elements: 

transcription factor binding sites (TFBSs), chromatin segmentation states, and histone 

modification marks; 2) we obtained the epigenomic features of obesity genes using 

enrichment analysis; 3) we prioritized all genes with the selected epigenomic features in 

their promoters to identify novel candidates that may be associated with obesity; 4) For 

predicted novel obesity genes with top scores, association studies were carried out to 

investigate the potential effects of their genetic variants on BMI or fat mass using three 

GWAS samples from in-house studies. We also assessed the associations with glycaemic 

traits using data from the meta-analyses of glucose and insulin-related traits consortium 
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(MAGIC). Our results would reveal the epigenomic character of obesity-related genes and 

identify novel genes that may contribute to the development of obesity.

 MATERIALS AND METHODS

 Acquisition of obesity associated genes

The analysis strategy is shown in Figure 1. Genes associated with obesity were obtained 

from the National Human Genome Research Institute (NHGRI) GWAS Catalog 

(www.genome.gov/gwastudies) database21 and phenotype-genotype integrator (PheGenI) 

database (http://www.ncbi.nlm.nih.gov/gap/phegeni), which are curated resources of SNP-

trait associations. With P value < 5 ×10−8, we searched the databases to obtain genes that 

associated with obesity related phenotypes (including obesity, adiposity, overweight, waist 

circumference, waist-hip ratio, body mass index, body fat mass, and anthropometric traits). 

Recently identified novel loci for body mass index (BMI)8, 9 were also included in 

subsequent analysis. Promoters were defined as 2,000 bases upstream of a gene's 

transcription start site. An in-house Perl script was used to extract the promoters regions of 

the selected genes sets. For genes with more than one transcript, the pipeline extracted the 

promoters for each transcript, and merged overlapping into a single promoter.

 Functional annotation

Functional annotation of the genes sets were carried out based on the regulatory annotation 

files obtained from the UCSC database. The epigenomic elements could be categorized into 

three groups: transcription factors, histone modifications, and chromatin state segmentation. 

The data from multiple cell lines were used. As shown in supplementary Table S1, a total of 

569 epigenomic elements were used in the analysis.

 Enrichment analysis

We first calculated the total number of promoters of obesity associated genes that overlapped 

with an epigenomic element. If a given promoter overlaps with the same epigenomic 

element for more than once, it is only counted once. Using the promoters of all genes as a 

background, according to the promoter number of obesity-associated gene set, we randomly 

selected the same number of promoters and performed 1000 such random samplings to 

estimate the average number and variance of random annotation. Compared with random 

sampling results, we then performed fisher's exact test to identify epigenomic elements that 

were significantly over-represented or under-represented in obesity related genes. For easier 

comparison and visualization, P values signifying over-represented epigenomic elements 

were converted into decimal scale by -log10-transformation while P values signifying under-

represented epigenomic elements were converted into decimal scale by log10-

transformation. As a positive control, we also tested the promoters of randomly selected 

genes sets of the same size as the obesity associated genes.

 Reverse epigenomic analysis

To identify the promoters of other genes sharing similar epigenomic characters as the 

promoters of obesity related genes, the promoters of all genes were annotated for the 

presence of the aforementioned significant epigenomic elements. For each gene, we first 
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calculated the number of times its promoter overlaps with each of the selected epigenomic 

elements. Then we multiplied the counts of each element by the corresponding transformed 

P values to prioritize each element by the significance of its association with obesity. Finally, 

we summed up all counts and the total scores of each gene were obtained.

 Gene set enrichment analysis (GSEA)

Genes were ranked according to the scores obtained from the reverse epigenomic analysis. 

The ranked gene list was supplied to GSEA22 pre-ranked analysis with default parameters 

and c2 KEGG (curated gene sets from KEGG pathway databases) were used for the 

analysis.

 Validation in GWAS datasets

We used three in-house GWAS datasets to validate the association of the top five genes with 

obesity related traits. In-house studies were approved by the Institutional Review Boards of 

the Xi'an Jiaotong University, Creighton University and University of Missouri-Kansas City. 

Signed informed consent was obtained from all subjects. The three in-house GWAS samples 

include: 1) Chinese Han subjects with 1627 unrelated healthy adults recruited from Xi'an 

and Changsha cities; 2) Kansas City sample with 2,286 unrelated US Caucasians of 

Northern European origin living in Kansas City and its surrounding areas; 3) Omaha sample 

with 1000 unrelated Caucasian subjects living in Omaha, Nebraska and its surrounding 

areas. The description of each study has been detailed in our previous studies.23, 24

 Phenotype measurement—Body weight and height were recorded and BMI was 

calculated as body weight (kg) divided by the square of height (m). Body fat mass was 

measured using Hologic 4500W machines (Hologic Inc., Bedford, MA, USA). Subjects with 

diseases or conditions that might affect fat metabolism were excluded. The exclusion criteria 

were detailed in previous studies.25 Age and sex were used as covariates to adjust for the 

raw BMI and fat mass values. Distribution of the residuals was tested for normality by using 

Kolmogorov–Smirnov test.

 Genotyping and quality control—SNP genotyping was performed using Genome-

Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA) for the Chinese Han 

subjects and Kansas City sample. For the Omaha sample, SNP genotyping was performed 

using the Affymetrix Human Mapping 500K Array (Affymetrix, Santa Clara, CA, USA). 

The genotyping procedure for each sample has been detailed in our previous studies.23, 24 

Quality control was implemented with the following criteria: individual missingness < 5%, 

SNP call rate > 95%, and Hardy-Weinberg equilibrium (HWE) P-value < 0.0001.

 Association analysis—For the Chinese Han subjects and Kansas City sample, 

association analyses assuming an additive inheritance model were carried out with PLINK.26 

For the Omaha sample, to facilitate the comparison of association results at the same SNPs, 

we first used the IMPUTE2 program27 to impute genotypes of SNPs that detected in the 

Affymetrix SNP 6.0 array but not in the 500K array based on the 1000 genome data (version 

3). SNPTEST28 was then used to examine associations in this sample assuming an additive 

inheritance model. Only SNPs with minor allele frequency (MAF) over 0.05 in all three 
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GWAS samples were used in association analysis. Summary statistics of associations from 

the three GWAS samples were subjected to Meta-analysis calculations using the METAL 

software (http://csg.sph.umich.edu/abecasis/Metal/) under the inverse-variance weighted 

fixed-effect model. Multiple test correction was carried out using the Bonferroni correction 

method.

We further checked the association with glycemic traits for significant SNPs after multiple 

testing corrections using data from the MAGIC datasets. The meta-analyses of glucose and 

insulin-related traits consortium (MAGIC, http://www.magicinvestigators.org/) represents 

combined data from multiple GWAS to identify loci that impact on glycemic and metabolic 

traits, which might influence the risk of type 2 diabetes.

 RESULTS

 Obesity-related genes

With P-value < 5 ×10−8, a total of 413 transcribed genes associated with obesity were 

extracted from GWAS Catalog, PheGenI database and a recently published GWAS research 

on BMI.8, 9 All genes were supplied to pathway enrichment analysis with the STRING 

online tool (http://string-db.org/) and enrichment (false discovery rate (FDR) < 0.05) of six 

gene sets were found, including neurotrophin signaling pathway, pathways in cancer, MAPK 

signaling pathway, non-small cell lung cancer, PI3K-Akt signaling pathway and cholinergic 

synapse (Table 1A).

 Enrichment and depletion analysis

We began by examining whether or not any of the transcription factor binding sites (TFBSs) 

were enriched or depleted in our gene sets. The results showed that two TFBSs (EZH2 and 

RAD21, P = 5.41 × 10−3 and 7.85 × 10−3, respectively) enriched in the promoters of obesity 

susceptibility genes while these genes were depleted in two TFBS: IRF3 and STAT2 (P = 

7.36 × 10−3 and 9.77 × 10−3, respectively, Figure 2 and supplementary Table S1).

Since the epigenomic landscape of cells derived from different tissue sources or levels of 

pluropotency can vary considerably, contributing to distinct gene expression programs and 

biological functions,29, 30 we then analyzed cell type-specific epigenomic factors that 

control the accessibility of chromatin, including chromatin states and histone marks for 

obesity genes. As shown in Figure 2 and supplementary Table S1, among the chromatin state 

segmentation types, the “poised promoter” chromatin region was significantly enriched in 

the promoters of obesity genes and this signature was shared in 6 cell lines, including Nhek 

(normal human epidermal keratinocytes, P = 6.53 × 10−3), Huvec (human umbilical vein 

endothelial cells, P = 8.79 × 10−3), Hsmm (human skeletal muscle myoblasts, P = 4.90 × 

10−3), Hmec (human mammary epithelial cells, P = 6.65 × 10−4), H1hesc (human embryonic 

stem cells, P = 1.83 × 10−3), and Gm12878 (B-lymphoblastoid, normal karyotype, European 

Caucasian, Epstein-Barr Virus transformed, P = 5.15 × 10−4). Significant enrichment of the 

“repressed” chromatin region was also found in three cell lines: Hmec (P = 1.56 × 10−3), 

H1hesc (P = 5.78 × 10−3), and Gm12878 (P = 4.07 × 10−4). Depletion of “txn elongation” 
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was found in H1hesc (P = 1.5 × 10−3) and Hemc (P = 7.81 × 10−3). Depletion of “weak txn” 

was found in both K562 (P = 7.99 × 10−3) and H1hesc (P = 8.82 × 10−3).

Among all of the histone marks, we did not detect any depletion in the promoters of the 

obesity genes. As shown in Figure 2 and supplementary Table S1, Enrichment of the 

H3K9me3 repressive mark was found in four cell lines, including osteoblasts (P = 2.99 × 

10−3), Nhlf (normal human lung fibroblast, P = 7.57 × 10−3), monocytes (P = 6.7 × 10−3), 

and Huvec (P = 9.89 × 10−3). Enrichment of EZH2 (H3K27me3) was found in CD20+ (P = 

1.36 × 10−4), Hsmm (P = 6.42 × 10−3), and A549 (P = 3.89 × 10−3).

In summary, non-cell type-specific enrichment of chromatin states and histone marks was 

detected in the promoters of obesity genes, which might reflect the fact that obesity is a 

complex disease involving many pathophysiological systems.

 Reverse epigenomic analysis suggested novel obesity related genes and miRNAs

The analysis results indicated that a set of epigenomic elements tended to be enriched or 

depleted in obesity gene promoters. We hypothesized if these signatures indeed reflect 

obesity-relevant regulatory factors; other genes with similar features in their promoters 

would tend to be related to obesity as well. Thus, prioritizing the promoters of all genes 

according to the enrichment or depletion of the selected epigenomic elements might detect 

novel genes associated with obesity. We searched for the significantly enriched or depleted 

epigenomic elements within the promoters of all genes, weighted each element by the 

significance of their associations with obesity related genes, and ranked the genes by the 

resulting scores. This ranking scheme expectedly identified known obesity associated genes, 

with ELAVL4, BDNF, and SOX5 being among the top 20 (Table 2). However, not all 

obesity associated genes scored high, with many other genes demonstrating higher scores. 

To investigate whether genes identified by reverse epigenomic analysis may provide novel 

candidate genes relevant to obesity, we performed GSEA on all genes prioritized by the total 

scores. KEGG enrichment analysis resulted similar pathways to the original gene sets. As 

shown in Table 1B, neuroactive ligand receptor interaction and pathways related to general 

growth and patterning were detected.

 Validation in GWAS datasets

To further confirm the association between the novel genes identified by reverse epigenomic 

analysis and obesity, the top five genes were subjected to association analysis in our three 

GWAS samples. Basic characteristics of the samples are listed in supplementary Table S2. 

As shown in supplementary Table S3, a total of 677 SNPs located within and near the 

selected five genes were included for association analyses, including 4 SNPs for PDE4DIP, 

267 SNPs for ESRRG, 16 SNPs for MIR7641-2, 371 SNPs for PDE4D and 19 SNPs for 

LINC00461.

For BMI, after combining results from these three sample sets, we listed all nominally 

significant association results with meta-analysis P values < 0.05 in supplementary Table S4. 

The results showed that 54 SNPs in four genes (ESRRG, MIR7641-2, PDE4D and 

LINC00461) were nominally significantly associated with BMI (P < 0.05). Among them, the 

SNP rs7522101 in ESRRG, remained significantly associated with BMI after multiple 
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testing corrections (Table 3, combined P = 7.25 × 10−5). As shown in Table 3, the minor 

allele “C” of this SNP was negatively associated with BMI.

For the fat mass, as shown in supplementary Table S5, after combining results from the three 

sample sets, 30 SNPs in four genes (ESRRG, MIR7641-2, PDE4D and LINC00461) were 

nominally significantly associated with fat mass (combined P < 0.05). The SNP rs7522101 

in ESRRG was nominally significantly negatively associated with fat mass (combined P = 

3.46 × 10−3). However, none of these SNPs remained significant after multiple testing 

corrections.

For rs7522101 (Table 3), we also check its association with glycemic traits in the MAGIC 

datasets. It was associated with indices of β-cell function (P = 1.99 × 10−3, beta = 0.0140)31 

and fasting glucose level (P = 3.32 × 10−2, beta = -0.0089).31, 32 These findings are 

particularly important since obesity is associated with increased risk of diabetes, which 

might be influenced by glycemic and metabolic traits.

 DISCUSSION

GWASs have identified many genes associated with obesity. However, there remains limited 

understanding of experimentally identified epigenomic regions involved in regulation of 

these genes. Here we illustrated the distinct epigenomic characters of genes genetically 

associated with obesity.

In addition, the reverse epigenomic analysis and subsequent association analysis suggested 

that ESRRG may be a novel candidate gene for obesity. TFBSs analysis identified the 

overrepresentation of two TFBSs: RAD21 and EZH2. RAD21 is mainly involved in general 

growth and patterning (cell cycle), while the histone H3K27 methyltransferase EZH2 

functioning upstream of Wnt genes. A previous study has indicated that EZH2 could 

facilitate adipogenesis through directly repressing Wnt genes.33 Corroborated with the 

enrichment of EZH2, overrepresentation of the H3K27me3 and EZH2_ (39875) histone 

marks were also detected. STAT2 was significantly depleted in obesity gene promoters. This 

transcription factor may be involved in the regulation of obesity related biological 

processes,34 including lipid metabolism, fatty acid transport, lipid transport and generation 

of precursor metabolites and energy. Depletion of STAT2 may indicate lack of active 

transcription in general. IRF3 was also significantly depleted in obesity gene promoters. 

IRF3 encodes a member of the interferon regulatory transcription factor (IRF) family. 

Consistent with our results, previous study observed that IRF3 expression was markedly 

decreased in the liver in obese mice.35 Moreover, IRF3 protects against obesity-related 

insulin resistance and hepatic steatosis through inhibiting the IKKβ/NF-κB signaling 

pathway.35

Chromatin state segmentation analysis revealed a common feature of inactive transcription 

status, since “poised promoter” and “repressed” were overrepresented in multiple cell lines. 

In addition, enrichment of H3K9me3, a mark of transcriptional repression36 was also 

detected in the histone modification marks analysis. These results suggested that the 

progression of obesity may be due to the depression of most obesity related genes.
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GSEA of genes prioritized by the epigenomic elements revealed obesity related disease 

pathways, including diabetes and cardiac diseases. In addition, compared with the original 

obesity gene sets, similar enriched pathways were detected (Table 1), including neuroactive 

ligand receptor interaction and pathways related to general growth and patterning. This 

suggests that selecting novel candidate genes associated with obesity according to the 

ranking list is workable.

We choose the top five genes for further validation and the results confirmed the association 

of ESRRG with obesity. The selected SNP in ESRRG was also confirmed to be associated 

with glycemic traits. ESRRG (estrogen-related receptor gamma) encodes a member of the 

estrogen receptor-related receptor family. It has been reported this gene encodes a 

transcriptional activator of DNA cytosine-5-methyltransferases 1 expression, modulating cell 

proliferation and estrogen signaling in breast cancer.37 Consistent with our results, previous 

study reported that it also regulates energy metabolism through modulating gene expression 

involved in the processes of oxidative metabolism and mitochondrial biogenesis.38 Due to 

early post-natal lethality of global Esrrg knockout (Esrrg−/−) mice because of severe renal, 

gastric and cardiac dysfunction, Esrrg−/− mice didn't appear to have obvious obesity-related 

phenotypes.39, 40 However, a previous in vivo study41 indicated that mice lacking one copy 

of ESRRG in muscle exhibited decreased exercise capacity and muscle mitochondrial 

function. The relationship between mitochondrial dysfunction in muscle and type 2 diabetes 

or obesity has been reported by many studies.42, 43 There is an impaired bioenergetic 

capacity of skeletal muscle mitochondria in T2D and obesity subjects.42 Reduced 

mitochondrial function may predispose patients to intramyocellular lipid accumulation, 

leading to the interruption of insulin-stimulated glucose transport activity and decreased 

insulin-stimulated muscle glycogen synthesis, which is a major risk factor in the 

pathogenesis of T2D.43 ESRRG plays important roles in causing a shift toward slow twitch 

muscle type and activation of this gene in muscle provides a potential node for therapeutic 

intervention for obesity.41

Only nominal associations of miR-7641, PDE4D, and LINC00461 with obesity were 

detected in our results. However, previous studies have suggested their potential relationship 

with obesity. For example, miR-7641 is a regulator of CXCL1,44 and increased serum 

CXCL1 was linked to obesity.45 Nominal association signals between PDE4D and BMI 

have been detected in a previous study,46 and PDE4D is critical in regulating insulin 

secretion from β-cells which might affect the regular energy metabolism.47 For LINC00461, 

the SNP rs6893807 with nominal association (supplementary Table S4-S5) in our results 

was associated with BMI at near genome-wide significance level (P = 1.81 × 10−7) in a 

previous meta-analysis study in east Asian-ancestry populations.48 The transcript encoded 

by LINC00461 has been conserved in both sequence and brain expression across diverse 

mammals.49 Therefore, these genes might also be candidate risk genes for obesity. Further 

studies are needed to confirm their associations with obesity. Taking together, our results 

suggested that epigenomic features could be used to predict susceptibility genes for obesity.

Limitations of this study should be addressed. We only focused on the epigenomic features 

for the promoter of the susceptibility genes considering its important roles in regulating gene 

expression. Since other genetic regions may also be involved in the regulation of gene 
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expression, further investigations on exploring epigenomic features for the whole gene 

region are needed.

In summary, using epigenomic data from the ENCODE project, we identified a set of 

epigenomic elements enriched in obesity related genes. Our results demonstrated the 

existence of a set of epigenomic elements as a regulatory basis for the functions of genes 

genetically associated with obesity. Through prioritizing all genes based on the selected 

epigenomic elements, we suggested that ESRRG might be a novel susceptibility gene 

associated with obesity.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic diagram of the analysis strategy. Obesity-associated gene sets were obtained from 

GWAS database and genomic coordinates of the promoters were extracted. The promoters 

were annotated with TFBSs, histone marks, and chromatin segmentation states. Obesity-

specific sets of epigenomic elements were identified. All genes were prioritized by the 

presence of disease-specific epigenomic elements and genes with top scores were validated 

with association analysis.
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Figure 2. 
Enrichment/depletion of the 24 epigenomic elements in the promoters of obesity-associated 

genes.
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Table 1A

KEGG pathway enrichement analysis of the known 413 obesity related genes

KEGG_id Description adjusted p-value

hsa04722 Neurotrophin signaling pathway 6.05 × 10−4

hsa05200 Pathways in cancer 2.24 × 10−2

hsa04010 MAPK signaling pathway 3.44 × 10−2

hsa05223 Non-small cell lung cancer 4.01 × 10−2

hsa04151 PI3K-Akt signaling pathway 4.59 × 10−2

hsa04725 Cholinergic synapse 4.99 × 10−2
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Table 1B

KEGG pathway enrichment analysis results on all genes prioritized by the obesity weighted total numbers of 

epigenomic elements.

KEGG_id Term Size ES NES adjusted p-value

hsa04950 Maturity onset diabetes of the young 25 0.80 1.72 1.00 × 10−5

hsa04340 Hedgehog signaling pathway 56 0.76 1.70 1.00 × 10−3

hsa05217 Basal cell carcinoma 55 0.74 1.66 1.00 × 10−3

hsa04080 Neuroactive ligand receptor interaction 270 0.68 1.61 1.10 × 10−2

hsa04020 Calcium signaling pathway 176 0.68 1.60 1.80 × 10−2

hsa05412 Arrhythmogenic right ventricular cardiomyopathy 74 0.69 1.57 3.60 × 10−2

hsa04730 Long term depression 70 0.69 1.56 3.70 × 10−2

Note: Size: Number of genes in the gene set; ES: Enrichment Score; NES: Normalized Enrichment Score.
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Table 2

Top twenty genes with the largest number of epigenomic elements enriched in the promoters of obesity-

associated genes set.

Gene Description Total Score

MIR7641-2 MicroRNA 7641-2 197.17

ESRRG Estrogen-related receptor gamma 140.16

PDE4D Phosphodiesterase 4D 109.97

PDE4DIP Phosphodiesterase 4D interacting protein 101.93

LINC00461 Long intergenic non-protein coding RNA 461 95.15

ELAVL4 ELAV like neuron-specific RNA binding protein 4 90.27

GATA4 GATA binding protein 4 87.04

CHN2 Chimerin 2 85.62

PHACTR3 Phosphatase and actin regulator 3 85.20

TFAP2A Transcription factor AP-2 alpha 81.81

BDNF Brain-derived neurotrophic factor 80.24

ONECUT1 One cut homeobox 1 80.14

PROX1-AS1 PROX1 antisense RNA 1 80.09

RTN1 Reticulon 1 77.88

SATB2 SATB homeobox 2 77.68

SOX5 SRY (sex determining region Y)-box 5 77.65

TRIM36 Tripartite motif containing 36 76.66

KCNK10 Potassium channel, two pore domain subfamily K, member 10 76.45

RGMA Repulsive guidance molecule family member a 76.25

PDE4B Phosphodiesterase 4B 75.54
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