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Abstract

Background: Over-expression and increased activity of cyclooxygenase (COX)-2 induced by smoking has been implicated in
the development of cancer. This study aimed to explore the interaction between smoking and functional polymorphisms of
COX-2 in modulation of gastric cardia adenocarcinoma (GCA) risk.

Methods and Findings: Three COX-2 polymorphisms, including –1195G.A (rs689466), –765G.C (rs20417), and
587Gly.Arg (rs3218625), were genotyped in 357 GCA patients and 985 controls. In the multivariate logistic regression
analysis, we found that the –1195AA, –765GC, and 587Arg/Arg genotypes were associated with increased risk of GCA
(OR = 1.50, 95% CI = 1.05–2.13; OR = 2.06, 95% CI = 1.29–3.29 and OR = 1.67, 95% CI = 1.04–2.66, respectively). Haplotype
association analysis showed that compared with G21195-G2765- GGly587Arg, the A21195-C2765-AGly587Arg conferred an
increased risk of GCA (OR = 2.49, 95% CI = 1.54–4.01). Moreover, significant multiplicative interactions were observed
between smoking and these three polymorphisms of –1195G.A, –765G.C, and 587Gly.Arg, even after correction by false
discovery rate (FDR) method for multiple comparisons (FDR-Pinteraction = 0.006, 5.23961024 and 0.017, respectively). Similarly,
haplotypes incorporating these three polymorphisms also showed significant interaction with smoking in the development
of GCA (P for multiplicative interaction = 2.6561026).

Conclusion: These findings indicated that the functional polymorphisms of COX-2, in interaction with smoking, may play a
substantial role in the development of GCA.
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Introduction

Gastric cardia adenocarcinoma (GCA) is the second leading

cause of cancer-related mortality in the world, with more than

700,000 deaths annually [1,2,3]. In China, GCA is also one of

prevalent fatal malignancies. During the past two decades,

epidemiological studies have shown a steady decline in incidence

of non-cardia gastric cancer but a continuously increased trend in

incidence and mortality of GCA, thus emphasizing the importance

of prevention strategy to GCA [4,5]. Extensive studies have

revealed several environmental factors involved in the develop-

ment of GCA, including cigarette smoking, alcohol consumption,

inflammation, and diet. Most significantly, smoking has been

established by considerable studies as a causal factor for GCA [6],

which was supported by a recent meta-analysis including 33

studies that smokers had 1.8 fold increased risk of GCA than

never-smokers [7]. However, the underlying mechanism how

smoking promotes GCA development remains to be fully eluci-

dated. Recently, cumulative evidence has shown that smoking

contributed to carcinogenesis potentially through induction of

COX-2 and its downstream metabolites [8].

Cyclooxygenase-2 (COX-2), a key enzyme converting arachi-

donate to prostaglandins, was absent from normal cells unless

rapidly induced by various carcinogens. For instance, the tobacco

specified carcinogen, nicotine, has been shown to up-regulate

COX-2 expression and activity in vitro and in vivo [9]. Moreover, in

nicotine treated hamsters, COX-2 was significantly increased in

gastrointestinal cancer [10,11,12]. Interestingly, in the gastric

cancer cells with nicotine-induced COX-2-derived PGE2 release

and cell proliferation, the COX-2 inhibitor SC-236 caused G1

arrest and abrogated nicotine-induced cell proliferation [13]. It is

therefore concluded that COX-2 played key role in smoke-
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associated gastric cancer [8]. However, the expression level and

activity of COX-2 induced by smoking may vary among

individuals, and only small fraction of exposure individuals would

develop to GCA during their life spans, suggesting genetic

mechanism depending on COX-2 might be involved in suscept-

ibility to smoke-associated GCA [14,15].

Intriguingly, by direct sequencing and biochemical assays, we

have previously identified three functional single nucleotide

polymorphisms (SNPs) in COX-2 gene, including –1195 G.A

(rs689466) and –765G.C (rs20417) in promoter region and

587Gly.Arg (1759G.A, rs3218625) in coding region, of which,

the G to A variant in –1195 locus created a c-myeloblastosis

oncogene (c-MYB) binding site, resulting in higher transcriptional

activity of COX-2 [16]. The –765C allele might attribute to

heighten smoking-induced expression of COX-2 by creating a

binding site for phosphorylated NPM (P-NPM), which acted as a

specific transcriptional inhibitor and was driven to cytoplasm once

with smoking stimulation [17]. In addition, the 587Gly.Arg

variant was associated with the enhanced activity of COX-2 in vitro

by causing the Gly to Aly amino acid substitution in codon 587 of

exon10 [18]. Therefore, an alternative hypothesis was motivated

by solid biological plausibility that these three functional SNPs

might interact with smoking to modulate the GCA risk. To test

this hypothesis, –1195 G.A (rs689466), –765G.C (rs20417), and

587Gly.Arg (rs3218625) were analyzed in a case-control study

consisting of 357 GCA cases and 985 controls in a Chinese Han

population, and the interaction between these three SNPs and

smoking exposure was investigated in modulation of GCA risk.

Materials and Methods

Study subjects
This study consisted of 357 GCA patients and 985 controls. All

subjects were unrelated Han Chinese from Beijing city and its

surrounding region. Patients were recruited between July 1999

and July 2005 at the Peking Union Hospital and Cancer Hospital,

Chinese Academy of Medical Sciences (Beijing). The inclusion

criteria for patients included histopathologically confirmed GCA,

without previous chemotherapy or radiotherapy, and no restric-

tion in regards to sex, age, or disease stage. The controls were

cancer-free individuals randomly selected from a pool of 3000

normal individuals in the Beijing area during the same period. The

selection criteria for controls included cancer-free individuals and

frequency matching to cases by sex and age (65 years). At

recruitment, written informed consent was obtained from each

subject, and the information on demographic characteristics, such

as sex, age, and smoking status were collected via questionnaire.

Subjects who had never smoked or smoked less than 1 cigarette

per day and shorter than 1 year were defined as non-smokers;

otherwise, they were considered as smokers (including current

smokers and ex-smokers). This study was approved by the

institutional review boards of the Chinese Academy of Medical

Sciences Cancer Institute and Tongji Medical College of

Huazhong University of Science and Technology.

COX-2 genotyping
Genomic DNA was extracted from whole blood samples of all

subjects. Genotypes of three SNPs (including COX-2 –1195G.A,

–765G.C, and 587 Gly.Arg) were determined by polymerase

chain reaction (PCR)-based restriction fragment length poly-

morphism (RFLP) methods as described previously [16]. Geno-

typing was performed without knowledge of the case or control

status of the subjects. Genotypes determined by RFLP were

further confirmed by direct sequencing in 30 random DNA

samples, with the 100% concurrence rate of these two methods.

Additionally, a 15% masked, random sample from cases and

controls was tested twice by different investigators, and the results

were concordant for all of the duplicate sets.

Statistical analysis
x2 test was used to compared the distribution of demographic

characteristics between cases and controls. Hardy-Weinberg

equilibrium for genotypes was tested by a goodness-of-fit x2 test

in control group. Multivariate logistic regression was used to

evaluate the associations between GCA risk and smoking, COX-2

genotypes or haplotypes. The interaction between smoking and

COX-2 SNPs were estimated via multiplicative interaction term

and the stratified analysis of the effect of SNPs on GCA by

smoking status. A two-tailed P,0.05 was used as the criterion of

statistical significance. The final P values were adjusted by the false

discovery rate (FDR) correction for multiple comparisons [19]. All

statistical analyses were conducted by SPSS v13.0 software.

Linkage disequilibrium (LD) of these three SNPs was analyzed

using Haploview v4.0 [20]. Haplotypes composing these three

SNPs were estimated using Phase v2.1 [21].

Results

Subjects characteristics
The demographic characteristics of all subjects are presented in

Table 1. The cases and controls were matched well on sex and age

distribution. There were 53.7% smokers among cases compared

with 45% among controls. Significant difference in smoking status

was observed between case and control groups (P = 0.006). In the

logistic regression model, smokers had an increased risk of GCA

compared with non-smokers after adjusting for sex and age

(OR = 1.41, 95% CI = 1.08–1.84).

COX-2 genotypes and GCA risk
The genotype distributions of the COX-2 –1195G.A, –

765G.C, and 587 Gly.Arg are shown in Table 2. All the

genotypes of these three SNPs in controls conformed to Hardy-

Weinberg equilibrium (P = 0.056, 0.463, and 0.394, respectively).

For the –765G.C and 587 Gly.Arg polymorphsims, no variant

homozygotes were observed in this study population. Frequencies

for the variant alleles of 21195A, 2765C, and 587Arg were 0.56,

Table 1. Distributions of select characteristics among cases
and controls.

Variable
Controls (n = 985)
N (%)

Cases (n = 357)
N (%) P value

Gender 0.103

Male 810 (82.2) 307 (86.0)

Female 175 (17.8) 50 (14.0)

Age 0.453

#45 102 (10.4) 29 (8.1)

46–55 214 (21.7) 76 (21.3)

56–65 380 (38.6) 134 (37.5)

.65 289 (293) 118 (33.1)

Smoking status 0.006

Nonsmoker 542 (55.0) 166 (46.5)

Smoker 443 (45.0) 191 (53.5)

doi:10.1371/journal.pone.0021894.t001

COX-2 SNPs and Gastric Cardia Adenocarcinoma

PLoS ONE | www.plosone.org 2 July 2011 | Volume 6 | Issue 7 | e21894



0.09, and 0.08 in cases and 0.51, 0.05, 0.05 in controls,

respectively.

In the logistic regression analysis, after adjusting for age, sex,

and smoking status, individuals with the 21195AA genotype

presented an elevated risk of GCA compared with those with the

21195GG genotype (OR = 1.50, 95% CI = 1.05–2.13). For the –

765G/C SNP, individuals with the –765GC genotype had more

than 2-fold increased risk of GCA (OR = 2.06, 95% CI = 1.29–

3.29) compared with carriers of the –765GG genotype. Similarly,

the 587Gly/Arg genotype also conferred 1.67 fold increased risk

compared with the Gly/Gly genotype (95% CI = 1.04–2.66).

Moreover, the effect of the 21195GG, –765GC, or 587Gly/Arg

genotype achieved the significant level after correction by FDR for

multiple comparisons (FDR-P = 0.038, 0.009, and 0.033).

COX-2 haplotypes and GCA risk
LD analysis showed that these three SNPs are not in discernible

linkage disequilibrium in this study population (Table S1). As

shown in Table 3, five common haplotypes composing these three

SNPs were observed in this study population, of which, the

A21195-G2765-GGly587Arg haplotype was the most prevalent

haplotype both in cases and controls (48.7% and 50.6%,

respectively). Treating the G21195-G2765-GGly587Arg haplotype as

reference, the haplotype A21195-C2765-GGly587Arg showed the

significantly highest risk of GCA compare with other haplotypes

(OR = 2.49, 95% CI = 1.54–4.01), and the G21195-G2765-

AGly587Arg was also significantly associated with the increased

GCA risk (OR = 1.71, 95% CI = 1.01–2.88). Moreover, a

significant allele-dose effect of haplotypes was observed in

increasing risk of GCA (P for trend = 1.000610-5).

Interaction of COX-2 genotypes and smoking
In this current study, we evaluated the interaction of these three

SNPs and smoking by stratified analysis and the multiplicative

interaction term (Table 4). In the stratified analysis, none of the –

1195G.A, –765G.C and 587Gly.Arg variants were associated

with risk of GCA among nonsmokers, whereas smokers with the –

1195GA+AA, –765GC or 587 Gly/Arg genotype all showed

increased risk of GCA compared with non-smokers carrying the

wild-type genotypes (OR = 1.64, 95% CI = 1.0622.53;

OR = 3.98, 95% CI = 2.0627.69 and OR = 2.67, 95%

CI = 1.3625.23, respectively). Moreover, significantly multiplica-

tive interaction were observed between these three COX-2 SNPs

and smoking, even after correction by FDR for multiple

comparisons (FDR-Pinteraction = 0.006, 5.239610-4, 0.017).

Interaction of COX-2 haplotypes and smoking
We further explored the interaction of COX-2 haplotypes and

smoking in GCA (Table 5). Defining nonsmokers with the G21195-

G2765-GGly587Arg haplotype as the reference group, no significant

association was observed between any haplotype and GCA risk

among non-smokers, whereas smokes with the haplotype of

G21195-G2765-GGly587Arg, A21195-G2765-GGly587Arg, G21195-

G2765-AGly587Arg, A21195-C2765-GGly587Arg, or A21195-G2765-

AGly587Arg all showed elevated risk for developing GCA

(OR = 1.38, 95% CI = 1.05–1.82; OR = 1.62, 95% CI = 1.24–

2.11; OR = 2.20, 95% CI = 1.04–4.63; OR = 4.99, 95%

CI = 2.54–9.81 and OR = 18.29, 95% CI = 2.11–158.24, respec-

tively). Moreover, significantly multiplicative interactions were

observed between COX-2 haplotypes and smoking (Pinterac-

tion = 2.65610-6).

Discussion

In this current study, we conducted a case-control study to

investigate whether three functional polymorphisms in COX-2,

including –1195G.A (rs689466), –765G.C (rs20417), and

587Gly.Arg (rs3218625), interacting with smoking, affect GCA

risk in Chinese Han population. In stratified analysis, the effects of

these three SNPs on GCA risk varied by smoking status.

Table 2. Genotype frequencies of COX-2 SNPs and their
association with GCA risk.

COX-2 genotypes Cases/controls OR (95% CI){ FDR-P {

–1195GRA

GG 69/217 Reference

AG 175/527 1.03 (0.7521.42) 0.847

AA 113/241 1.50 (1.0522.13) 0.038

–765GRC

GG 324/940 Reference

GC 33/45 2.06 (1.2923.29) 0.009

587Gly/Arg

Gly/Gly 327/933 Reference

Gly/Arg 30/52 1.67 (1.0422.66) 0.033

{ORs and 95% CIs were calculated by unconditional logistic regression after
adjusting for sex, age and smoking status.
{P values were modified by the false discovery rate (FDR) correction for multiple
comparisons.
doi:10.1371/journal.pone.0021894.t002

Table 3. Distribution of COX-2 haplotypes and their association with GCA.

Haplotype Controls n = 985 Cases n = 357 OR (95%CI){ P value

No. of chromosomes (%) No. of chromosomes (%)

G21195-G2765- GGly587Arg

A21290-G21195-G2765

913 (46.3) 290 (40.6) Reference

A21195-G2765- GGly587Arg 960 (48.7) 361 (50.6) 1.19 (0.10–1.43) 0.053

G21195-G2765-AGly587Arg 44 (2.2) 23 (3.2) 1.71 (1.01–2.88) 0.046

A21195-C2765-GGly587Arg 41 (2.1) 33 (4.6) 2.49 (1.54–4.01) 1.896610-4

A21195-G2765- AGly587Arg 8 (0.4) 7 (1.0) 2.60 (0.93–7.23) 0.068

{ORs and 95% CIs were calculated by unconditional logistic regression after adjusting for sex, age and smoking status.
P for trend test = 1.00061025.
doi:10.1371/journal.pone.0021894.t003
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Furthermore, significant multiplicative interactions were observed

between these three SNPs and smoking in GCA development.

This study firstly suggested that the interaction of smoking with the

COX-2 –1195G.A, –765G.C, and 587Gly.Arg significantly

contributed to GCA risk.

It was shown that COX-2 over-expression could increase

proliferation, inhibit apoptosis, and enhance the invasiveness of

cancer cells. Over-expression of COX-2 has been frequently seen

in gastrointestinal malignancies, including pancreas, colon, non-

cardia gastric cancer, and GCA [22,23,24,25]. Interestingly, the

smoking specified carcinogen, nicotine might act through b-

adrenoceptors while NNK through both b-adrenoceptors and a7-

nAChR, and induce COX-2 and its derived PGE2 in gastric

cancer cells [13]. Cigarette smoke condensate could also induce

COX-2 expression by activating nuclear factor kappa B (NF-kB)

[26]. Furthermore, nicotine has been shown to facilitate gastric

tumor angiogenesis and invasion, suggesting heighten expression

of COX-2 induced by smoking might contribute to gastric

carcinogenesis. There was evidence that SNPs altering COX-2

expression and activity have been implicated in risk of smoking-

associated cancers, including lung, pancreatic, and non-cardia

gastric cancer. However, few have done to investigate whether

SNPs in COX-2 affect GCA risk solely or in manner of interaction

with smoking. Additionally, the effect of smoking on COX-2

enzyme was involved not only in the transcriptional expression but

also in the enzymatic activity [13,27,28,29]. Therefore, we

analyzed three functional SNPs, –1195G.A and –765G.C in

promoter region and 587Gly.Arg in coding region, in this

current study.

The most significant finding in this study was that the variants of

three functional SNPs identified by our previously studies

interacted with smoking to increase risk of GCA. Of these three

functional SNPs, –1195A-containing or –765C-containing COX-2

promoter displays higher transcriptional activity, supported by

examining the COX-2 expression level of these two variants by

real-time PCR quantitation of COX-2 mRNA in individual

esophageal tissues [16]. Moreover, smoking exposure can rapidly

induce COX-2 expression; hence, the joint effect of the variant

and smoking has been expected to increase COX-2 expression. In

this current study, significantly association between the –1195AA

genotype and increased risk of GCA was only seen among

smokers, and multiplicative interaction was observed between this

variant and smoking, suggesting the cooperation of –1195G.A

and smoking in modulation of GCA risk. Similar result was also

observed for the other functional SNP of –765G.C in the

promoter region, which was consistent with our previously finding

that this SNP interacted with smoking to intensify the risk of

pancreatic cancer. Moreover, the biochemical evidence that the

markedly higher expression of COX-2 drove by the –765C-

containing promoter than the –765G-containing promoter was

only seen in the cells treated with smoke condensate has strongly

supported this current result [17]. Additionally, the variant of

587Gly.Arg in coding region was also found to interact with

smoking exposure to intensified GCA risk, being consistent with

our previous finding that heavy smokers with the 587 Gly/Arg

genotype presented the highest risk for ESCC compared with non-

smokers with the wild-type genotype. Furthermore, biochemical

evidence has suggested that the substitution of Gly to Arg, might

affect COX-2 activity which was examined in the MCF-7 cells by

enzymatic activity assays [18]. Considering that cigarette smoking

also influenced COX-2 enzymatic activity, our result for the

interaction of the 587 Gly.Arg variant with smoking was

biologically plausible. Analysis was also performed on the

haplotypes composing these three functional SNPs in GCA. The

findings that the variant haplotypes was only associated with

smokers’ GCA risk and significant multiplicative interaction was

observed between haplotypes and smoking further supported the

hypothesis that the functional SNPs altering COX-2 expression

and activity interacted with smoking to modulate GCA risk.

In summary, our study highlights the contribution of the

interaction between smoking and functional SNPs in COX-2 to

GCA susceptibility, raising the prospect of research in persona-

lized prevention strategies to smoking-associated GCA.
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Cases/controls OR (95% CI){; P Cases/controls OR (95% CI){; P

G21195-G2765-GGly587Arg

A21290-G21195-G2765

136/502 Reference 154/411 1.38 (1.05–1.82); 0.021 2.650610-6

A21195-G2765-GGly587Arg 172/524 1.22 (0.95–1.58); 0.124 189/436 1.62 (1.24–2.11); 3.928610-4

G21195-G2765-AGly587Arg 11/24 1.78 (0.85–3.74); 0.127 12/20 2.20 (1.04–4.63); 0.038

A21195-C2765-GGly587Arg 11/25 1.58 (0.76–3.29); 0.226 22/16 4.99 (2.54–9.81); 3.240610-6

A21195-G2765- AGly587Arg 2/7 0.97 (0.20–4.75); 0.974 5/1 18.29 (2.11–158.24); 0.008

{ORs and 95% CIs were calculated by unconditional logistic regression after adjusting for sex and age.
doi:10.1371/journal.pone.0021894.t005
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