
Mammary glands exhibit molecular laterality and undergo left-
right asymmetric ductal epithelial growth in MMTV-cNeu mice

Jacqulyne P. Robichaux1, Robin M. Hallett2, John W. Fuseler3, John A. Hassell2, and Ann 
F. Ramsdell1,3,4,*

1Department of Regenerative Medicine and Cell Biology and Hollings Cancer Center, Medical 
University of South Carolina, Charleston, SC 29425

2Department of Biochemistry and Biomedical Sciences, Centre for Functional Genomics, 
McMaster University, Ontario, Canada

3Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, 
Columbia, SC 29208

4Program In Women’s and Gender Studies, College of Arts and Sciences, University of South 
Carolina, Columbia, SC 29208

Abstract

Significant left-right (L-R) differences in tumor incidence and disease outcome occur for cancers 

of paired organs, including the breasts; however, the basis for this laterality is unknown. Here, we 

show that despite their morphological symmetry, left versus right mammary glands in wild type 

mice have baseline differences in gene expression that are L-R independently regulated during 

pubertal development, including genes that regulate luminal progenitor cell renewal, luminal cell 

differentiation, mammary tumorigenesis, tamoxifen sensitivity, and chemotherapeutic resistance. 

In MMTV-cNeuTg/Tg mice, which model HER2/Neu amplified breast cancer, baseline L-R 

differences in mammary gene expression are amplified, sustained, or inverted in a gene-specific 

manner and the mammary ductal epithelium undergoes L-R asymmetric growth and patterning. 

Comparative genomic analysis of mouse L-R mammary gene expression profiles with gene 

expression profiles of human breast tumors revealed significant linkage between right-sided gene 

expression and decreased breast cancer patient survival. Collectively, these findings are the first to 

demonstrate that mammary glands are lateralized organs, and moreover, that mammary glands 

have L-R differential susceptibility to HER2/Neu oncogene-mediated effects on ductal epithelial 

growth and differentiation. We propose that intrinsic molecular laterality may play a role in L-R 

asymmetric breast tumor incidence and furthermore, that interplay between the L-R molecular 

landscape and oncogene activity may contribute to the differential disease progression and patient 

outcome that are associated with tumor situs.
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INTRODUCTION

Cancers that initiate in paired organs and other bilaterally symmetric tissues exhibit an 

unusual feature, which is that tumors occur with non-equivalent incidence on the left versus 

right sides (1–5). The basis for this laterality has not been addressed at the cellular or 

molecular level, an oversight that may be significant because patient survival is reported to 

differ according to primary tumor situs (1–2). The side with elevated tumor incidence is 

organ-dependent and not necessarily the same side that is associated with poorer disease 

outcome. For breast cancer, the majority of occurrences are unilateral, with higher tumor 

incidence on the left (3). Left-side predominance also occurs in bilateral cases, in which 

more tumors develop first in the left breast or are larger than those on the right (3). Yet, 

despite the increased incidence and larger average tumor size of left-sided breast cancer, 

right-sided breast cancer may be associated with worse prognosis. Right-sided breast tumors 

are prone to earlier onset of bone metastasis and give rise to higher numbers of sites with 

metastatic involvement (6). This suggests that disease progression is related to the side of 

tumor formation, which could result in differential patient survival. Although studies 

directly addressing breast cancer patient survival relative to tumor laterality are limited and 

have generated contradictory findings (3), there is some indication that lower survival rates 

occur in patients with right-sided disease (7).

The left-sided excess of breast cancer and potential relationship between tumor laterality and 

patient prognosis suggests that mammary tissues harbor L-R differences that are relevant to 

oncogenesis. To address this we have used normal and neoplastic MMTV-cNeuTg/Tg mice to 

probe for L-R differences at the beginning and end of puberty--a period when the rapidly 

growing ductal epithelium (8) is vulnerable to genetic, hormonal, and other environmental 

perturbations that heighten risk for developing breast cancer later in life (9–11). Here we 

provide evidence that mouse mammary glands have baseline L-R differences in gene 

expression that are L-R discordantly altered by HER2/Neu and that are accompanied by 

asymmetric ductal epithelial growth and patterning. Furthermore, we used comparative 

genomic analysis to show that the L-R differences in gene expression that we identified in 

mouse mammary glands are predictive of breast cancer patient outcome, with right-side 

expression profiles associated with significantly poorer long-term patient survival.

RESULTS AND DISCUSSION

Thoracic mammary glands are molecularly L-R asymmetric

Ductal epithelial networks in thoracic mammary glands (TMGs) of early pubertal (4-week) 

and post-pubertal (10-week) wild type (WT) mice (Fig. 1A, B) were quantified by image 

and fractal analysis as described previously (12). Despite increases in network area and 

number of branch points between weeks 4 and 10, as well as changes in TEBs, which 

decrease in number and initiate regression by week 10 (13), all of these morphological 

Robichaux et al. Page 2

Oncogene. Author manuscript; available in PMC 2015 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parameters were statistically equivalent for left and right TMGs at both timepoints, 

indicative of L-R symmetry (Fig. 1C). By contrast, microarray analysis yielded 

approximately 161 transcripts that were L-R differentially expressed (i.e., up-regulated or 

down-regulated) with >1.2 fold change (q-value<0.05, Fig. 1D), including genes and 

pathways that have established roles in oncogenesis and/or therapeutic sensitivity (Table 

S1). Several of the transcripts identified in the array were examined by qRT-PCR (Fig. 1E), 

which confirmed that relative to left-side expression, some genes were increased and others 

were decreased in expression levels on the right side. For example, Gata-3 and FoxM1, 

which regulate luminal progenitor cell differentiation and renewal (14–15), and which also 

have opposing protective and causative roles in tumorigenesis in the breast and other organs 

(16–17), were more highly expressed on the left side (Fig. 1E). By the end of puberty, both 

genes were down-regulated; however, the fold decrease was significantly greater for left-

side glands which resulted in net symmetric expression (Fig. 1E). Asymmetric expression 

also was found for notch-1, another regulator of mammary luminal progenitor cell 

commitment (18) that is involved in breast tumorigenesis (19) (Fig. 1E). Notch-1 was right-

side elevated, and by 10-weeks it showed slightly higher fold decrease in right-side glands 

compared to left (Fig. 1E). To determine if asymmetric expression of genes with dual roles 

in ductal growth and tumorigenesis is a general property of TMGs, we examined estrogen 

receptor alpha (ERα). ERα was L-R equivalently expressed at both the start and end of 

puberty, consistent with it not being identified as a candidate by microarray (Fig. 1E). We 

also examined CD24, a pan-epithelial marker in mouse mammary glands (20), which 

showed modest left-side elevation in 4-week TMGs, but not in 10-week TMGs (Fig. 1E), 

raising the possibility that subtle differences in epithelial cell number could be present 

during early puberty, despite equivalent ductal network growth and morphology.

Genes involved in therapeutic sensitivity also were represented in the microarray. Elevated 

right-side expression was detected for retinoic acid-inducible G-protein coupled receptor 

5D (GPRC5D), a gene that enhances sensitivity to an estrogen receptor antagonist, 

tamoxifen, in MCF7 breast cancer cells (21) and that was decreased by the end of puberty 

(Fig. 1E). In addition, stathmin-1 (Stmn-1), a microtubule destabilizing protein that confers 

chemoresistance in breast and other tumor types (22–26), was modestly left-side elevated in 

4-week TMGs, followed by inversion to modest right-side elevated expression in 10-week 

TMGs (Fig. 1E). Given the many L-R differences in gene expression in TMGs, it was 

surprising that microarray analysis did not uncover connections to any known laterality 

genes (Table S1), including nodal and Pitx2, regulators of embryonic L-R patterning that 

also are expressed in breast cancer and other tumor types (4). Thus, we assessed these genes 

by qRT-PCR, which confirmed symmetric expression (Fig. 1E). Together, these findings 

demonstrate that despite symmetric nodal and Pitx2 expression, the left and right TMGs of 

WT mice are molecularly lateralized with asymmetric expression of other genes that may 

impart differential predisposition to oncogenesis.

HER2/Neu causes L-R asymmetric ductal growth and alters L-R gene expression in TMGs

To address the possibility that mammary ductal epithelium might be primed for differential 

growth during neoplasia, we quantified ductal networks in MMTV-cNeuTg/Tg mice, which 

are a commonly used model of HER2+ breast cancer (27). Compared to WT, the ductal 
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network area was smaller in 4-week MMTV-cNeuTg/Tg TMGs and in particular, left-sided 

MMTV-cNeuTg/Tg networks were significantly smaller than their right-sided counterparts 

(Fig. 2A, C). Left-sided networks also contained fewer branch points, and had higher fractal 

dimension, relative density, and number of TEBs (Fig. 2A, C). Morphological asymmetry 

persisted through the end of pubertal development, with left-sided networks maintaining 

decreased area and higher numbers of branch points and TEBs (Fig. 2B, C). Given the L-R 

differences in MMTV-cNeuTg/Tg ductal network growth and pattern, we evaluated whether 

MMTV-cNeuTg/Tg TMGs have asymmetric ErbB2/Neu expression or activity. Although 

qRT-PCR showed that Neu expression was elevated in right-side TMGs, endogenous ErbB2 

expression was L-R equivalent, as was Numb, a notch inhibitor whose expression is 

regulated by ErbB2 (28) (Fig. 2D). Moreover, phospho-ErbB2/Neu immunoprecipitation 

showed equivalent levels in left and right side TMGs, suggesting similar activation of 

ErbB2/Neu signaling on both sides (Fig. 2D).

Further analysis of MMTV-cNeuTg/Tg TMGs indicated that molecular laterality was 

amplified, sustained, or inverted in a gene-specific manner by comparison to WT. Notch-1 

expression was approximately 3-fold higher in right-sided 4-week MMTV-cNeuTg/Tg TMGs 

(Fig. 2E), which is an amplification of the modest Notch-1 asymmetry that was present in 

WT TMGs (Fig. 1E and Fig. S1). In 10-week MMTV-cNeuTg/Tg TMGs, asymmetric 

Notch-1 expression was inverted, with approximately 2-fold higher expression in left-side 

glands (Fig. 2E). Because Notch influences breast cancer cell sensitivity to several 

therapeutic agents, including trastuzumab, gefitinib, docetaxel, and tamoxifen (29), the L-R 

uncoupled regulation of Notch-1 expression in MMTV-cNeuTg/Tg TMGs may be important 

in the context of differential disease progression. In addition, FoxM1 and Gata-3, which 

were left-side elevated in 4-week WT TMGs (Fig. 1E), were decreased on both sides in 

MMTV-cNeuTg/Tg TMGs; however, the fold decrease for FoxM1 was greater on the left side 

(Fig. S1) resulting in net L-R symmetric expression (Fig. 2E). Analysis of 10-week MMTV-

cNeuTg/Tg TMGs showed that FoxM1 expression was further decreased, albeit the fold 

decrease was greater for right-side glands (Fig. 2E and Fig. S1). Given the additional role of 

FoxM1 in modulating endocrine and chemotherapeutic resistance in breast cancer cells (30–

32), the L-R uncoupled regulation of FoxM1 expression in MMTV-cNeuTg/Tg TMGs was 

notable. We also found similar L-R asymmetric regulation of Gata-3 in MMTV-cNeuTg/Tg 

TMGs, which resulted in modestly higher left-sided expression by 10-weeks (Fig. 2E and 

Fig. S1).

Genes with symmetric expression in 4-week MMTV-cNeuTg/Tg TMGs included ERα, 

CD24, nodal, and Pitx2 (Fig. 2E). However, by 10 weeks their expression was elevated in 

left-sided glands, with the exception of nodal, which was elevated on both sides (Fig. 2E). 

GPRC5D, which was right-side elevated in 4-week WT TMGs (Fig. 1E), also was right-side 

elevated in 4-week MMTV-cNeuTg/Tg TMGs (Fig. 2E), despite an overall marked reduction 

in expression on both sides (Fig. S1). Stmn-1 was asymmetric in 4-week MMTV-cNeuTg/Tg 

TMGs (Fig. 2D, Fig. S1) but by week-10 was increased only on the left-side, resulting in 

inverted asymmetric expression (Fig. 2E).
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IMGs are refractory to HER2/Neu-induced asymmetric growth and show delayed L-R 
asymmetric gene expression

Although mouse TMGs share more similarity with human mammary glands than inguinal 

mammary glands (IMGs) (3), IMGs are more commonly used in experimentation because of 

their larger size and easier accessibility (33–34). Therefore, we also examined IMGs. Like 

TMGs, IMGs showed no significant L-R differences in morphology at either 4-weeks or 10-

weeks (Fig. 3A–C). Unlike TMGs, early pubertal IMGs showed an absence of significant 

molecular asymmetry except for Stmn-1, which was modestly right-side increased (Fig. 3D). 

However, by the end of puberty, 10-week IMGs had developed molecular L-R asymmetry 

similar to that observed in 4-week WT TMGs, with left-side elevated expression of FoxM1, 

Gata-3, Notch-1, ERα, and CD24 (Fig. 3D).

As previously reported (35), ductal networks in MMTV-cNeuTg/Tg IMGs were smaller 

compared to WT, and we found symmetric morphology at both 4 and 10-weeks (Fig. 3A–

C). Although there were overall changes in gene expression relative to WT (Fig. S1), 4-

week MMTV-cNeuTg/Tg IMGs did not exhibit molecular L-R asymmetry, with the exception 

of modest right-side elevation of Notch-1 and a more robust 3.5-fold left-side elevation of 

Pitx2 (Fig. 3H). Although Pitx2 was not associated with asymmetric ductal growth per se in 

either TMGs or IMGs, given that altered Pitx2 methylation occurs in breast and other cancer 

types (4) the overall changes in Pitx2 expression nevertheless suggest a potential role in 

HER2/Neu-induced neoplasia. By the end of puberty, MMTV-cNeuTg/Tg IMGs showed 

pronounced molecular asymmetry, as exemplified by right-side elevated FoxM1 and Gata-3 

expression and left-side elevated ERα and Notch-1 (Fig. 3H). Thus by comparison to TMGs, 

both WT and MMTV-cNeuTg/Tg IMGs were temporally delayed in developing molecular 

asymmetry, which may account for their remaining refractory to HER2/Neu-induced 

asymmetric epithelial growth and morphogenesis.

TMG molecular laterality is associated with differential breast cancer patient survival

To determine if L-R differences detected in mouse mammary glands are clinically relevant, 

the genes identified in our microarray experiment (Fig. 1D) were evaluated in a large 

number of breast tumor gene expression data sets for which corresponding patient outcome 

is also known (n=1334). Of the 161 transcripts identified in the microarray, we were able to 

map 96 of them by Unigene ID to their human transcript counterpart for each patient.

Because the sidedness of tumor location was not available in the clinical annotation files, 

patients were assigned to left (n=642) or right-side (n=692) groups based on whether their 

tumor gene expression profiles more closely matched with the left or right profiles identified 

in the mouse microarray. Notably, right-side gene expression was linked to poorer patient 

survival (Fig. 4A). We next analyzed subsets of patients with HER2+ and HER2− tumors. 

Whereas the relationship between L-R gene expression and outcome fell just short of 

significance in the HER2 over-expressing subset (Fig. 4B), the relationship was significant 

in the HER2− subset (Fig. 4C). It should be noted that because HER2 status was not 

available in the clinical annotation files, we assigned patients to the HER2+ and HER2− 

subsets based on mean ERBB2 transcript levels. For this reason, and also because of 

statistical power limitations due to the HER2+ subset containing far fewer patients (n=276) 
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than the HER2− subset (n=1058), the relationship between HER2+ patient survival and L-R 

gene expression may be unclear and require additional investigation with a larger HER2+ 

test cohort.

Since ER status also is tightly linked to breast cancer patient outcome (36), we evaluated L-

R gene expression patterns in ER+ and ER− patient subsets. In both subsets, right-side gene 

expression was associated with decreased survival (Fig. 4D, E). Lastly, we performed 

univariate Cox-regression survival analyses with each of the L-R transcripts, which 

identified a 20-gene subset that likely drove the predictive capacity of the complete 96-gene 

set (*p<0.05, Cox-regression) (Fig. 4F). Indeed, the evaluation of these 20 genes among the 

1334 patient cohort outperformed the original 96 L-R gene set (Fig. 4G). Thus, the L-R gene 

expression profiles identified in mouse mammary glands are significantly linked to breast 

cancer patient survival rates, and demonstrate that right-sided gene expression is associated 

with poorer survival.

In summary, our results indicate that despite their morphological symmetry, mammary 

glands are molecularly lateralized. Although left and right glands express the same genes, 

the relative levels of gene expression significantly differ and are subject to L-R uncoupled 

regulation during pubertal development. Our results also demonstrate that many of the genes 

associated with the left side are down-regulated, yet remain elevated or amplified on the 

right-side in TMGs of MMTV-cNeuTg/Tg mice, consistent with more aggressive disease 

progression reported for right-sided breast tumors (6). Moreover, the L-R uncoupled gene 

expression is accompanied by asymmetric growth and morphogenesis of the ductal 

epithelium. The molecular laterality of mammary glands at the start of puberty appears to be 

important in potentiating HER2/Neu oncogene-mediated asymmetric growth since IMGs, 

which exhibit L-R differences in gene expression at the end of puberty, but not at the start, 

fail to undergo L-R asymmetric growth in MMTV-cNeuTg/Tg mice. From the perspective of 

modeling human breast development and cancer, these results confirm there are significant 

differences between thoracic and inguinal glands and provide the first evidence that each 

mammary pair is independently L-R regulated regardless of its anterior or posterior location. 

By analogy to anterior-posterior differences that underlie differential development and 

neoplastic susceptibility of mouse TMGs versus IMGs (3), as well as the processes that 

establish molecular L-R differences in other bilaterally symmetric tissues (37–39), we 

hypothesize that mammary laterality may be rooted in embryonic patterning. Therefore, 

future investigation to determine the connections between positional differences in gene 

expression, axial patterning, and the relationship to mammary development and 

tumorigenesis will be revealing. Furthermore, given the roles of ErbB2/HER2 in normal and 

neoplastic mammary development (40), as well as the significant link we found between L-

R gene expression and breast cancer patient survival, our findings highlight laterality as a 

parameter that warrants greater consideration in experimental design in mouse mammary 

models as well as clinical analysis of breast cancer patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Morphological and molecular analysis of TMGs
Wild type mouse TMGs such as the representative L-R matched pairs shown at 4-weeks (A) 

and 10-weeks (B) were processed as carmine red stained whole mounts and composite 

images were manually traced, isolated, and converted to 8-bit gray scale images for analysis 

with MetaMorph® image analysis software (scale bar = 1mm). Thresholds and the total area 

of ductal networks were determined by the integrated morphometry analysis subroutine, and 

the fractal dimension, a measure of complexity of the network’s morphology, was 

determined using HarFa analytical software by applying the box counting method (12). 

Branch points and terminal end buds (TEBs), which are shown in higher magnification 

insets for 10-week glands (arrowheads indicate TEBs; scale bar = 5 μm), were quantified by 
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manual counting. Color-coding can be used to follow matched L-R pairs harvested from the 

same mouse in all graphs. No significant L-R differences (C) were found in ductal network 

area, fractal dimension, relative density, branch points or TEBs at 4 or 10 weeks as 

determined by one-tailed paired student’s t-test. Microarray analysis of left versus right 

TMGs (D) using left as the baseline reference was performed using RNA pooled from 3–4 

intact 4-week TMGs [#3 and #8 glands as diagrammed in Veltmaat et al (41)] for cDNA 

synthesis and hybridization to Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. The 

arrays were preprocessed and normalized using RMA (42). Each array experiment was 

completed in biological and technical triplicate. Differentially expressed probesets were 

identified based on a fold-change (increase or decrease in right side compared to left) of at 

least 1.2, and a q-value of less than 0.05. Pathway analysis was carried out for each set of 

laterality associated genes (left or right) by probing the NCI Pathway interaction database 

(43). SYBR Green-based qRT-PCR of select array candidates was performed with primers 

listed in Table S2 (E). Real-time PCR miner was used to calculate Ct values and replication 

efficiency(44) and fold changes relative to GAPDH mRNA were determined by delta-delta 

Ct. Fold changes across groups were determined using the lower level of 4-week expression 

as baseline as indicated by the horizontal grey line. Bars represent mean ± SEM of ≥5 mice; 

*p<0.05, **p<0.01; *** p<0.001 (two-tailed paired student’s t-tests).
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Figure 2. Morphological and molecular analysis of MMTV-cNeuTg/Tg TMGs
TMGs from MMTV-cNeuTg/Tg mice such as the representative L-R matched pairs shown at 

4-weeks (A) and 10-weeks (B) were processed for morphometric analysis and data for 

matched L-R pairs in individual mice were color coded as described in Fig. 1 and tested by 

Grubb’s Outlier test, which indicated an absence of outliers. Ductal network area, fractal 

dimension, relative density, branch points, and TEBs exhibited significant L-R differences at 

4 weeks (C) as determined by one-tailed paired student’s t-test (*p<0.05; **p<0.01). Ductal 

network area, branch points, and TEBs remained significantly L-R different at 10 weeks (C). 
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SYBR Green-based qRT-PCR showed asymmetric expression of Neu, but symmetric 

mRNA expression of ErbB2 and Numb (D). Bars represent mean ± SEM. N ≥ 5, *p = 0.003. 

Results were confirmed with a second primer set listed in Table S1. Total ErbB2/Neu 

protein was immunoprecipitated from left or right TMGs (Antibody #4290, Cell Signaling), 

immunoblotted, and probed with anti-phospho-ErbB2/Neu (Antibody #2243, Cell 

Signaling). Densitometry of triplicate results indicated no significant L-R differences (D). 

SYBR Green-based qRT-PCR analysis of gene expression in left vs. right TMGs of MMTV-

cNeuTg/Tg mice was performed as described in Fig. 1E. Bars represent mean ± SEM of 5 

mice, *p<0.05; **p<0.01; *** p<0.001 (two-tailed paired student’s t-tests).
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Figure 3. Morphological and molecular analysis of IMGs
L-R pairs of IMGs from 4-week (A) and 10-week (B) wild type and 4-week (E) and 10-

week (F) old MMTV-cNeuTg/Tg mice were processed and analyzed as described in Fig. 1A–

C. Ductal network area, fractal dimension, relative density, branch points, and TEBs did not 

exhibit significant L-R differences (C, G) as determined by one-tailed paired student’s t-test. 

SYBR Green-based qRT-PCR analysis of gene expression of left vs. right IMGs of wild 

type (D) and MMTV-cNeuTg/Tg (H) mice was performed as described in Fig. 1E. Pitx2 was 

not detectable in wild type IMGs at either age nor in MMTV-cNeuTg/Tg IMGs at 4 weeks. 

Bars represent mean ± SEM of ≥3 mice, *p = 0.01 (two-tailed paired student’s t-tests).
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Figure 4. Comparative genomic analysis of mouse L-R mammary gene expression profiles with 
human breast tumors and the relationship to breast cancer patient survival
We compiled a large cohort of breast cancer patients from multiple studies available through 

the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) to test the association 

between laterality associated genes and patient survival. Hazard ratios (HR) are indicated for 

all patients (A), and HER2+ (B), HER2− (C), ER+ (D), ER− (E) subsets. A 20-gene subset 

of the 96 L-R TMG gene expression set (F) is a robust predictor of outcome among all 

breast cancer patients (G). References are provided for genes previously implicated in 

oncogenesis; those with none available (N/A) are indicated. Our combined cohort comprised 

patients from the GSE2034 (45), GSE7390 (46), GSE4922(47), GSE25055 (48), and 

GSE3494 (49) cohorts (n=1334). For all patients, clinical outcome data as well as the gene 

expression profile of their respective tumors was available. Whenever possible we used 10-

yr disease free survival as the clinical endpoint in our study; however, when disease free 

survival was not available we alternatively used either distant metastasis free or overall 

survival as the clinical endpoint. The arrays for each separate cohort were preprocessed and 

normalized using RMA(42). ER status was assigned based on the clinical annotation files, 

and HER2 status was assigned based on the mean ERBB2 transcript levels (probe set ID 

216836_s_at) within each study cohort independently. Affymetrix GeneChip Mouse 
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Genome 430 2.0 Arrays probe sets were mapped to their human counterpart genes by 

Unigene IDs. When multiple probe sets recognized the same gene transcripts, only the probe 

with the highest mean intensity was used. To assign signature scores to patients, the 

expression values for each gene were standardized such that the mean and standard 

deviation were set to 0 and 1 in each individual patient cohort, respectively. Subsequently, 

we calculated signature scores for each patient as previously described (50–51), where 

positive scores were considered to indicate that a tumor had ‘right-sided’ gene expression 

and negative scores were considered to indicate that a tumor had ‘left-sided’ gene 

expression. Survival curves were graphed using Graphpad Prism® 5 and statistical tests 

were completed in R.
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