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Heritable strategies for controlling insect
vectors of disease

Austin Burt

Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, UK

Mosquito-borne diseases are causing a substantial burden of mortality, mor-

bidity and economic loss in many parts of the world, despite current control

efforts, and new complementary approaches to controlling these diseases are

needed. One promising class of new interventions under development

involves the heritable modification of the mosquito by insertion of novel

genes into the nucleus or of Wolbachia endosymbionts into the cytoplasm.

Once released into a target population, these modifications can act to reduce

one or more components of the mosquito population’s vectorial capacity

(e.g. the number of female mosquitoes, their longevity or their ability to sup-

port development and transmission of the pathogen). Some of the

modifications under development are designed to be self-limiting, in that

they will tend to disappear over time in the absence of recurrent releases

(and hence are similar to the sterile insect technique, SIT), whereas other modi-

fications are designed to be self-sustaining, spreading through populations

even after releases stop (and hence are similar to traditional biological control).

Several successful field trials have now been performed with Aedes mosqui-

toes, and such trials are helping to define the appropriate developmental

pathway for this new class of intervention.
1. Introduction
Vector-borne diseases continue to plague us. The worst is malaria, transmitted by

anopheline mosquitoes, killing many hundreds of thousands of people every

year, mostly infants and children in tropical Africa [1]. The best existing methods

of control—artemisinin-based drug treatment and mosquito control with chemi-

cal sprays and treated bednets—can reduce the burden of disease substantially,

and can even eliminate the disease in some regions, but are not thought capable

of globally eradicating the disease [2,3]. It is not even clear that current levels of

efficacy can be maintained, given the likelihood of parasites and mosquitoes evol-

ving resistance, and immunity waning as a result of partial control [3,4]. Dengue

fever is another important mosquito-borne disease: caused by a virus originating

in the jungles of southeast Asia, more than 100 countries have now been affected

by dengue outbreaks, and the incidence of its most severe forms (dengue haemor-

rhagic fever and dengue shock syndrome) has increased over 500-fold since the

1950s [5]. Current methods of vector control can reduce dengue transmission,

but even the most effective programmes seem unable to eliminate the disease.

Other important (but less studied) vector-borne diseases include leishmaniasis,

trypanosomiasis, Chagas disease, viral encephalitis, yellow fever, onchocerciasis

and lymphatic filariasis [6].

Given the persistent burden of vector-borne diseases, there is substantial

interest in developing qualitatively new methods of control. Much research is

going into vaccine development for malaria and dengue fever, but both dis-

eases present complexities to the vaccine designers that make success in the

near term far from guaranteed [7–9]. For malaria, an indication of the difficul-

ties comes from the Global Malaria Action Plan [10], which suggests that

UD$250M will need to be spent per year for the next 15 years on malaria vac-

cine development (total $3.75B), and then $125M per year for the next 17 years

after that, out to the year 2040. The example of yellow fever is also instructive:
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Box 1. Antecedents.

Although novel in many ways, heritable approaches to vector control do have similarities with some well-established

methodologies.

Sterile insect technique (SIT). SIT programmes involve the release of large numbers of sterile males into a target population;

mating of these males with native females leads to a reduction in the females’ reproductive output, resulting in the depletion or

elimination of the target population. SIT programmes have been highly successful against a number of agricultural insect pests,

including New World screwworm fly (Cochliomyia hominivorax) in North America; Mediterranean fruit fly (Medfly; Ceratitis
capitata) and other tephritid fruit flies in many countries around the world; pink bollworm (Pectinophora gossypiella) in the

USA; and codling moth (Cydia pomonella) in Canada ([24] and references therein). SIT has also been used to eliminate tsetse

fly (Glossina fuscipes), vector of trypanosomiasis, from Zanzibar.

Biological control. Self-sustaining heritable approaches have clear parallels with classical biological control programmes [25].

These involve releasing relatively small numbers of a natural enemy (predator, parasitoid, pathogen, etc.) to attack a pest species.

The natural enemy propagates itself over a period of generations, increasing in frequency over time. The agent is thus self-spreading

and self-sustaining, and the effects on the target population can be permanent (or at least long-lived). Implementation is relatively

inexpensive and the benefit/cost ratios of some programmes have been more than 100 [26]. Classical biological control has been

used to suppress over 200 species of invasive insects and 40 species of weeds in many countries around the world [25].
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here is a mosquito-borne disease for which there has long been

a highly effective vaccine, but still it kills tens of thousands

every year, owing to the difficulties of vaccine delivery in

many parts of the world [11].

It is in this context that many are working to expand the

arsenal of vector control tools to include novel genetic

approaches and heritable bacterial endosymbionts. A wide

variety of such approaches have been proposed, and popu-

lation and epidemiological models have shown that they

could have a substantial effect, with excellent potential for sus-

tained control and even elimination [12–20]. In this paper,

I describe the various strategies being considered; review pro-

gress on their development; outline the potential value added

by these approaches; and discuss some of the challenges for the

future in bringing these technologies to the field. Most of

the work focuses on Anopheles gambiae and Aedes aegypti, the

most important vectors of malaria and dengue, respectively,

and I henceforth refer to the target vector populations as ‘mos-

quitoes’, though similar approaches may in the future be

developed for diseases transmitted by other insects. Much pro-

gress has been made in the past 10 years in developing what

could prove to be truly transformational technologies (for

other recent reviews, see [21–23]).
2. Classification of proposed strategies
Heritable approaches to control mosquito-borne diseases

involve releasing a certain number of modified mosquitoes

into a target population. Many different approaches have

been proposed and are under development, and it is useful

to highlight three ways in which they differ. First, there is the

type of modification done to the released mosquitoes, in

particular whether it is the introduction of one or more genes

into the nuclear genome, or of a maternally inherited endo-

symbiont into the cytoplasm. Another key difference is in

the intended effect on the target population, whether it is

to reduce the numbers of female mosquitoes, their lifespan

or their ability to support pathogen development and

transmission to humans. All of these are different ways of redu-

cing the vectorial capacity of the target population, defined

as the rate at which a mosquito population successfully trans-

mits new infections per infected human. In principle, other
approaches for reducing vectorial capacity are also possible,

such as targeting host seeking or feeding behaviour.

A third difference, perhaps the most important, is in the

expected dynamics of the modification once introduced into

a target population. There are many possibilities. Some con-

structs are self-limiting, having an inherent tendency to

decline in frequency and disappear from the population.

Repeated releases are necessary to maintain these constructs

in the target population, and relatively large (i.e. inundative)

releases will usually be necessary to have a significant epide-

miological effect. Release of sterile males for population

suppression is a clear example. By contrast, other constructs

are meant to be self-sustaining, with an inherent tendency to

increase in frequency in the target population over multiple

generations and maintain themselves at a high frequency.

Releases need occur only once or a few times, and can often

be of relatively fewer mosquitoes (i.e. inoculative releases).

The release of these self-sustaining constructs is more akin to

traditional biological control (box 1). Yet other constructs will

require relatively large releases to get established in the target

population, but then are expected to maintain themselves at

high frequency without further releases.
3. Self-limiting strategies
(a) Wolbachia
In conventional sterile male release, males are irradiated and

produce sperm that are able to fertilize an egg, but the

embryos are aneuploid and die. Unfortunately, experiments

with Anopheles mosquitoes have shown that irradiation

dosages sufficient to sterilize male mosquitoes also cause sig-

nificant reductions in their mating competitiveness [27,28].

Aedes mosquitoes may be more robust in this regard, and

recent reports have shown promising results [29,30]. An

alternative approach uses Wolbachia bacteria: these mater-

nally transmitted endosymbionts somehow manage to kill

embryos derived from the mating of infected males and unin-

fected females [31]. Therefore, infected males that are released

into an uninfected population will act as sterile males—the

‘incompatible insect technique’ (IIT). This approach was

used more than 40 years ago, before Wolbachia was under-

stood to be the causative agent, to eliminate a population of
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Figure 1. The logic of alternative gene drive systems. (a) Cytoplasmic incom-
patibility as induced by maternally transmitted Wolbachia bacteria. Infected
females (Wþ) have an advantage because they can mate successfully with
all males, whereas uninfected females (W – ) can only mate successfully
with uninfected males—matings with infected males produce few or no off-
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Culex quinquefasciatus (a vector of lymphatic filariasis) from a

village in Burma (Myanmar) [32]. More recent research has

focused on Aedes polynesiensis, the primary vector of Wucher-
eria bancrofti lymphatic filariasis and a significant vector of

dengue in French Polynesia. This species naturally harbours

a strain of Wolbachia, but alternative Wolbachia strains have

been introduced into laboratory populations by introgression

from Aedes riversi or by micro-injection of cytoplasm from Aedes
albopictus [33,34]. In each case, the resulting Ae. polynesiensis
strains are bidirectionally incompatible with the natural

strain—that is, when males of one strain mate with females of

the other, the vast majority of progeny die. Males carrying

the Wolbachia from Ae. reversi have been tested in both cage

and small-scale field trials [35,36]. These latter trials showed

that laboratory-reared and sorted males survive and competi-

tively mate with indigenous Ae. polynesiensis females in the

field, and motivate additional larger-scale trials. In addition,

a Wolbachia strain from Culex pipiens mosquitoes has been

transferred into Ae. albopictus [37,38], and the United States

Environmental Protection Agency has recently approved IIT

trials targeting the latter species in several locations in

the USA (https://www.federalregister.gov/articles/2013/

09/12/2013-22223/issuance-of-an-experimental-use-permit).
spring. (b) Y chromosome drive, such as could be caused by an enzyme that
cleaves the X chromosome at male meiosis, results in the majority of functional
sperm bearing the Y chromosome, and a predominance of males among the
progeny. (c) Homing endonuclease genes (H) cause the homologous chromo-
some to be cut and then get copied across during the repair process,
converting a heterozygote into a homozygote. If the homing endonuclease
gene is inserted into a host gene, then its spread through the population
can lead to a population-wide gene knockout. (d ) MEDEA elements gain a rela-
tive advantage because embryos from heterozygous (Mþ/M – ) mothers die if
they did not inherit the element (i.e. are homozygous M – /M – ).
(b) Transgenics
Transgenic approaches to creating sterile males have also been

developed. In Ae. aegypti, a lethal positive feedback loop was

created by putting a transcriptional activator called tTAV

under the control of its own binding site; this construct pro-

duces high levels of tTAV protein which is toxic to the

mosquito [39]. Importantly, the feedback loop (and lethal

effect) is repressible by adding tetracycline to the diet, and

in this way a homozygous strain can be maintained.

Homozygous males that have been raised in the presence of

tetracycline are released, mate with the wild females and all

their (heterozygous) progeny die. The precise pattern and

level of transgene expression can depend on where it is inserted

in the genome, and as a result the lethality can occur early in

the larval stage or at the larval–pupal transition. The latter

may be more effective in suppressing mosquito populations,

because early deaths release the rest of the population from den-

sity-dependent competition during the larval stage [39]. A

particular strain of Ae. aegypti, OX513A, with an insert causing

lethality primarily around the pupal stage, has now been

tested in semi-field enclosure trials in Malaysia [40] and in

small-scale field releases in Grand Cayman, Malaysia and

Brazil, with releases large enough to demonstrate suppression

of the target population in Grand Cayman and Brazil [21,41–43].

Recently, an alternative tetracycline-repressible system has

been developed in Ae. aegypti in which only the daughters of

released males die; the sons live to pass on the construct, so

that some fraction of the granddaughters (and subsequent

female descendants) of the released males will also die [44].

This is useful because the productivity of mosquito popu-

lations depends mostly on the females, and they are also the

only ones to transmit disease. Population modelling shows

that efficacy is particularly enhanced if males carrying two or

more of these constructs are released [45]. This new construct

makes use of control sequences from the actin-4 gene that

drive gene expression specifically in the indirect flight muscles

of females; the result is females that are unable to fly in

the laboratory (and are presumably unable to survive in the
field), and apparently normal males. A particular strain with

this construct, called OX3604C, performed well in both small

and large laboratory cage trials, but less well in large field

cages, though the cause of this difference is as yet unclear

[46,47]. Preliminary steps have also been taken to establish

the same system in Ae. albopictus (secondary vector of

dengue) and Anopheles stephensi (primary vector of malaria

in many urban areas of India) [48,49].

Another transgenic approach to creating sterile males was

discovered serendipitously in An. gambiae when an endonu-

clease (I-PpoI) that cleaves a specific sequence in the rDNA

repeat was put under the control of spermatogenesis-specific

control sequences from the b2-tubulin gene [50]. Males that

are heterozygous for this construct produce no viable pro-

geny, apparently because the endonuclease is transmitted

via the sperm into the zygote, where it cleaves the rDNA

repeat on the maternally derived X chromosome, causing

developmental arrest.
4. Self-sustaining strategies
Self-sustaining approaches require a mechanism for spreading

the desired trait through the target population and maintaining

it at a high frequency. The most attractive such mechanisms use

gene drive systems, in which traits spread because of a devi-

ation from normal Mendelian inheritance [51,52] (figure 1).

Many such systems exist naturally and have been discussed

https://www.federalregister.gov/articles/2013/09/12/2013-22223/issuance-of-an-experimental-use-permit
https://www.federalregister.gov/articles/2013/09/12/2013-22223/issuance-of-an-experimental-use-permit
https://www.federalregister.gov/articles/2013/09/12/2013-22223/issuance-of-an-experimental-use-permit
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in the context of disease control; I focus on four for which

there is at least some sort of laboratory proof-of-principle

supportive data.

(a) Wolbachia
Wolbachia strains can be used not only for self-limiting

population suppression (above), but also for self-sustaining

transmission control interventions. The cytoplasmic incompat-

ibility that many strains cause, in which infected males

effectively sterilize the uninfected females that they mate with,

means that if Wolbachia-bearing females and males are released

into a population in sufficient numbers, then the Wolbachia
can spread through the population and be maintained at high

frequencies. This self-spreading ability could, for example, be

used to drive a Wolbachia strain that reduces adult lifespan

through a population [53,54]. Because it is only the relatively

old females that transmit disease, even small decreases in

adult lifespan can have a large effect on vectorial capacity. Popu-

lation modelling suggests there is a window of parameter space

in which a life-shortening Wolbachia strain can significantly

reduce dengue transmission and still spread [55,56].

More recently, attention has focused on the serendipi-

tous discovery that Wolbachia infections can reduce vector

competence [57–59]. Two different strains of Wolbachia from

Drosophila melanogaster, wMelPop and wMel, have been trans-

ferred to Ae. aegypti; the former proliferates more extensively

within the mosquito body and, perhaps as a consequence, is

more efficient at blocking dengue transmission, but it also

imposes a more severe fitness cost upon the females, such

that it is not clear it will be able to successfully establish in

natural populations [53,58]. The wMel strain also provides a

significant block to viral transmission, yet imposes less of a

fitness cost on the mosquito, and has been successfully estab-

lished in two populations in northeast Australia [60,61]. wMel

has also been transferred to Ae. albopictus, where it also sub-

stantially reduces dengue transmission [62], and a Wolbachia
strain has been transferred from Ae. albopictus to An. stephensi,
in which species it both induces cytoplasmic incompati-

bility and provides some resistance to Plasmodium falciparum
malaria infections [63].

(b) Y drive
A number of nuclear gene drive systems are also under devel-

opment. One approach, first suggested over 50 years ago, is to

use a driving Y chromosome to reduce the number of females

in a population [64–67]. Male mosquitoes contribute little or

nothing except their DNA to the next generation, and so popu-

lation productivity depends on the numbers and productivity

of individual females. Therefore, biasing the sex ratio towards

males can reduce or even eliminate target populations. As an

added benefit, male mosquitoes do not bite people and trans-

mit disease. In Ae. aegypti, some natural populations contain

a segregation distorter that is closely linked to the male-

determining locus and causes the latter to be transmitted to

80–90% of the progeny in crosses with sensitive strains

[68,69]. Geographical surveys have shown that the distorter is

present in some populations and not others, and that where

it is present there is also substantial resistance, so sex ratios

are not severely biased [69]. Little is known at the molecular

level about how the distorter works, but cytologically it is

associated with breakage of the X chromosome (i.e. the sex

chromosome not containing the male-determining gene)
during the first meiotic division [70]. In An. gambiae, Windbichler

et al. [50] have shown that cleavage of the X-linked rDNA

repeat during male meiosis results in the Y chromosome

being transmitted to about 90% of the progeny, rather than

the Mendelian 50%. As noted above, these progeny die, but

if the two effects can be separated, such that the enzyme

remains active in the testes but is inactive in the embryo, and

the gene can be placed on the Y chromosome, then it may be

possible to create an artificial driving Y. Recent modelling

confirms this could have a substantial effect on mosquito

population numbers and malaria transmission [15].

(c) Population-wide gene knockouts with homing
endonuclease genes

Homing endonuclease genes (HEGs) are parasitic or selfish

genes that occur naturally in a variety of microbes [51,71].

As far as is known, they do not do anything useful to the

host organism, and instead they spread and persist in popu-

lations because they encode an enzyme that, in cells

heterozygous for the presence of the gene, cleaves the

‘empty’ chromosome. The HEG can then get copied across to

the cut chromosome as a by-product of the chromosomal

repair process, converting the heterozygous cell into a homozy-

gote. Most naturally occurring HEGs are in the middle of self-

splicing introns or inteins (sequences of amino acids that splice

themselves out of proteins), and so do not disrupt the function

of host genes, but they can be artificially inserted in the middle

of a host gene in such a way as to knockout host gene function,

yet still spread through the population. In principle, then,

HEGs can act as reagents for population-wide gene knockouts

[72]. Proof-of-principle demonstrations of this idea using a

homing endonuclease from baker’s yeast to knockout a trans-

gene encoding a fluorescent protein marker and containing

the cognate recognition sequence have been reported in both

Drosophila melanogaster [73] and An. gambiae [74,75]. In the

latter species, the HEG was shown to spread through small

cage populations over multiple generations, knocking-out the

marker gene as it did so.

To make a functioning gene knockout system, three compo-

nents are needed: a target gene with the appropriate phenotype

when knocked out; a homing endonuclease that recognizes

and cleaves a specific sequence in the target gene; and control

sequences that will turn on the HEG in the mosquito germline.

Suitable targets may include genes involved in fertility, longevity,

sex determination, host seeking or pathogen development or

transmission. A recent review lists 34 An. gambiae genes for

which there was some evidence from RNA interference (RNAi)

knockdown experiments of reduced Plasmodium oocyst or sporo-

zoite numbers in experimental infections [76,77]. Methods for

engineering homing endonucleases to recognize new sequences

have recently expanded [71,78,79], including assays in

Drosophila [80]. Finally, control sequences from the vasa gene

that activate transcription in the male and female An. gambiae
germline have been characterized [81]. Homing endonuclease

activity has also been demonstrated in Ae. aegypti [82].

(d) Population-wide knock-ins
In principle, it may also be possible to reduce vectorial capacity

by spreading through a mosquito population one or more

genes that interfere with disease transmission. These strategies

typically posit two components: one or more effector genes that
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act to block disease transmission and a gene drive system for

spreading those effectors through the target population (the

assumption being that the effectors will not give a significant

selective advantage to the mosquito, and therefore will not

spread of their own accord [52]). For malaria, a recent review

lists 28 effector genes that interfere to some extent with parasite

transmission [83], including anti-microbial peptides [84],

single-chain antibodies [85], immune system activators

[86,87] and peptides that bind to mosquito proteins (putative

parasite receptors) in the midgut or salivary glands [88]. In

the latter case, potential targets include some of the same mol-

ecules that are targets of transmission-blocking vaccines [89].

For dengue virus, which has an RNA genome, there have

been promising results using both RNAi and ribozymes to

attack the virus [90,91]. Many host factors have been described

that may also be suitable targets for effector molecules [92,93].

It will be important to choose effectors that do not have large

fitness costs for the mosquito, as otherwise non-functional

mutants are likely to spread instead.

Multiple options are also being explored for the gene drive

systems needed to spread these effectors though the target

population. One possibility is an MEDEA element, which

causes the progeny of heterozygous females to die unless they

themselves inherit the MEDEA element [94]. In Drosophila, an

artificial MEDEA element has been synthesized by combining

a microRNA-based repressor of myd88, an important protein

normally supplied by the mother into the embryo, with a zygo-

tically expressed myd88 gene that is not affected by the

microRNA and supplies the missing protein [95]. This element

spread rapidly through experimental cage populations: starting

from an initial frequency of 25%, all individuals were found to

contain the construct after just 10–12 generations. The challenge

now is to develop a similar strategy for mosquitoes. In principle,

other possibilities for driving effector genes into natural popu-

lations include using an engineered underdominance strategy

[96] and/or using a driving Y chromosome or HEG to impose

a selection pressure on a population, and then linking the

effectors to a resistance gene [72,97].
5. Potential value added by these approaches
As currently envisaged, these various heritable approaches to

vector control have a number of desirable features that motivate

their continued development. Key attributes of the strategies

include the following:

— they act to reduce transmission rates, not just morbidity

and mortality, and thus can make an important contri-

bution to the goals of disease elimination and eradication;

— they are widely applicable, able to act in diverse settings,

whether hypo- or holoendemic, urban or rural, against

indoor or outdoor biters, daytime or night-time biters,

and can reach mosquito populations that are otherwise

difficult to access;

— they provide area-wide control, and therefore protection

without obvious biases relating to a person’s age,

wealth or education;

— they should be compatible with and complementary to other

disease control measures, both current (e.g. chemical-based

vector control) and under development (e.g. vaccines);

— they are taxon-specific in their targeting, thus reducing

environmental risks; and
— they can be relatively easy to deliver and deploy (particu-

larly the self-sustaining strategies), with little or no

change required in how people behave, and as a result

have the potential to be highly cost-effective.

As with any other form of pest or disease control, con-

cerns about human and environmental safety must be

incorporated into the design process. The possibility of resist-

ance evolving in the vector or pathogen population must also

be addressed, and steps taken to minimize this likelihood.

Chemical approaches to controlling vector-borne diseases—

drugs and insecticides—have been enormously useful over

the past decades, saving many millions of lives, but for any

one specific chemical it seems inevitable that resistance even-

tually arises, perhaps because exposures cannot be tightly

controlled, and consequently are sometimes sublethal. It is

unclear whether and how this dynamic will play out with

heritable approaches to vector control, where exposures may

be less variable. It is easy to imagine that mosquitoes, Wolbachia
or dengue viruses might eventually evolve such that viral

transmission is no longer blocked—but it is mostly a matter of

speculation whether this would take years, decades, or longer.

It is easy to model the spread of a gene conferring resistance

to endonuclease-based Y drive, but unclear if and when such

a mutation will arise in real populations. Similar uncertainties

currently apply to the other self-sustaining approaches (resist-

ance has rarely been a problem with conventional SIT

programmes, giving some empirical basis for thinking it may

not be a substantive problem for the newer self-limiting

approaches). Combination therapy—giving patients multiple

drugs simultaneously—has helped retard the evolution of

resistance in many contexts, and much the same strategy

should be explored in the context of heritable approaches to

vector control—for example, using multiple endonucleases, or

multiple effector molecules. Computer- and laboratory-based

investigations will give useful information on the potential for

resistance to evolve, but, as with anything else so new, some

uncertainty will remain until constructs get to the field.
6. Moving forward
Heritable approaches to vector control represent a new plat-

form for public health interventions, and consequently

there has been a need to develop the appropriate frameworks

for regulation, public consultation and community engage-

ment. Experience with the development of novel drugs and

vaccines has led to the concept of a product development

pipeline from initial technology exploration, to field testing,

and finally full implementation as a routine control measure.

Much the same process should apply to the development of

heritable approaches to vector control, though the criteria

for advancing through the phases are novel, and are still

being identified [98,99]. Useful lessons can probably be

drawn from the closest antecedents to this technology, sterile

male releases and biological control (box 1). Small-scale

open releases of males with a dominant lethal, of males

with an incompatibility-inducing Wolbachia, and of males

and females with transmission-blocking Wolbachia have all

been performed in Ae. aegypti or Ae. polynesiensis (reviewed

in reference [21]), and there have been no reports of harm

to human health or the environment. Lessons learned from

these and related studies include the following:
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— trials in large enclosures can be a useful intermediary step

between small-scale laboratory studies and field releases

[35,40,46,100,101];

— sometimes, it may not initially be apparent which

body or bodies should be regulating the trials, but this does

not preclude eventually finding a responsible agency [102];

— formal risk analysis procedures and appropriate experimen-

tation to assess risks should precede release [103–105]

(http://www.efsa.europa.eu/en/efsajournal/pub/3200.

htm; http://bch.cbd.int/onlineconferences/forum_ra.shtml);

— local communities can give high levels of support to the

trials once they are explained to them [106]; and

— in terms of efficacy, it will usually be appropriate to

focus in the first instance on entomological outcomes;
eventually, it will be important to track epidemiological

outcomes, but this will require larger, more expensive

studies [107,108].
Enormous progress has been made over the past decade on

many fronts in the development of various heritable

approaches to control vector-borne disease. While many chal-

lenges lie ahead in their continued gradual, step-by-step

development, none appears insurmountable.
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