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Genome–environment associations (GEAs) are a powerful strategy for the study of adaptive 
traits in wild plant populations, yet they still lack behind in the use of modern statistical methods 
as the ones suggested for genome-wide association studies (GWASs). In order to bridge 
this gap, we couple GEA with last-generation GWAS algorithms in common bean to identify 
novel sources of heat tolerance across naturally heterogeneous ecosystems. Common bean 
(Phaseolus vulgaris L.) is the most important legume for human consumption, and breeding 
it for resistance to heat stress is key because annual increases in atmospheric temperature 
are causing decreases in yield of up to 9% for every 1°C. A total of 78 geo-referenced wild 
accessions, spanning the two gene pools of common bean, were genotyped by sequencing 
(GBS), leading to the discovery of 23,373 single-nucleotide polymorphism (SNP) markers. 
Three indices of heat stress were developed for each accession and inputted in last-
generation algorithms (i.e. SUPER, FarmCPU, and BLINK) to identify putative associated loci 
with the environmental heterogeneity in heat stress. Best-fit models revealed 120 significantly 
associated alleles distributed in all 11 common bean chromosomes. Flanking candidate 
genes were identified using 1-kb genomic windows centered in each associated SNP marker. 
Some of these genes were directly linked to heat-responsive pathways, such as the activation 
of heat shock proteins (MED23, MED25, HSFB1, HSP40, and HSP20). We also found protein 
domains related to thermostability in plants such as S1 and Zinc finger A20 and AN1. Other 
genes were related to biological processes that may correlate with plant tolerance to high 
temperature, such as time to flowering (MED25, MBD9, and PAP), germination and seedling 
development (Pkinase_Tyr, Ankyrin-B, and Family Glicosil-hydrolase), cell wall stability (GAE6), 
and signaling pathway of abiotic stress via abscisic acid (histone-like transcription factors 
NFYB and phospholipase C) and auxin (Auxin response factor and AUX_IAA). This work 
offers putative associated loci for marker-assisted and genomic selection for heat tolerance in 
common bean. It also demonstrates that it is feasible to identify genome-wide environmental 
associations with modest sample sizes by using a combination of various carefully chosen 
environmental indices and last-generation GWAS algorithms.

Keywords: heat stress, local adaptation, genome-wide association studies (GWAS), environmental indices, 
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INTRODUCTION

Exploring the genetic basis of adaptive traits in wild plant populations 
has been accelerated by modern genomic strategies such as genome–
phenotype [genome-wide association study (GWAS)] and genome–
environment association (GEA) studies (Frank et al., 2016). GEA 
commonly associates single-nucleotide polymorphisms (SNPs) and 
environmental variables based on the accessions’ sampling site in 
order to infer adaptation to abiotic stress. Genotyping by sequencing 
(GBS) has in turn been revealed as one of the best methods for 
GEA due to its potential to discover a considerable amount of SNP 
markers throughout the genome. For instance, coupling GEA and 
GBS recently allowed identifying adaptive variation for drought 
tolerance (Cortés and Blair, 2018). However, despite the fact that 
the GEA framework uses the latest genomic tools available, it 
has not yet taken full advantage of newer and more promising 
statistical approaches to detect genomic signatures of environmental 
adaptation while controlling for confounding effects.

GEA studies often rely on GWAS models, which typically 
couple mixed linear models (MLMs) (Zhang et al., 2010) with 
kinship and population structure analyses in order to correct 
for false positives. Yet new GWAS algorithms have recently been 
developed to gain statistical power to detect associated markers, 
increase efficiency, and decrease computational complexity 
(Wang et al., 2014b). The strategy to reconstruct the kinship 
matrix is the most relevant difference between recent methods of 
individual marker tests such as Factored Spectrally Transformed 
Linear Mixed Model (FaST-LMM-Select), Compressed MLM 
(CMLM) (Li et al., 2014), and Settlement of MLM Under 
Progressively Exclusive Relationship (SUPER), the latter 
being the most statistically powerful (Wang et al., 2014b; Liu 
et al., 2016). SUPER drastically reduces the amount of genetic 
markers used to infer kinship relationships by dividing the SNP 
dataset into bins (Wang et al., 2014b). Most influential bins, 
known as pseudo-nucleotides of quantitative rank underlying 
the phenotype (PseudoQTNs), are then optimized in size and 
number using maximum likelihood and linkage disequilibrium 
(LD). On the contrary, FaST-LMM-Select chooses SNPs to infer 
kinship relationships based only on a physical distance criterion, 
while CMLM uses kinship estimates between pairs of groups 
clustered based on their kinship value in order to reduce the size 
of the fixed effect and increase the computational power. Tests 
of multiple loci such as the multi-locus mixed model (MLMM) 
(Segura et al., 2012) have been developed, too. Both strategies, 
individual markers (CMLM, FaST-LMM-Select, and SUPER) 
and multiple loci (MLMM) tests, effectively control the false-
positive rate. Yet these algorithms have a higher rate of false 
negatives after the partition imposed on the SNP dataset to 
recreate the kinship matrix.

Alternative methods such as Fixed and random model 
Circulating Probability Unification (FarmCPU) (Liu et al., 
2016) and Bayesian-information and Linkage-disequilibrium 
Iteratively Nested Keyway (BLINK) (Huang et al., 2019) have 
been developed to control both the false-positive rate and 
the confounding variable that disfavors the real associations. 
FarmCPU and BLINK divide a typical MLMM into two parts that 

are used iteratively, a fixed effect model (FEM) and a random effect 
model (REM). BLINK replaces restricted maximum likelihood 
(REML) in FarmCPU’s REM with Bayesian information criteria 
(BIC) in a FEM. Additionally, BLINK uses LD information to 
replace the bin method. SUPER, FarmCPU, and BLINK can 
therefore be considered last-generation GWAS models. These 
powerful algorithms, already tested for conventional GWAS, are 
promising to identify adaptive loci under a GEA framework.

In turn, the potential of GEA studies to identify new sources 
of tolerance to abiotic stresses is undeniable (Cortés and Blair, 
2018) and could aid the study of the genetic adaptation to 
adverse conditions that have not previously been approached 
from a GEA perspective, which is the case of heat stress (HS). 
Annual increases in atmospheric average temperature have been 
responsible for yield losses of 9% for every 1°C across the vast 
majority of agricultural species. This situation is likely to worsen 
as by 2100 global average temperature is estimated to be 3°C 
above the present value (Abrol and Ingram, 1996), jeopardizing 
worldwide yields.

Common bean (Phaseolus vulgaris L.), a not perennial (Gentry, 
1969), is one of the most produced legumes with ~27 million tons 
worldwide, China and America being the main producers (FAO, 
2018), yet tolerance to HS is generally low in this species. Beans 
are nutritionally rich due to their high content of proteins, folic 
acid, iron, dietary fiber, and complex carbohydrates and constitute 
a main alimentary supply for communities in Latin America, 
Africa, and Asia (Sgarbieri and Whitaker, 1982; Pachico, 1993). 
Since these regions are also highly vulnerable to HS, increased 
atmospheric average temperature would impact not only yields 
in small-scale farms but also human nutrient intake via common 
bean (Jones, 1999). Most common bean varieties used by farmers 
are better adapted to regions of medium to high elevations or 
to sowing times during the colder seasons in tropical areas 
(Porch and Jahn, 2001). Some authors have reported optimal 
temperatures between 18°C and 20°C (Wantanbe, 1953; Qi et al., 
1998; Porch, 2006; Rosas et al., 2000) for the cultivation of this 
legume. The reproductive phase is the most sensitive phenological 
stage to HS, with temperatures above 28°C to 32°C (Gonçalves 
et al., 1997; Caramori et al., 2001; Silva et al., 2007; Rainey and 
Griffiths, 2019) decreasing the number of pods and seeds and 
therefore reducing yield (Weaver and Timm, 1988; Monterroso 
and Wien, 2019). In order to compensate for yield losses due to 
low tolerance of cultivated common bean to high temperatures, a 
prompt characterization of the genetic sources of HS tolerance in 
wild populations is needed.

Nowadays, there is a lack of knowledge on how the most 
recent GWAS models work under a GEA paradigm. Additionally, 
there is an urgent need to identify loci linked to HS tolerance 
in wild common bean germplasm collections, which would aid 
the development of common bean varieties resistant to high 
temperatures. Therefore, for this study, we set the following 
objectives: (1) synthetize environmental variables in order 
to estimate HS tolerance in wild common bean germplasm 
collections, which would allow identifying tolerant accessions; 
(2)  explore the utility of the most promising modern GWAS 
models (CMLM, SUPER, FarmCPU, and BLINK) for GEA 
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studies; and (3) implement GEA models with last-generation 
GWAS algorithms in order to capture adaptive genetic variation 
to HS, candidate to be integrated into common bean breeding 
programs. This first exploration of the environmental adaptation 
of wild common bean to HS will ultimately offer putative 
associated loci for marker-assisted and genomic selection 
strategies by using a combination of various well-chosen 
environmental indices and last-generation GWAS algorithms, 
while testing the utility of the latter under a GEA paradigm.

MATERIALS AND METHODS

Plant Material and GBS
The present work was developed with a total of 78 accessions 
of wild common bean. All genotypes were transferred by the 
Genetic Resources Unit of the International Center for Tropical 
Agriculture (CIAT) and are conserved under the genetic resources 
treaty of the Food and Agriculture Organization of the United 
Nations (FAO collection). The accessions are a representative 
sample of groups of genes and races, the selection being based on 
core collections for wild bean samples according to Tohme et al. 
(1996). Despite adaptation to environmental stress conditions 
evolved differently in the two gene pools of common bean 
(Soltani et al., 2017; Soltani et al., 2018; Oladzad et al., 2019), we 
carried out the GEA models including both gene pools in order 
to maximize the statistical power to detect significantly associated 
markers by increasing (1) the number of wild accessions and 
(2) the environmental contrast (Mesoamerican environments of 
wild common bean typically experience more heat events than 
Andean environments, Figure S8). Georeferencing was provided 
by the Genetic Resources Unit at CIAT (Table S1).1

Processing of plant material, genomic DNA extraction, GBS 
library preparation using the Apek1 enzyme (Cortés and Blair, 
2018), and sequencing and bioinformatic processing for the 78 
accessions were carried out as described by Cortés and Blair 
(2018), following Elshire et al. (2011) and Bradbury et al. (2007) 
and using as reference genome the common bean assembly 
(Schmutz et al., 2014). SNP markers with missing data that 
exceeded 20% or frequency of the minor allele (MAF) that did 
not exceed 5% were excluded from the GEA dataset in the 78 
genotyped accessions in order to finally obtain a matrix of 23,373 
SNP markers with an average depth of 13.6 X.

Compilation of Bioclimatic Data 
and HS Indices
In order to estimate heat tolerance for wild common bean, 
we extracted from the WorldClim2 database, at a 2.5-min 
resolution, environmental variables using the georeferencing of 
each accession. A total of six bioclimatic variables, putatively 
related with HS, were considered, as follows: BIO1 = annual 
mean temperature, BIO5 = maximum temperature of warmer 
month, BIO8 = mean temperature of the wettest quarter, 
BIO9 = mean temperature of the driest quarter, BIO10 = mean 

1 http://genebank.ciat.cgiar.org/genebank/main.do
2 http://www.worldclim.org

temperature of the warmest 4-month period, and Tj = average of 
absolute maximum temperature during the reproductive phase. 
Extraction was carried out using the dismo package of R v.3.4.4 
(R Core Team). Historical temperature values were obtained as 
monthly averages from 1970 to 2000. Values of each bioclimatic 
variable were adjusted for the year 2000 according to the average 
annual increase in temperature for each hemisphere, using the 
following expressions (Trenberth et al., 2007):

T Ti for theNorthernHC2000 2000 0 031675= + ( ) ×− °    . [ ]i eemisphere

 (1)

 
T i C for theSou2000 2000 0 01325                . [ ]= + − × °( )Ti tthernHemisphere

 (2)

where i is the year of collection of each accession, Ti is 
the bioclimatic variable for the year when the accession was 
collected, and T2000 is the value of each bioclimatic variable for 
the year 2000.

We generated three indices based on environmental data from 
wild common bean accessions in order to understand natural 
adaptation to high temperatures and identify associated genetic 
markers. The first index was built using the evapotranspiration 
model from (Thornthwaite, 1948), which contained an expression 
for monthly heat index, heat index Thornthwaite (HIT), as 
follows (equation 3):

 HIT T
original

m

i

k
=

=∑
1 514

1 5

.
 (3)

For all Tm > 0, Tm is the average mean monthly temperature in 
any phenological stage of the plant, and k the number of months.

This index (HIToriginal) uses average temperature (Tm) and 
not maximum temperature (Tj), despite the latter being more 
informative for HS events. Thus, we used two adjustments to refine 
HIToriginal. First, we used the absolute maximum temperature instead 
of the average temperature. Second, we narrowed the window of 
temperatures only across the reproductive phase (Tj), during which 
plants are most sensitive to HS events (Rainey and Griffiths, 2019). 
Since seeds were collected for each accession as part of the original 
sampling, the reproductive phase has an approximate duration of 2 
months prior to the month when sampling took place. The modified 
HIToriginal index was expressed through the following equation:

 HIT
Tj

i
=

=∑
1 514

1

2

5

.

 (4)

For all Tj > 0, Tj is the average of absolute maximum 
temperature during the reproductive phase and i is the month 
within that phase.

On the other hand, we built a second index of HS, heat stress 
index (HSI), as detailed in equation 5. This index is based on the 
temperature threshold during the reproductive phase (Tmax = 
28–32°C) above which common bean exhibits low grain yields 
(Gonçalves et al., 1997; Caramori et al., 2001; Silva et al., 2007; 
Rainey and Griffiths, 2019). Therefore, this suggested HS index 
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compares Tmax = 30°C and the maximum temperature during the 
reproductive phase Tj adjusted for the year 2000.

 HSI
T

HSIj=
−





× − ≤ ≤

30
30

100 100 100;           (5)

Finally, the first main principal component of all six bioclimatic 
variables explained 94.37% of the overall variance and was 
chosen as a third index of HS (hereinafter referred to as PCA1). 
Using all three indices aims characterizing different components 
of the adaptation to HS. Two important assumptions of these 
HS indices should be noted. First, poorly adapted genotypes are 
inexistent because the distribution of accessions in the study 
areas is assumed to be in equilibrium with the niche requirements 
(Forester et al., 2016). Second, it is assumed that HS indices 
are stable over the years, since they are based on climatic data 
averaged over three decades. Ecological balance and stability of 
these HS indices are a prerequisite for GEA analysis (Cortés et al., 
2013; Cortés and Blair, 2018). Since normality is also required 
for GWAS-type models, normality of each bioclimatic variable 
was verified using the skewness, kurtosis, and Shapiro–Wilk 
statistics (P ≥ 0.05) using the agricolae package (De Mendiburu, 
2014) in R v.3.4.4 (R Core Team). Dispersion diagrams, as well as 
Pearson (r) and Spearman (ρ) correlations, were made among all 
bioclimatic variables and HS indices in R v.3.4.4 (R Core Team).

Analysis of Kinship and Population Structure
Using the panel of 23,373 SNP markers, we estimated random 
and fixed effects in order to reduce the rate of false positives of 
each GEA model (i.e. MLM, CMLM, SUPER, FarmCPU, and 
BLINK). Random effects accounted for kinship relationships, 
while fixed effects accounted for population structure. Kinship 
was built in different ways according to the peculiarities of each 
algorithm. The MLM used a kinship matrix computed across 
all markers using the Loiselle, VanRaden, and EMMA methods 
available in the GAPIT package (Tang et al., 2016) of R v.3.4.4 
(R Core Team). As an exploratory phase, we tested the power 
of these three different methods in capturing random effects 
in a GEA with MLM models. MLM models were selected for 
this purpose because they consider all 23,373 SNP markers. 
MLM models were designed using the combination of all three 
HS indices as response variable “I” (HIT, his, and PCA1), two 
population stratification methods as fixed effects “Q” (PC and 
TESS3), and three kinship methods as random effects “K” 
(Loiselle, VanRaden, and EMMA) for a total of 18 MLM models 
(3I × 2Q × 3K). Among all 18 MLM models, those that used the 
EMMA algorithm to reconstruct the kinship matrix were the 
most powerful. Thus, the following GEA models only considered 
the EMMA algorithm.

Based on this exploratory phase, only the EMMA algorithm 
was implemented for the reconstruction of the kinship 
relationships in the improved MLM algorithms (i.e. CMLM) 
and the last-generation GWAS models (i.e. SUPER, FarmCPU, 
and BLINK), each of which had different criteria for sub-setting 
the SNP dataset (PseudoQTNs) according to their specifications 
(Wang et al., 2014b; Liu et al., 2016; Huang et al., 2019).

Population stratification was explored using two strategies. First, 
a traditional molecular principal component analysis (hereinafter 
referred to as PC) was carried out in TASSEL v.5 (Bradbury et al., 
2007). Second, spatial population structure was reconstructed 
using TESS3 (Caye et al., 2016) as implemented in R v.3.4.4 (R Core 
Team). TESS3 is a novel package that infers population structure 
from genotypic and geographical information. The optimum 
number of ancestral populations (K) was determined using a 
cross-entropy method implemented with the snmf function in 
the LEA package (Frichot and François, 2015) of R v.3.4.4 (R Core 
Team). The snmf algorithm was executed with 1,000 repetitions 
and a fluctuating K value from 2 to 10. The cross-entropy inference 
was further improved by exploring the percentage of masked 
genotypes at thresholds of 5% and 20%, as suggested by Frichot 
and François (2015) and Ariani et al. (2018), respectively. Results 
of population stratification were compared explicitly with previous 
studies carried out in wild common bean by Ariani et al. (2018). 
We selected a clustering coefficient (Q) cutoff of ≥0.7, following 
Ariani et  al. (2018) and Bitocchi et al. (2012), for assigning 
genotypes to subpopulations.

Identification of Loci Associated With 
HS Indices
After the exploratory phase with 18 MLM models, we built 30 
GEA models using improved MLM (CMLM) and last-generation 
GWAS (i.e. SUPER, FarmCPU, and BLINK) algorithms to 
explore single-marker associations. The improved MLM and last-
generation GWAS algorithms increase the statistical power while 
better controlling the false-positive rate. FarmCPU and BLINK 
are particularly powerful at further controlling the false-negative 
rate (Huang et al., 2019). GEA models were obtained from the 
combination of all three HS indices as response variable “I” 
(HIT, HSI, and PCA1), two population stratification methods as 
fixed effects “Q” (PC and TESS3), and a unique kinship method 
as random effect “K” (EMMA with PseudoQTNs) for a total of 
30 GEA models constructed by means of one improved MLM 
algorithm (CMLM) and three last-generation GWAS algorithms 
(SUPER, FarmCPU, and BLINK). GEA models considered a 
total of six CMLM models (3I × 2Q × 1K), six FarmCPU models 
(3I × 2Q × 1K), six BLINK models (3I × 2Q × 1K), and 12 SUPER 
models. SUPER models were initially implemented as suggested 
by Wang et al. (2014b) in order to be computationally efficient, 
yet expecting the same statistical power as any MLM and CMLM 
models. To overcome this issue, these first-stage SUPER models 
were coupled with the MLM and CMLM algorithms for a total 
of 12 second-stage SUPER models (3I × 2Q × 1K × 1 first-stage 
GWAS algorithm × 2 second-stage GWAS algorithms).

Models were abbreviated as follows: IM-Fc-Rc, where “I” refers 
to the HS index, “M” is the GWAS model family, and “Fc” and 
“Rc” are the algorithms used to reconstruct the fixed and random 
covariates, respectively. For example, the model HITFARMCPU-TESS3-

EMMA used HIT as the HS index, FarmCPU as the GWAS method, 
TESS3’s inference as a fixed covariate, and EMMA’s kinship as a 
random covariate. This nomenclature was modified to account 
for the SUPER algorithm since it employed two different GWAS 
models in the first and last steps. The first step always used a GLM 
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model, but the last step used a MLM or CMLM model. Therefore, 
SUPER models were marked as ISUPER(M)-Fc-Rc, where “M” is the 
model used in the last step (MLM or CMLM) (Table S2).

In order to choose the optimal GEA models, we drew Q–Q and 
Manhattan diagrams of the P-values with customized R scripts and 
used these diagrams to evaluate the rate of false positives. Highly 
significant associations were determined using a Bonferroni 
correction of P-values at an α = 0.05, which led to a significance 
threshold of 2.14 × 10−6 or −log102.14 × 10−6 = 5.67 for CMLM models 
(2,373 effective SNP markers), 2.13 × 10−6 or −log102.13 × 10−6 = 5.67 
for SUPER models (23,421 effective SNP markers), and 5.89 × 10−6 
or −log105.89 × 10−6 = 5.23 for FarmCPU and BLINK models (8,494 
effective SNP markers). Therefore, we used the Bonferroni threshold 
in order to evaluate the rate of false positives by visual interpretation 
of the Q–Q plots. In addition, a relax threshold of −log10 P-value = 4, 
as previously suggested (Pasam et al., 2012; Soltani et al., 2017; 
Soltani et al., 2018; Oladzad et al., 2019), was used only in the 
exploratory phase with 18 MLM models in order to identify weaker 
associations, since it is documented that the Bonferroni threshold is 
very restrictive or conservative in MLMs (Joo et al., 2016).

Identification of Candidate Genes
Putative candidate genes were identified by inspecting conservative 
flanking sections of 1 kb around each associated locus from all GEA 
models. Flanking sections were captured using the common bean 
reference genome v2.1 (Schmutz et al., 2014) and the PhytoMine 
and BioMart tools from the Phytozome v.12.3 platform.3 Identified 
genes were further annotated using the GO,4 PFAM,5 PANTHER,6 
KEGG,7 and UniProt8 databases by means of Phytozome (see note 
C). Authors such as Oladzad et al. (2019) and Soltani et al. (2017; 
2018) have suggested a genomic window to look for flanking 
genes of ~100 kb in common bean. On the other hand, LD in wild 
common bean, measured as marker correlation R2, was reported to 
decay to 0.8 per every 81 kb (Rossi et al., 2009). Thus, we further 
explored a genomic window of 81 kb (40.5 kb upstream to 40.5 kb 
downstream of the significantly associated SNP markers) using the 
common bean reference genome v2.1 and the annotation tools as 
described above.

RESULTS

Among the entire set of 78 wild common bean accessions, we 
identified five accessions (G2648, G23511A, G13094, G12869, 
and G11071) putatively tolerant to HS based on three different 
bioclimatic indices (HIT, HSI, and PCA1). Incorporating these 
indices as response variables in GEA models led to 18 traditional 
MLM models that used three contrasting kinship reconstruction 
methods and 30 improved traditional mixed (i.e. ECLMLM) and 
last-generation GWAS models (i.e. SUPER, FarmCPU, and BLINK) 

3 https://phytozome.jgi.doe.gov/pz/portal.html
4 http://geneontology.org/
5 https://pfam.xfam.org/
6 http://www.pantherdb.org/
7 https://www.genome.jp/kegg/
8 https://www.uniprot.org/

that only used the EMMA algorithm for kinship reconstruction. 
None of the improved traditional mixed models yielded significant 
results. On the other hand, 15 last-generation GWAS models 
increased the statistical power to detect 120 significant associations 
in a GEA framework. A joint inference across these models 
and the three indices allowed having a more comprehensive 
understanding of the adaptive landscape and genetic architecture 
of heat tolerance. We recovered 22 genes, flanking 24 SNP markers, 
previously reported as candidates for heat tolerance (Wang et al., 
2004; Ikeda et al., 2011; Lopes-Caitar et al., 2013; Oladzad et al., 
2019; Soltani et al., 2019) and involved in the activation of heat 
shock proteins (HSPs), protein domains related to thermostability 
in plants and signaling pathways of abiotic stress via abscisic acid 
and auxin. These allelic variants require further validation and are 
ideal to be incorporated into common bean breeding programs for 
resistance to high temperatures.

Each Bioclimatic Index Captured a 
Different Component of HS
The three HS indices captured different facets of HS. All six 
bioclimatic variables (annual average temperature, maximum 
temperature of the warmest month, average temperature of the 
wettest quarter, average temperature of the driest quarter, average 
temperature of the warmest quarter, and average of the absolute 
maximum temperature of the reproductive phase) and three 
HS indices (HIT, HSI, and PCA1) exhibited a normal behavior 
(Shapiro–Wilk P ≥ 0.05, Figure S1). HIT and PCA1 presented 
a positive bias with a skewness statistics of 0.160 and 0.271, 
respectively. On the other hand, HSI had a negative skewness with 
a skewness value of −0.166. All three HS indices allowed us to 
approximate the same HS event by different strategies. If different 
indices had distinct skewness values, contrasting extreme values 
described different facets of the HS event (Figure S1). Correlation 
coefficients estimated by Pearson (r) and Spearman (ρ) methods 
respectively ranged from 0.82 to 1 and from 0.78 to 1 among all 
bioclimatic variables and the HIT and HSI indices. The index built 
with the PCA1 had a negative correlation with all six bioclimatic 
variables and the other two HS indices (Figure S2) with Pearson 
(r) and Spearman correlation coefficients (ρ) ranging from −0.92 
to −0.99 and −0.94 to −0.99, respectively. Therefore, despite 
differences in the extreme values, there is correspondence among 
all six bioclimatic variables and the three indices. Normality, 
together with the assumptions of stability over time and genotype–
ecological niche equilibrium, makes these three HS indices suitable 
as response variables in GWAS models within a GEA framework 
aiming to capture various components of HS.

All 23,373 SNP Markers Recovered Six 
Subpopulations
Population structure as revealed by a PC (molecular PCA) analysis 
with 23,373 SNP markers suggested a total of six subpopulations 
(Figure 1). Also, cross-entropy validation implemented in TESS3 
with the same markers suggested an optimum of six subpopulations 
from Mesoamerica to northern Argentina (Figure  1B). Both 
methods, TESS3 and PC, suggested six subpopulations: MW1 
(Mesoamerican Wild 1), MW2 (Mesoamerican Wild 2), MW3 
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(Mesoamerican Wild 3), PhI (Northern Peru–Ecuador Wild), 
AW (Andean Wild), and CW (Colombian Wild) (Figures 1D–F). 
When we looked at the five subpopulations partition suggested by 
Ariani et al. (2018) based on following previous works 19,126 SNP 
markers flanking the CviAII restriction site, we did not recover 
Ariani’s MW3 (Figures 1C–E), but instead the new subpopulation 
CW reappeared in both analyses (TESS3 and PC).

EMMA Algorithm Was More Powerful at 
Reconstructing Kinship Relationships
As an exploratory phase, we built 18 traditional MLM models 
incorporating as random effects kinship matrices estimated 
with the Loiselle, VanRaden, and EMMA algorithms and as 
fixed effects estimates from TESS3 and PC (molecular PCA) 
algorithms across all 23,373 SNP markers. The three kinship 
algorithms were congruent among them and with the inferred 
population structure, revealing the typical Mesoamerican–
Andean gene pool split (Figure S3). None of these 18 traditional 
MLMs recovered associated markers at a Bonferroni threshold of 
−log10 P-value = 5.67 (Figures 2–4A, B, S4, S5A–L, and S6A–F).  
Three loci systematically crossed the lax threshold of −log10 
P-value = 4. They were on chromosomes Pv01 (S1_42870591) 
and Pv11 (S1_466464831 and S1_471851336) in all 18 traditional 
MLM models (Figures 2A, B, 3A, B, 4A, B, S4A–L, S5A–L, and 
S6A–F). Three of the models built with the EMMA algorithm 
(HITMLM-PC-EMMA, HSIMLM-PC-EMMA, and PCA1MLM-PC-EMMA) further 
identified three other alleles that crossed the lax threshold with 
greater significance (Figures 2–4A, B). Thus, the EMMA-based 
kinship matrix was defined as the random effect for the 30 
improved traditional mixed and last-generation GWAS models.

A Total of 120 Loci in 15 Models Were 
Associated With the Three HS  
Bioclimatic Indices
We generated a total of 30 GEA models by implementing the 
algorithms CMLM (six models), SUPER (12 models), FarmCPU 
(six models), and BLINK (six models) using three HS indices 
as response variables, two methods of population stratification 
(PC and TESS3) as a fixed effect, and kinship reconstruction 
using the EMMA algorithm as a random effect. None of the six 
CMLM (Figures 2–4C, D and S6G–L) models yielded associated 
markers at a Bonferroni threshold of −log10 P-value  = 5.67. 
However, at a lax threshold of −log10 P-value = 4, these CMLM 
models captured the same three associated loci identified by 
the 18 traditional MLMs. Three CMLM models that used the 
PCA1 as a covariable (HITCMLM-PC-EMMA, HSICMLM-PC-EMMA, and 

PCA1CMLM-PC-EMMA) captured, at a lax threshold, one additional 
associated locus each (Figures 2–4C, D).

We implemented a GLM model in the first step of the 
SUPER algorithm as suggested by Wang et al. (2014b) due 
to its computational efficiency, same as MLM and CMLM 
models. MLM and CMLM models were implemented for the 
last step of the SUPER algorithm with each of the three HS 
indices. From all these 12 SUPER models, the only ones that 
reported associated markers at a Bonferroni threshold of −log10 
P-value = 5.67 were HSISUPER(CMLM)-PC-EMMA (Figures 2E, F), 
HITSUPER(CMLM)-PC-EMMA (Figures 3E, F), and PCA1SUPER(CMLM)-PC-

EMMA (Figures 4E, F), from now on named as HITSUPER-PC-EMMA, 
HSISUPER-PC-EMMA, and PCA1SUPER-PC-EMMA, respectively, for better 
reading. The remaining nine SUPER models [HITSUPER(CMLM)-

TESS3-EMMA, HSISUPER(CMLM)-TESS3-EMMA, PCA1SUPER(CMLM)-TESS3-EMMA, 
HITSUPER(MLM)-PC-EMMA, HSISUPER(MLM)-PC-EMMA, PCA1SUPER(MLM)-

PC-EMMA, HITSUPER(MLM)-TESS3-EMMA, HSISUPER(MLM)-TESS3-EMMA, and 
PCA1SUPER(MLM)-TESS3-EMMA], abbreviated as “failed” SUPER 
models, only identified between 17 and 12 SNP markers that 
crossed the lax threshold of −log10 P-value = 4 (Figures S7A–P).  
On the other hand, all 12 FarmCPU (Figures 2–4G, H and 
5A–F) and BLINK (Figures 2–4I, J and 5G–L) models reported 
associated markers at a Bonferroni threshold of −log10 P-value = 
5.23. Regardless what population stratification method was used 
(PC or TESS3) as a fixed effect, the 15 last-generation models 
SUPER (three), FarmCPU (six), and BLINK (six) identified a 
total of 120 associated loci at a Bonferroni threshold (Table 1). 
A total of 61 from the 120 SNP markers were captured by a 
single GEA model, and the remaining 59 SNP markers were 
associated with more than one of these GEA models; thus, we 
obtained a total of 270 GWAS redundant outputs (Table S3). 
The 120 significantly associated SNP markers were distributed 
in 105 regions across the common bean genome (Figure 6). 
Chromosomes Pv03, Pv01, Pv11, and Pv07 harbored the highest 
number of markers with 18, 15, 14, and 14 SNPs in 16, 12, 11, and 
12 regions, respectively. Chromosomes Pv06, Pv08, Pv04, Pv02, 
and Pv10 had 10, 10, 10, 9, and 9 associated markers grouped in 
10, 9, 10, 9, and 6 regions, respectively. Pv09 and Pv05 were the 
chromosomes with the fewest associated markers with seven and 
four SNPs, grouped in six and four regions (Table S4). On the 
other hand, PCA1 was the HS index with the highest number 
of markers with 96 SNPs in 83 regions through the entire 
genome. The HS indices HSI and HIT had 57 and 37 associated 
markers grouped in 54 and 33  regions, respectively, across all 
chromosomes (Table  S4). Also, the last-generation GWAS 
algorithm with the highest number of associated markers was 
BLINK with 91 SNPs in 80 regions through the entire genome. 

FIGURE 1 | (A) Spatial population clustering and ancestry coefficients estimated with TESS3 using the number of gene pools (K = 2), the number of subpopulations 
suggested by other studies (K = 5), and the best number of subpopulations suggested by cross-entropy validation test (K = 6). The genotypes are sorted by latitude 
from northern Argentina to Mesoamerica. The subpopulations are MW1 (Mesoamerican Wild 1), MW2 (Mesoamerican Wild 2), MW3 (Mesoamerican Wild 3), PhI 
(Northern Peru-Ecuador Wild), AW (Andean Wild), and CW (Colombian Wild), colored in blue, purple, pink, green, red, and yellow, respectively. (B) Cross-entropy 
plot when the number of cluster (K) ranges between 1 and 10. The snmf algorithm was executed with 1,000 repetitions and a fluctuating K value from 2 to 10. 
The cross-entropy inference was further improved by exploring the percentage of masked genotypes at thresholds of 5% and 20%. (C, D) Population structure 
revealed by a molecular principal component analysis based on 23,373 SNP markers, using number of subpopulations K = 5 (C) and K = 6 (D). Subpopulations are 
colored as in (A). The percentage of explained variation by each axis is shown within parenthesis in the label of the corresponding axis. (E, F) Spatial interpolation of 
population ancestry coefficients across the geographic distribution of the genotypes analyzed. Subpopulations are colored as in (A).
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FIGURE 2 | Manhattan and Q–Q plots of the optimum genome–environment association (GEA) analysis for heat tolerance in 78 common bean accessions based 
on 23,373 SNP markers, using the HSI index (equation 4). The Manhattan and Q–Q plots are generated according to traditional MLM algorithms, compressed 
MLM algorithms, and last-generation GWAS algorithms (SUPER, FarmCPU, and BLINK) using kinship matrix as a random effect by the EMMA algorithm and the 
first six principal components (Figure 1D) as a fixed effect. These models are HSIMLM-PC-EMMA (A, B), HSICMLM-PC-EMMA (C, D), HSISUPER-PC-EMMA (E, F), HSIFARMCPU-PC-EMMA 
(G, H), and HSIBLINK-PC-EMMA (I, J). The red dashed horizontal line marks the P-value threshold after Bonferroni correction for multiple comparisons. The blue dashed 
horizontal line marks the lax P-value threshold. Black and blue colors highlight different common bean (Pv) chromosomes.
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FIGURE 3 | Manhattan and Q–Q plots of the optimum genome–environment association (GEA) analysis for heat tolerance in 78 common bean accessions based 
on 23,373 SNP markers, using the HIT index (equation 5). The Manhattan and Q–Q plots are generated according to traditional MLM algorithms, compressed 
MLM algorithms, and last-generation GWAS algorithms (SUPER, FarmCPU, and BLINK) using kinship matrix as a random effect by the EMMA algorithm and the 
first six principal components (Figure 1D) as a fixed effect. These models are HITMLM-PC-EMMA (A, B), HITCMLM-PC-EMMA (C, D), HITSUPER-PC-EMMA (E, F), HITFARMCPU-PC-EMMA 
(G, H), and HITBLINK-PC-EMMA (I, J). The red dashed horizontal line marks the P-value threshold after Bonferroni correction for multiple comparisons. The blue dashed 
horizontal line marks the lax P-value threshold. Black and blue colors highlight different common bean (Pv) chromosomes.
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FIGURE 4 | Manhattan and Q–Q plots of the optimum genome–environment association (GEA) analysis for heat tolerance in 78 common bean accessions based on 
23,373 SNP markers, using the PCA1 index. The Manhattan and Q–Q plots are generated according to traditional MLM algorithms, compressed MLM algorithms, 
and last-generation GWAS algorithms (SUPER, FarmCPU, and BLINK) using kinship matrix as a random effect by the EMMA algorithm and the first six principal 
components (Figure 1D) as a fixed effect. These models are PCA1MLM-PC-EMMA (A, B), PCA1CMLM-PC-EMMA (C, D), PCA1SUPER-PC-EMMA (E, F), PCA1FARMCPU-PC-EMMA (G, H), 
and PCA1BLINK-PC-EMMA (I, J). The red dashed horizontal line marks the P-value threshold after Bonferroni correction for multiple comparisons. The blue dashed 
horizontal line marks the lax P-value threshold. Black and blue colors highlight different common bean (Pv) chromosomes.
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FIGURE 5 | Manhattan and Q–Q plots of the optimum genome–environment association (GEA) analysis for heat tolerance in 78 common bean accessions based on 
23,373 SNP markers according to last-generation GWAS algorithms FarmCPU and BLINK. The covariates used in these six models provided are kinship matrix as 
a random effect using EMMA algorithm and the population structure as fixed effect using TESS3 (Figure 1F). These last-generation GWAS models are HSIFARMCPU-

TESS3-EMMA (A, B), HITFARMCPU-TESS3-EMMA (C, D), PCA1FARMCPU-TESS3-EMMA (E, F), HSIBLINK-TESS3-EMMA (G, H), HITBLINK-TESS3-EMMA (I, J), and PCA1BLINK-TESS3-EMMA (K, L). The red 
dashed horizontal line marks the P-value threshold after Bonferroni correction for multiple comparisons. Black and blue colors highlight different common bean (Pv) 
chromosomes.
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The FarmCPU and SUPER algorithms had 46 and 24 associated 
markers grouped in 44 and 21 regions, respectively, across all 
chromosomes (Table S4).

From 15 significant-GEA models, PCA1BLINK-PC-EMMA, HSIBLINK-

PC-EMMA, PCA1FARMCPU-PC-EMMA, and HITBLINK-PC-EMMA were the 
models with the highest number of markers with 73, 39, 27, and 
21 SNPs in 62, 36, 26, and 20 regions, respectively, through the 
entire genome. The models HITBLINK-TESS3-EMMA, HITSUPER(CMLM)-PC-

EMMA, HSIFARMCPU-PC-EMMA, HITFARMCPU-PC-EMMA, HSISUPER(CMLM)-PC-

EMMA, PCA1BLINK-TESS3-EMMA, and HSIFARMCPU-TESS3-EMMA had 12, 12, 
12, 11, 11, 11, and 10 SNPs in 11, 9, 12, 10, 11, 10, and 10 regions, 
respectively, across all chromosomes. PCA1FARMCPU-TESS3-EMMA, 
PCA1SUPER(CMLM)-PC-EMMA, HITFARMCPU-TESS3-EMMA, and HSIBLINK-TESS3-

EMMA were the models with the fewest associated markers with nine, 
nine, eight, and five SNPs, grouped in nine, nine, seven, and four 
regions, respectively (Table 1).

Also, the models PCA1BLINK-PC-EMMA, HITSUPER(CMLM)-PC-

EMMA, PCA1BLINK-TESS3-EMMA, and HSIFARMCPU-TESS3-EMMA had 
the highest number of exclusive markers that no other 
model captured, with 30, 9, 5, and 5 SNPs, respectively. 
The models HSISUPER(CMLM)-PC-EMMA, PCA1FARMCPU-TESS3-EMMA, 
PCA1SUPER(CMLM)-PC-EMMA, HSIBLINK-PC-EMMA, HITBLINK-TESS3-EMMA, 
and HSIBLINK-TESS3-EMMA had the fewest exclusive markers with 
three, three, three, one, one, and one SNPs, respectively. The 
remaining models from the 15 significant-GEA models did not 
have exclusive SNP markers (Table 1). On the other hand, the 
120 significantly associated SNP markers explained 54.28%, 
52.73%, and 51.73% of the variation (effects) for PCA1, his, and 
HIT, respectively (Table S4). Furthermore, we averaged the R2 
of all associated SNPs by each of the significant 15 models 
throughout the genome of common bean, getting a range 
of average effects between 68.71% (HITFARMCPU-PC-EMMA) and 
26.10% (HSISUPER(CMLM)-PC-EMMA) (Table 1). In summary, from 
the entire set of 30 GEA models implemented with improved 
traditional MLMs and last-generation GWAS algorithms, only 
15 reported associations at a Bonferroni threshold, for a total 
of 120 associated markers.

Associated Markers Flanked 22 Genes 
Related With the HS Response, Such 
as Activation of HSPs and Abiotic 
Stress Signaling
We identified 120 associated loci across 15 of the 30 run GEA 
models at a Bonferroni-corrected significance threshold of −
log10 P-value = 5.23 for 12 FarmCPU and BLINK models and 
at a Bonferroni-corrected threshold of −log10 P-value = 5.67 for 
three SUPER models. Among the 15 GEA models that captured 
significantly associated markers, only one (HITBLINK-TESS3-
EMMA) did not identify any flanking gene. The other 14 models 
captured 36 flanking genes (Table S3). An ontology analysis 
revealed that 22 of these genes, flanking 24 associated markers, 
related with biological processes of the response to heat tolerance 
in plants (Figure 6, Table 2).

The chromosomes with the highest number of genes related 
to heat tolerance were Pv02, Pv06, Pv03, Pv01, Pv08, and Pv11, 
with five, four, three, three, three, and two genes, respectively TA
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(Table S4). The chromosomes with only one gene related to 
heat tolerance were Pv04, Pv05, Pv09, and Pv10. Pv07 was 
the only chromosome that did not report gene related to heat 
tolerance. On the other hand, the PCA1 was the HS index with 
the highest number of genes related to heat tolerance with 14 
genes. Furthermore, the HS indices HSI and HIT had 12 and 9 
genes related to heat tolerance, respectively (Table S4). Also, 
the last-generation GWAS algorithm with the highest number 
of genes related to heat tolerance was FarmCPU with 18 genes. 
The BLINK and SUPER algorithms had 14 and 8 genes related 
to heat tolerance, respectively (Table S4).

From 15 significant-GEA models, PCA1FARMCPU-PC-EMMA, 
PCA1BLINK-PC-EMMA, HITSUPER(CMLM)-PC-EMMA, HSIFARMCPU-TESS3-

EMMA, HSIBLINK-PC-EMMA, and HSIFARMCPU-PC-EMMA were the 
models with the highest number of genes related to heat 
tolerance with nine, eight, five, five, four, and four genes, 
respectively. On the other hand, HSISUPER(CMLM)-PC-EMMA, 

PCA1SUPER(CMLM)-PC-EMMA, HITBLINK-TESS3-EMMA, HITBLINK-PC-EMMA, 
PCA1FARMCPU-TESS3-EMMA, PCA1BLINK-TESS3-EMMA, HITFARMCPU-

TESS3-EMMA, and HITFARMCPU-PC-EMMA were the models with the 
fewest number of genes related to heat tolerance with three, 
three, three, three, two, two, two, and two genes, respectively. 
HSIBLINK-TESS3-EMMA was the only GEA model that had no 
associated genes (Table 1).

A total of 22 genes flanked 24 loci because three different copies 
of the HSP40 (Wang et al., 2004) gene were reported on three 
different chromosomes (Pv02, Pv03, and Pv06) using eight GEA 
models that incorporated HIT and HSI as response environmental 
variables. Four other genes from the set of 22 were also related to 
pathways of response to HS, such as activation of HSPs [MED23 
(Kim et al., 2004), MED25 (Mathur et al., 2011), and HSFB1 (Ikeda 
et al., 2011) in Pv02; and HSP20 (Lopes-Caitar et al., 2013) in Pv08]. 
This set of five genes (HSP20, HSP40, MED23, MED25, and HSFB1) 
was recovered by 11 redundant GEA models [HITBLINK-PC-EMMA, 

TABLE 2 | List of 24 single-nucleotide polymorphism (SNP) markers associated and flanked (genomic window of 1 kb) to 22 genes related with the heat stress (HS) response 
such as activation of heat shock proteins (22.73%), abiotic stress signaling (18.18%), germination and seedling development (18.18%), flowering time (9.09%), protein domain 
thermostability (9.09%), molecular chaperones (9.09%), and stability of the cell wall (4.55%) using PhytoMine B and reference genome of common bean v2.1.

Gene Name GEA Model Associated SNPs Gen

Activation of heat shock proteins—five genes (22.73%)

Phvul.003G021100 HITSUPER(CMLM)-PC-EMMA S1_103273611 MED23
Phvul.003G028300 HITSUPER(CMLM)-PC-EMMA S1_104075622 MED25
Phvul.003G038600 HITSUPER(CMLM)-PC-EMMA, HSISUPER(CMLM)-PC-EMMA, HITBLINK-PC-EMMA S1_105404421 Hsp40—Pv03
Phvul.002G136100 HSIFARMCPU-PC-EMMA, HITFARMCPU-PC-EMMA, HSIBLINK-PC-EMMA, HIT BLINK-PC-EMMA S1_80309359 Hsp40—Pv02
Phvul.006G182100 HITFARMCPU-TESS3-EMMA, HITBLINK-TESS3-EMMA S1_268677251 Hsp40—Pv06
Phvul.002G019100 HSIFARMCPU-TESS3-EMMA S1_54254560 HSFB1 (HSF4)
Phvul.008G227900 PCA1FARMCPU-TESS3-EMMA, PCA1BLINK-TESS3-EMMA S1_381855152 HSP20

Abiotic stress signaling—four genes (18.18%)

Phvul.008G204500 PCA1SUPER(CMLM)-PC-EMMA S1_379270378 NFY
Phvul.002G142500 PCA1FARMCPU-PC-EMMA, PCA1BLINK-PC-EMMA S1_81263655 AUX_IAA
Phvul.006G014100 HSIFARMCPU-TESS3-EMMA S1_246823134 Phospholipase C PLC
Phvul.001G202000 HSIFARMCPU-PC-EMMA, PCA1FARMCPU-PC-EMMA, HSIBLINK-PC-EMMA, PCA1BLINK-PC-EMMA, 

HITBLINK-TESS3-EMMA

S1_46052073 Auxin response factor

Germination and seedling development–four genes (18.18%)

Phvul.005G175800 HSISUPER(CMLM)-PC-EMMA, HITSUPER(CMLM)-PC-EMMA S1_239620265 Glycoside hydrolases family 28
Phvul.002G016700 HSIFARMCPU-TESS3-EMMA S1_53999562 Family AP2/ERF
Phvul.001G171600 HSISUPER(CMLM)-PC-EMMA, PCA1SUPER(CMLM)-PC-EMMA S1_42870591 Ankyrin-B (Ankyrin-2)
Phvul.011G054400 PCA1FARMCPU-PC-EMMA, PCA1BLINK-PC-EMMA S1_469234219 Pkinase_Tyr

Flowering time—two genes (9.09%)

Phvul.006G119900 PCA1SUPER(CMLM)-PC-EMMA S1_263134744 Poly(A) polymerase PAP
Phvul.004G017600 HITSUPER(CMLM)-PC-EMMA, PCA1FARMCPU-TESS3-EMMA, HSIFARMCPU-TESS3-EMMA, 

PCA1BLINK-TESS3-EMMA

S1_155643598 MBD9

Protein domain thermostability—two genes (9.09%)

Phvul.011G058100 PCA1FARMCPU-PC-EMMA, PCA1BLINK-PC-EMMA S1_469639214 Zinc finger A20 and AN1
Phvul.002G287600 PCA1FARMCPU-PC-EMMA, HSIFARMCPU-PC-EMMA, HSIBLINK-PC-EMMA, PCA1BLINK-PC-EMMA S1_97861798 S1

Molecular chaperones—two genes (9. 09%)

Phvul.009G032500 HSIFARMCPU-TESS3-EMMA S1_391075082 14-3-3 proteins family
Phvul.010G024400 PCA1FARMCPU-PC-EMMA, PCA1BLINK-PC-EMMA S1_424636676 FKBP

DNA transcription—two genes (9. 09%)

Phvul.008G022950 PCA1FARMCPU-PC-EMMA, PCA1BLINK-PC-EMMA S1_325947871 BRIX
Phvul.006G130200 HSIFARMCPU-PC-EMMA, HITFARMCPU-PC-EMMA, PCA1FARMCPU-PC-EMMA, HSIBLINK-PC-EMMA, HITBLINK-

PC-EMMA, HITFARMCPU-TESS3-EMMA, HITBLINK-TESS3-EMMA

S1_264118438 YTH protein domain

Stability of the cell wall—one gene (4.55%)

Phvul.001G267000 PCA1FARMCPU-PC-EMMA, PCA1BLINK-PC-EMMA S1_51236796 GAE6

B https://phytozome.jgi.doe.gov/pz/portal.html
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HITBLINK-TESS3-EMMA, HITFARMCPU-PC-EMMA, HITFARMCPU-TESS3-EMMA, 
HITSUPER(CMLM)-PC-EMMA, HSISUPER(CMLM)-PC-EMMA, HSIBLINK-PC-EMMA, 
HSIFARMCPU-PC-EMMA, HSIFARMCPU-TESS3-EMMA, PCA1BLINK-TESS3-EMMA, 
and PCA1FARMCPU-TESS3-EMMA] (Table  2). These precursor genes 
of HSPs can play a crucial role in protecting plants against stress 
by reestablishing normal protein conformation and thus cellular 
homeostasis (Wang et al., 2004). Four significant SNP markers 
were found within the coding sequencing of the duplicated HSP40 
genes (Pv02 and Pv06), MED23 and MED25. We also found two 
genes associated with protein domains related to thermostability 
in plants such as S1 in Pv02 and Zinc finger A20 and AN1 (Dixit 
and Dhankher, 2011) in Pv11 (Table 2).

We also recovered nine genes associated with biological processes 
likely correlated with plant tolerance to high temperatures, such 
as flowering time (MBD9 in Pv04 and PAP in Pv06) (Peng et al., 
2006; Trost et al., 2014), regulation of molecular chaperones (FKBP 
in PV10 and 14-3-3 proteins in Pv09) (Wang et al., 2004; Gollan 
et al., 2012), germination and seedling development [Pkinase_Tyr 
family in Pv11, Ankyrin-B in Pv01 (Hanks and Quinn, 1991; Bae et 
al., 2008), glycoside hydrolase GH family (González-Carranza et al., 
2002) in Pv05, and transcription factors family AP2/ERF (Jofuku et 
al., 1994; Büttner and Singh, 1997) in Pv02], and cell wall stability 
(GAE6 in Pv01) (Usadel et al., 2004). Additionally, four genes were 
involved in the signaling pathways of abiotic stress via abscisic acid 
[histone-like transcription factors NFYB (Warpeha et al., 2007) in 
Pv08 and phospholipase C PLC (Peters et al., 2010) in Pv06] and 
auxin (auxin response factor in Pv01 and AUX_IAA in Pv02) 
(Hagen and Guilfoyle, 2002; Ellis et al., 2005) (Table 2). On the other 
hand, since HS compromises molecular processes inherent to DNA 
transcription, it is not unexpected that we found two transcription 
factors [BRIX (Weis et al., 2015) in Pv08 and protein domains 
YTH (Wang et al., 2014a) in Pv06] involved in plant development 
and response to abiotic stress such as drought and heat. Overall, 
the biological processes related to HS over-represented among the 
associated genes were thermal shock protein activation (22.73%), 
abiotic stress signaling (18.18%), and germination and seedling 
development (18.18%) (Table 2).

Additionally, we explored a genomic window of 81 kb (40.5 kb 
upstream to 40.5 kb downstream of the associated SNP using the 
common bean v2.1, Table S5) based on LD criterion, finding 
541 new genes for a total of 578 genes. Among the 578 genes, we 
found eight genes related to HSPs (three HSP40, two HSP20, one 
HSFA5, and two HSP17.6) in addition to the five genes found 
in the window of 1 kb (three HSP40, one HSP20, one HSFB1, 
one MED23, and one MED25) for a total of thirteen genes. The 
eight new genes related to HSP were distributed like this: three 
HSP40 in chromosomes Pv01, Pv06, and Pv07; two HSP20 in 
chromosomes Pv05 and Pv08; one HSFA5 in chromosome in 
Pv01; and two HSP17.6 in chromosome Pv08.

Last-Generation GWAS Models 
Complemented Each Other Despite 
Some Redundancy
Based on the previous gene recovery and classification, 11 GEA 
models were the best at explaining the activation of HSPs as the 

genetic basis of heat tolerance, by reporting seven loci across five 
chromosomes (Tables 2 and S3) as potential candidates to be 
integrated into breeding programs. These seven loci were related 
to genes belonging to the HSPs’ activation signaling pathway. 
From these 11 GEA models, the ones that best explained the HS 
indices were HITFARMCPU-PC-EMMA (68.71%), HSIFARMCPU-PC-EMMA 
(67.83%), and PCA1FARMCPU-PC-EMMA (61.19%). In other words, 
the last-generation GWAS model families that best explained 
the HS indices were FarmCPU and BLINK. Meanwhile, SUPER 
models reported the weakest effects (42.86%) (Table 1).

Among the 11 most-explanatory GEA models, 10 models, 
distributed in four main clusters, were redundant. HSIFARMCPU-

TESS3-EMMA was the unique non-redundant model that captured a 
gene related to heat tolerance (HSFB1) (Table 2). The clustering 
criterion was that models within the same cluster captured 
the same gene. The first cluster had three models (HITSUPER-PC-

EMMA, HSISUPER-PC-EMMA, and HITBLINK-PC-EMMA) that reported a 
paralogous copy of the HSP40 gene in chromosome Pv03. The 
second cluster had four models (HITBLINK-PC-EMMA, HSIFARMCPU-

PC-EMMA, HITFARMCPU-PC-EMMA, and HSIBLINK-PC-EMMA) that reported 
a paralogous of the same gene in chromosome Pv02. The third 
cluster had two models (HITFARMCPU-TESS3-EMMA and HITBLINK-

TESS3-EMMA) that identified the other paralogues of HSP40 in 
chromosome Pv06. The fourth cluster was made of two models 
(PCA1FARMCPU-TESS3-EMMA and PCA1BLINK-TESS3-EMMA) that captured 
the same HSP20 gene in chromosome Pv08. On the other hand, 
the genes that were captured by non-redundant models were 
MED23 and MED25 (both with HITSUPER-PC-EMMA) and HSFB1 
(with HSIFARMCPU-TESS3-EMMA). The HITSUPER-PC-EMMA model was 
not redundant with other models when capturing these two 
genes, but this model was redundant with the first cluster when 
capturing the Pv02 HSP40 paralogues.

The HITBLINK-PC-EMMA model simultaneously reported the 
paralogous HSP40 gene in chromosomes Pv02 (SNP marker 
S1_80309359, effect = 56.22%) and Pv03 (SNP marker 
S1_105404421, effect = 56.74%), from the first and second clusters, 
respectively. The LD between both SNP markers reported by 
HITBLINK-PC-EMMA had an R2 of 6.2% (P-value = 0.045). In other 
words, both SNP markers were recovered by the same model 
(HITBLINK-PC-EMMA) and accounted for different effects of paralogous 
copies of the HSP40 gene in different chromosomes. So we selected 
the HITBLINK-PC-EMMA model as the representative model of the 
first and second clusters. On the other hand, we selected the most 
explanatory models (highest effects) as representative models for 
the third and fourth clusters. Thus, we chose the HITBLINK-TESS3-

EMMA model (effect = 60.86%) as the representative model of the 
third cluster (Table 1). This model identified the HSP40 gene 
in chromosome Pv06. Finally, we selected the PCA1BLINK-TESS3-

EMMA model (effect = 48.59%) as the representative model of the 
fourth cluster (Table 1). This model captured the HSP20 gene in 
chromosome Pv08. Therefore, the 11 models that best explained 
the activation of HSPs can be condensed into five non-redundant 
models, which are HITBLINK-PC-EMMA, HITSUPER-PC-EMMA, HSIFARMCPU-

TESS3-EMMA, HITBLINK-TESS3-EMMA, and PCA1BLINK-TESS3-EMMA. Each of 
these five non-redundant GEA models captured a unique gene 
of the HSPs’ activation signaling pathway, including regulators 
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of mediators, activators, and expression genes (HITBLINK-PC-EMMA 
captured HSP40 in Pv03 and Pv02, HITSUPER-PC-EMMA captured 
MED23 and MED25, HSIFARMCPU-TESS3-EMMA captured HSFB1, 
HITBLINK-TESS3-EMMA captured HSP40 in Pv06, and PCA1BLINK-TESS3-

EMMA captured HSP20) (Table 2).

DISCUSSION

The discriminatory power provided by kinship covariates used 
as random effects has been of great interest in the development 
of promising GWAS algorithms (CMLM, SUPER, FarmCPU, 
and BLINK). However, last-generation GWAS algorithms have 
given greater importance to the selection of SNP markers for 
the kinship reconstruction than to the reconstruction method 
itself. The three HS indices (HIT, HSI, and PCA1) and 15 
last-generation GWAS models that generated significant 
results captured complementary components of the genetic 
architecture of heat tolerance. We found a total of 24 loci 
associated to 22  genes related to biological processes of the 
HS response in plants. Also, among the 24 loci, we captured 
seven loci as potential candidates to be integrated into breeding 
programs, since they were flanking five genes belonging to the 
signaling pathway that activates HSPs.

Bioclimatic Indices Capture 
Complementary Genetic Effects 
Conferring Heat Tolerance
Each HS index captures a different facet of the HS event. The HIT 
index uses accumulated information of maximum temperatures 
during the reproductive phase of common bean and therefore 
is more informative over time in capturing extreme values 
related to HS. Because of this dynamic nature of HIT, models 
that integrated HIT were more successful at capturing genes 
related to the activation of HSPs. In addition, the HITSUPER-

PC-EMMA model, which integrates the HIT index as a response 
variable, captured unique results that no other model recovered, 
by reporting key genes in the activation of HSPs such as MED23 
and MED25 activators, which are key genes in the reconstruction 
of the genetic basis of heat tolerance.

On the other hand, the HIS index is built on thresholds of 
maximum temperature during the reproductive phase reported 
by some authors for plants in the tropics (Gonçalves et al., 1997; 
Caramori et al., 2001; Silva et al., 2007; Rainey and Griffiths, 
2019). Thus, this index could be more informative phenologically 
in capturing extreme values related to HS events. This is based on 
the fact that models constructed with HIS tended to capture more 
unique genes than any other index. Furthermore, HSIFARMCPU-

TESS3-EMMA was the only model that captured the HS gene heat 
shock factor HSFB1 (HSF4). Among the set of genes captured 
by 11 GEA models, HSF4, a regulatory gene in the expression 
of HSPs in Arabidopsis thaliana (Ikeda et al., 2011), is the gene 
that has greater regulatory importance both in the activation of 
HSPs and other molecular mechanisms of response to abiotic 
stress. Then, although the HIS index fails to capture the amount 
of genes that the HIT index did, perhaps because of its stationary 
nature, it manages to identify unique results that are essential 

to reconstruct the complexity of the genetic effects that confer 
heat tolerance.

Finally, the index based on PCA1 exhibits variability that the 
first two indices did not offer. PCA1 integrates other bioclimatic 
variables besides Tj, yet still related to abiotic stress events. The wide 
variability offered by PCA1 is evident in the large coverage of the 
GEA models that relied on this index. These models capture more 
candidate genes than the previous ones (14 from 22 genes). They also 
capture more biological processes related to HS (e.g. abiotic stress 
signaling, germination and development of seedlings and flowering 
time). However, they recover few genes related with the activation of 
HSPs proteins. The models PCA1FARMCPU-TESS3-EMMA and PCA1BLINK-

TESS3-EMMA capture unique genes such as HSP20, reported in soybean 
as activator of HSPs (Lopes-Caitar et al., 2013), and reported in 
common bean as one of the three most over-expressed genes under 
HS using RNA-sequencing (Soltani et al., 2019).

Each index captures unique genes associated with the activation 
of HSPs, but each of them also identifies different paralogous copies 
of the same gene. The models that used the HSI and HIT indices, 
recover genes upstream to HSPs genes in the pathway of activation 
of HSPs (i.e. HSFB1, MED23, and MED25). On the other hand, 
genes of the family of low molecular weight sHSPs (small HSPs), 
such as HSP40, are found in Pv02 and Pv03 chromosomes using 
the HIT and HSI indices, and in Pv06 chromosome using the HIT. 
Also, other low molecular weight HSPs such as HSP20 are captured 
by the PCA1 index. Thus, models that integrate different indices 
manage to identify mediating, activating and expression genes 
(sHSPs), providing a more comprehensive understanding of the 
genetic architecture of heat tolerance. Although the three indices 
fail to capture all the conserved families of HSPs such as Hsp70, 
Hsp60, Hsp90 and Hsp100, they detect associations flanking several 
genes of the family sHSPs, such as HSP20 and HSP40, this is possibly 
because sHSP family is the most prevalent in plants (Vierling, 1991). 
In addition, gene diversification and subspecialization may reflect 
molecular adaptation to stress conditions that are unique to specific 
populations (Wang et al., 2004). On the other hand, high abundance 
of sHSPs in multiple cellular compartments suggests that they may 
have an important role in acquisition of stress tolerance in plants 
(Wang et al., 2004). In this sense, the expression of sHSPs genes, as 
those detected in this study by means of the three different indices, 
despite not being the proteins that have higher folding potential 
(as Hsp70 and Hsp90), can be key regulatory steps of the molecular 
response to HS (by modulating genes such as HSFB1, MED23, and 
MED25, that we also managed to detect).

An Assortment of Various Last-Generation 
GWAS Models Offer Better Alternatives for 
GEA Studies
Each last-generation GWAS algorithm implemented in this study 
differs in the internal strategy that uses to reconstruct the random 
Kinship covariable. While the kinship method is consistent 
across algorithms, the implementation of Pseudo QTNs differs. 
On the other hand, a prerequisite for GWAS models is the use 
of fixed covariables for population structure, being the principal 
components analysis (PC) the most traditional method. However, 
the generation of alternative strategies such as the one implemented 
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in TESS3, which is more powerful to reconstruct the stratification 
of the population as evidenced by the works of Caye et al. (2016), 
Ariani et al. (2018) and Varshney et al. (2017), led us to consider 
TESS3 as a promising method to be integrated into the GEA 
models. The results obtained by models that use TESS3 as a fixed 
covariate, demonstrate its importance to capture candidate genes 
not recovered by any other GEA model, such as an activator of HSP 
proteins (HSFB1) and two HSPs of low molecular weight (HSP20, 
and HSP40 in Pv06). On the other hand, the implementation of 
the PC method as a fixed covariate in GEA models is also useful, 
because the models that integrate this method capture unique 
genes such as HSPs of low molecular weight (HSP40 genes in Pv02 
and Pv03) and activators of HSP proteins (MED23 and MED25).

In summary, 30 GEA models were built with TESS3 and PC as 
fixed covariables, from an improved traditional MLM algorithm 
(CMLM) and three last-generation GWAS models (SUPER, 
FarmCPU, and BLINK). Of the 30 GEA models, 14 used last 
GWAS algorithms and reported genes linked to biological 
processes related to HS. A total of 11 of these 14 models captured 
genes related to molecular mechanism of activation of HSPs 
proteins. This molecular process was given greater focus due to 
its importance for heat tolerance and its relationship with other 
stresses. The 11 GEA models that identified HSP activation 
genes can be condensed into five non-redundant GEA models, 
conserving the same number of associated genes.

We did not find the ‘holy grail’ for GWAS models, which is 
a unique model that would summarize all 14 GEA models. The 
majority of the 14 GEA models that used FarmCPU and BLINK 
algorithms are redundant in the results related to activation of 
HSPs, regardless whether these considered TESS3 or PC as fixed 
covariables. The coincidence between the results obtained by 
FarmCPU and BLINK had already been reported by the authors of 
the BLINK algorithm for flowering time in corn (Huang et al., 2019), 
and was attributed to the way both strategies are conceived. They 
operate by separating the mixed model into a fixed sub-model and 
a random sub-model, differing only in the parameter-estimation 
method (Huang et al., 2019). This is why both methodologies 
converge to the same results for heat tolerance in common beans 
and flowering time in corn. However, in our study an exception to 
the redundancy between HITBLINK-PC-EMMA and HITFARMCPU-PC-EMMA 
algorithms was that the exact identity of the associated markers 
within the candidate genes differed. Besides, despite that the authors 
of BLINK reported that this method captures more associated genes 
to flowering time than FarmCPU, we found the opposite pattern 
when it comes to heat tolerance in common bean. This suggests 
that the algorithms could be sensible to the use of different response 
variables (e.g. environmental vs. phenotypic).

The Q–Q plot can provide information on two main aspects of 
GWAS data: whether the statistical testing is well controlled for 
challenges such as population stratification and whether there is 
any association. In the last aspect, we could see some associations 
at the end of the Q–Q plot crossing the Bonferroni threshold. 
The population structure control is still a challenge in GWAS 
and our Q–Q plots show signs of inflation. This inflation could 
partially be produced by causal SNPs (or SNPs in LD with causal 
variants), that at the same time are strongly differentiated among 
gene pools. This scenario is possible because both gene pools 

come from contrasting environments in terms of exposure to HS 
events. Mesoamerican genotypes generally experience more heat 
events than Andean genotypes (Figure S8).

In conclusion, the five non-redundant GEA models that best 
explain the activation of HSPs as the genetic basis of heat tolerance 
are HITBLINK-PC-EMMA, HITSUPER-PC-EMMA, HSIFARMCPU-TESS3-EMMA, 
HITBLINK-TESS3-EMMA and PCA1BLINK-TESS3-EMMA. Each of these models 
captures a key gene in the pathway of activation of sHSPs, including 
genes involved in the regulation, activation and expression of 
the signal (Vierling, 1991). Therefore, using an assortment of 
last-generation GWAS methods, various environmental indices 
and different methods to account for fixed covariates, is much 
more informative than trying to select a single optimum GWAS 
model. Our work presents for the first time a powerful strategy to 
explore GEAs throughout a wide range of different last-generation 
GWAS models. This opens the door for new ways to couple 
environmental information in the study of complex characters, such 
as heat tolerance.

Modern GEA Is Capable of Revealing the 
Genetic Basis of a Complex Adaptive Trait 
Despite Limited Sampling
HS affects several physiological, cellular and molecular processes in 
plant cells, affecting fluidity of the cell membrane (Savchenko et al., 
2002), protein (Ahmad et al., 2009) and cytoskeletal stability (Bita 
and Gerats, 2013), chromatin structure (Khraiwesh et al., 2012), the 
production of reactive oxygen species (ROS) (Camejo et al., 2006) 
as well as metabolic coupling (Bita and Gerats, 2013). Consequently, 
HS generates responses in plant cells at molecular and cellular levels, 
such as activation of HSPs (Wang et al., 2004), calcium signaling 
(Larkindale and Huang, 2004), phosphorylation, changes in the 
transcription (Bita and Gerats, 2013) and hormonal responses via 
Abscisic Acid (Larkindale and Knight, 2002), Ethylene or Auxin 
(Evrard et al., 2013; Larkindale and Huang, 2004). Yet, HS also affects 
processes such as flowering time, germination and abscission of floral 
organs (Bita and Gerats, 2013). The genes reported in this work may 
be causal or in LD with causal genes, involved in the majority of these 
processes. Although, we captured at least one gene in each of these 
biological processes, the highest number of associated genes were 
involved in the activation of HSPs. This could be attributed to the 
ability of the sHSPs family (e.g. HSP20 and HSP40) and HSF genes 
(HSFB1) to activate HSPs as well as other physiological, cellular, and 
molecular mechanisms of heat tolerance in plants, such as hormonal 
signaling routes (Wang et  al., 2004), photosystem II protection 
(Kotak et al., 2007, Soltani et al., 2019), DNA translation control 
(Malik et al., 1999) and elimination of reactive oxygen species (ROS) 
(Bita and Gerats, 2013). In addition, if we focused in genes related to 
HSPs, the resolution to detect these proteins decreases with a wider 
window of 81 kb. Among the 578 genes, we found eight genes related 
to HSPs (three HSP40, two HSP20, one HSFA5, and two HSP17.6) 
in addition to the five genes found in the windows of 1 kb (three 
HSP40, one HSP20, one HSFB1, one MED23, and one MED25) for 
a total of thirteen genes. However, these thirteen genes are the 2,25 
% of the 578 genes found in a genomic window of 81 kb, while in a 
narrower genomic window of 1 kb, the five genes related to HSP are 
the 13.5% of the 37 genes.
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Although we were unable to reconstruct the entire pathways 
of HSP protein activation, hormonal responses, time to flowering 
and seedling development, we found key genes in these biological 
processes, by only using environmental information from the 
accession’s sampling sites. This strategy is valuable in optimizing 
time and costs for association studies using wild material.

We have demonstrated that combining diverse and contrasting 
samples with cautiously synthesized environmental variables, 
through a range of diverse last-generation models, offers an 
unprecedented power for GEA studies in the absence of phenotyping 
and with moderate sample sizes. By doing this, we identified a broad 
genetic basis for heat tolerance in common bean, and captured 
adaptive loci related to the activation of HSPs (HSFB1, MED23, 
and MED25) as well as HSPs of low molecular weight (HSP20 and 
HSP40). Small HSP family genes were actually identified as relevant 
in the recent work by Soltani et al. (2019), where authors detected 
HSP21 as one of the three most over-expressed genes in common 
bean under HS using RNA-sequencing.

On the other hand, the use of traditional GWAS models and 
raw environmental information should be avoided since they lack 
statistical power to detect associated markers. Several authors had 
already pointed this limitation (Cortés and Blair, 2018; Frank et al., 
2016; Lasky et al., 2015). Therefore, we suggest coupling synthesized 
environmental variables with diverse last-generation models, in 
order to reveal more accurately the adaptive genetic variation to 
different types of stress in collections of wild germplasm.

PERSPECTIVES

This study demonstrates that the implementation of last-
generation GWAS models under a GEA framework with carefully 
chosen environmental indices improves the reconstruction of the 
genetic basis of adaptation to HS. New studies across a variety 
of species and populations subjected to different stresses will 
benefit by using last-generation GWAS models within a well 
thought GEA design in order to capture better sources of genetic 
adaptation. We are looking forward to seeing more studies that 
follow these lines within the oncoming years.

On the other hand, the genes identified in this study as 
candidates for heat tolerance have the potential to be used in plant 
breeding programs after validation by means of strategies such 
as gene expression studies and Whole Genome re-Sequencing 
(WGS) (Barbulescu et al., 2018). The latter will make available 
all the genetic variability present in each accession. Additionally, 
it would be ideal that the indices explored in this work were 
contrasted with measurements of heat tolerance in greenhouse 
and at field conditions under controlled treatments (Zuiderveen 
et al., 2016). It would also be appropriate to consider for these 
experiments the same group of accessions used in the present 
work as well as accessions of related species that are well-known 
for their heat tolerance (i.e. Phaseolus acutifolius). Ultimately, 
validated candidate genes could be integrated into molecular 
editing strategies (Lang-Mladek et al., 2010; Pecinka et al., 2010; 
LeBlanc et al., 2018).

As part of a larger project, promissory accessions identified 
in this work will be evaluated together with advanced lines and 

related species under HS conditions at Coastal Colombia. These 
materials are currently undergoing seed multiplication at the 
greenhouses so that field establishment can take place in 2020.

Finally, by exploring the genetic basis of heat tolerance using 
indices constructed from phenotypic information, it will be possible 
to couple GBS and WGS data with last-generation GWAS models 
and genomic selection approaches (Crossa et al., 2011). In parallel, 
there have been recent GWAS developments relying on Artificial 
Intelligence (AI) (i.e. deep learning) and Machine Learning (ML) 
strategies that deserve further exploration under a GEA framework.
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TABLE S1 | Identity of the 78 common bean accessions used in this study. The G 
identification number (from the Genetic Resources Unit at the International Center for 
Tropical Agriculture), country of origin and georeferences. The raw bioclimatic variables 
used are BIO1 = annual mean temperature, BIO5 = maximum temperature of warmer 
months, BIO8 = mean temperature of the wettest quarter, BIO9 = mean temperature 
of the driest quarter, BIO10 = mean temperature of the warmest 4-month period, and 
Tj = average of absolute maximum temperature during the reproductive phase. The 
bioclimatic-based heat indices are the HSI, HIT, and PCA1. The membership value of 
78 common bean accessions using TESS3 algorithm (K = 6).

TABLE S2 | List of notations of GEA models generated by last-generation GWAS 
(SUPER, FarmCPU, and BLINK) and improvement traditional MLM algorithms 
(CMLM). These notations show, for each model, the family of GWAS models 
used and algorithms implemented for random and fixed effects. The models 
were abbreviated as follows: IM-Fc-Rc, where “I” refers to the HS index, “M” is the 
GWAS model family, and “Fc” and “Rc” are the algorithms used to reconstruct 
the fixed and random covariates, respectively.

TABLE S3 | Genome–environment association (GEA) analyses for heat tolerance 
according to last-generation GWAS algorithms (SUPER, FarmCPU, and BLINK) for 
each 270 SNP markers associated with HIT, HSI, and PCA1 indices in 78 common 
bean accessions based on the optimum association GEA analysis (Figures 2–5).

TABLE S4 | Summary statistics of last-generation GWAS algorithms (SUPER, 
FarmCPU, and BLINK). The HS indices and chromosomes (Pv) are presented 
for each SNP marker associated in 78 common bean accessions based on the 
optimum association analysis (Figures 2–5).

TABLE S5 | List of 578 genes flanking 120 associated SNP markers in an 
expanded genomic window of 81 kb using PhytoMine (see note B) and the 
reference genome of common bean v2.1

FIGURE S1 | Boxplot, histogram, skewness, kurtosis, and Shapiro–Wilk statistics of 
the six bioclimatic variables [BIO1 = annual mean temperature (A), BIO5 = maximum 
temperature of warmer months (B), BIO8 = mean temperature of the wettest quarter 
(C), BIO9 = mean temperature of the driest quarter (D), BIO10 = mean temperature 
of the warmest 4-month period (E), and Tj = average of absolute maximum 
temperature during the reproductive phase (F)] and the three HS indices [HSI (G), HIT 
(H), and PCA1 (I)] for the 86 common bean accessions used in this study.

FIGURE S2 | Dispersion diagrams generate by means of Pearson (A) and 
Spearman (B) correlations for all bioclimatic variables and between each HS index.

FIGURE S3 | Heat maps of kinship matrices estimated with the VanRaden 
(A), Loiselle (B), and EMMA (C) algorithms across all 23,373 SNP markers.

FIGURE S4 | Manhattan and Q–Q plots of the exploratory phase of genome–
environment association (GEA) analysis, for heat tolerance in 78 common bean 
accessions based on 23,373 SNP markers according to traditional MLM algorithm 

with the population structure as a fixed effect using the first six principal components 
(Figure 1D). Also, these MLM models use kinship matrix as a random effect by 
means of Loiselle and VanRaden algorithms. These MLM models are HSIMLM-PC-

LOISELLE (A, B), HITMLM-PC-LOISELLE (C, D), PCA1MLM-PC-LOISELLE (E, F), HSIMLM-PC- VANRADEN 
(G, H), HITMLM-PC-VANRADEN (I, J), and PCA1MLM-PC-VANRADEN (K, L). The blue dashed 
horizontal line marks the lax P-value threshold. The red dots are SNP markers that 
systematically crossed the lax threshold in the exploratory phase from all 18 MLM 
models (S1_42870591 in Pv01 and S1_466464831 and S1_471851336 in Pv11). 
Black and green colors highlight different common bean (Pv) chromosomes.

FIGURE S5 | Manhattan and Q–Q plots of the exploratory phase of genome–
environment association (GEA) analysis, for heat tolerance in 78 common bean 
accessions based on 23,373 SNP markers according to a traditional MLM algorithm 
with the population structure using TESS3 (Figure 1F) as a fixed effect. Also, these 
MLM models use kinship matrix as a random effect by means of EMMA and Loiselle 
algorithms. These MLM models are HSIMLM-TESS3-EMMA (A, B),  
HITMLM-TESS3-EMMA (C, D), PCA1MLM-TESS3-EMMA (E, F), HSIMLM-TESS3-LOISELLE (G, H), HITMLM-

TESS3-LOISELLE (I, J), and PCA1MLM-TESS3-LOISELLE (K, L). The blue dashed horizontal line 
marks the lax P-value threshold. The red dots are SNP markers that systematically 
crossed the lax threshold in the exploratory phase from all 18 MLM models 
(S1_42870591 in Pv01 and S1_466464831 and S1_471851336 in Pv11). Black and 
green colors highlight different common bean (Pv) chromosomes.

FIGURE S6 | The Manhattan and Q–Q plots of the exploratory phase of genome–
environment association (GEA) analysis, for heat tolerance in 78 common bean 
accessions based on 23,373 SNP markers according to traditional MLM algorithm 
with population structure as a fixed effect using TESS3 (Figure 1F) and kinship 
matrix as a random effect using the VanRaden algorithm. These MLM models 
are HSIMLM-TESS3-VANRADEN (A, B), HITMLM-TESS3-VANRADEN (C, D), PCA1MLM-TESS3-VANRADEN 
(E, F). The red dots are SNP markers that systematically crossed the lax threshold 
in the exploratory phase from all 18 MLM models (S1_42870591 in Pv01 and 
S1_466464831 and S1_471851336 in Pv11). The Manhattan and Q–Q plots of 
genome–environment association (GEA) analysis, for heat tolerance in 78 common 
bean accessions based on 23,373 SNP markers according to compressed MLM 
algorithms with the population structure using TESS3 (Figure 1F) as fixed effect and 
kinship matrix as a random effect using EMMA algorithm. These CMLM models are 
HSICMLM-TESS3-EMMA (G, H), HITCMLM-TESS3-EMMA (I, J), and PCA1CMLM-TESS3-EMMA (K, L). 
The blue dashed horizontal line marks the lax P-value threshold. Black and green 
colors highlight different common bean (Pv) chromosomes.

FIGURE S7 | Manhattan and Q–Q plots of genome–environment association 
(GEA) analysis by means of SUPER algorithm, for heat tolerance in 78 common 
bean accessions based on 23,373 SNP. GLM model is used in the first step of 
these nine “failed” SUPER models, and the last step used CMLM (A–F) and MLM 
(G–P) algorithms. The nine “failed” SUPER are HSISUPER(CMLM)- TESS3-EMMA 
(A, B), HITSUPER(CMLM)-TESS3-EMMA (C, D), PCA1SUPER(CMLM)-TESS3-
EMMA (E, F), HSISUPER(MLM)-PC-EMMA (G, H), HITSUPER(MLM)-PC-EMMA (I, 
J), PCA1SUPER(MLM)-PC-EMMA (K, L), HSISUPER(MLM)-TESS3-EMMA (M, N), 
HITSUPER(MLM)-TESS3-EMMA (O, P), and PCA1SUPER(MLM)-TESS3-EMMA 
(Q, R). Black and green colors highlight different common bean (Pv) chromosomes.

FIGURE S8 | Historical maximum temperature values obtained from the monthly 
averages from years 1970 to 2000. Extraction of information from WorldClim (see 
note B). Map construction was done through a customized R-Script using the 
raster package of R v. 3.6.1 (R Core Team).
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