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Abstract

Background

Most evaluations of epidemic thresholds for influenza have been limited to internal criteria

of the indicator variable. We aimed to initiate discussion on appropriate methods for evalua-

tion and the value of cross-validation in assessing the performance of a candidate indicator

for influenza activity.

Methods

Hospital records of in-patients with a diagnosis of confirmed influenza were extracted from

the Canadian Discharge Abstract Database from 2003 to 2011 and aggregated to weekly

and regional levels, yielding 7 seasons and 4 regions for evaluation (excluding the 2009

pandemic period). An alert created from the weekly time-series of influenza positive labora-

tory tests (FluWatch, Public Health Agency of Canada) was evaluated against influenza-

confirmed hospitalizations on 5 criteria: lead/lag timing; proportion of influenza hospitaliza-

tions covered by the alert period; average length of the influenza alert period; continuity of

the alert period and length of the pre-peak alert period.

Results

Influenza hospitalizations led laboratory positive tests an average of only 1.6 (95% CI: -1.5,

4.7) days. However, the difference in timing exceeded 1 week and was statistically signifi-

cant at the significance level of 0.01 in 5 out of 28 regional seasons. An alert based primarily

on 5% positivity and 15 positive tests produced an average alert period of 16.6 weeks. After

allowing for a reporting delay of 2 weeks, the alert period included 80% of all influenza-con-

firmed hospitalizations. For 20 out of the 28 (71%) seasons, the first alert would have been

signalled at least 3 weeks (in real time) prior to the week with maximum number of influenza

hospitalizations.
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Conclusions

Virological data collected from laboratories was a good indicator of influenza activity with

the resulting alert covering most influenza hospitalizations and providing a reasonable pre-

peak warning at the regional level. Though differences in timing were statistically significant,

neither time-series consistently led the other.

Introduction
Many countries have used thresholds of weekly time series of consultation rates for influenza-
like-illnesses (ILI) to signal the start and end of the period of seasonal influenza activity. The
resulting epidemic period identifies a period where ILI activity is considered in excess of what
is normally expected. However these thresholds are often set based only on visual inspection
[1]. Recently, researchers have evaluated other sources of real time data such as telehealth [2,3],
prescription sales [4] or emergency department visits for specific syndromes commonly associ-
ated with ILI [5,6] for the purpose of signalling an emerging influenza epidemic earlier. Others
have evaluated time series from social media. Google Flu Trends (GFT) is an application that
calibrates the number of web searches for terms associated with ILI to the weekly ILI time series
provided by public health surveillance. Because search queries can be processed quickly, the
resulting ILI estimates were found to be consistently 1–2 weeks ahead of CDC ILI surveillance
reports [7,8]. Time series based on Wikipedia page views have produced similar results [9].

Despite the strong correlations, various issues have been identified. Since the impact of
influenza is highly variable, it is not surprising that re-calibration is necessary for Google Flu
Trends to track ILI consultation rates, or that significant differences between the two time
series were identified [10]. Performance evaluation has often been limited to using proposed
standards, to comparing the proposed alert with the ILI based epidemic period, or to an inter-
nal validation [11–13]. Since the epidemic grows exponentially for many weeks before the first
cases are detected through laboratory testing, or excess morbidity or mortality outcomes are
identifiable [11,14], an alert that signals the emergence of an influenza epidemic before the
excess is observed has considerable utility that may not be apparent using the ILI based epi-
demic period as the gold standard.

With these limitations in mind, we aimed to illustrate the insight provided by the cross-vali-
dation of an alert against public health oriented criteria rather than simply showing correlation
or performing an internal validation. We chose virological data (number and percent of labora-
tory tests positive for influenza) as the candidate indicator variable, as this data appeared to be
the most promising indicator from our national surveillance program, FluWatch [15]. As the
weekly number of influenza-confirmed hospitalizations has been shown to be a good proxy at
the seasonal level for excess morbidity and mortality attributable to influenza [16], we used
weekly influenza-confirmed hospitalizations as the validation dataset. We drew upon a number
of statistical measures to determine whether the two samples arose from the same distribution,
that is, we tested for differences in timing (did laboratory reports or hospital admissions lead
or lag?), and shape of the distribution function (which time series has longer tails, or more
extreme values?). This approach provides a richer description than the correlation and cross-
correlation analyses used elsewhere. Next we aimed to assess the alert period by characteristics
of potential interest to hospital resource management and developed 5 criteria: lead/lag and
other timing differences; proportion of influenza hospitalizations covered by the alert period;
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average length of the influenza alert period; continuity of the alert period; and length of the
pre-peak alert period.

Methods

Sources of data
Hospital discharge records for patients admitted to an acute care hospital with a diagnostic
code of influenza, virus identified (J10) were extracted from the Canadian Institute of Health
Information (CIHI) patient-specific Discharge Abstract Database (DAD) [17] from April 2004
to March 2011, a period when all DAD participating provinces used the International Classifi-
cation of Disease, Tenth Modification (ICD-10) [18] for diagnostic coding. The province of
Quebec does not participate in the DAD, hence the DAD includes approximately 75% of all
acute care hospital separations in Canada. Hospitalizations were aggregated to weekly and
regional levels, yielding 7 seasons (2003/04, 2004/05, 2005/06, 2006/07, 2007/08, 2008/09,
2010/11) and 4 regions (Atlantic Provinces, Ontario, Prairie Provinces, and British Columbia)
for evaluation.

The weekly number of respiratory virus identifications for influenza A and B and other
viruses as well as the number of tests were obtained from the Public Health Agency of Canada’s
FluWatch program [19]. Routine surveillance data is collected for each epidemiological week
and published in a surveillance report within 2 weeks. Seasons were defined regionally from
September to August of the following year. The weekly distribution function was calculated by
dividing the weekly number of events by the seasonal total for each region. The weekly positiv-
ity rate was calculated by dividing the weekly number of influenza positive tests by the weekly
number of tests. The 2009 pandemic period was excluded from the analysis, as laboratory test-
ing initially increased sharply once circulation of a novel strain with pandemic potential was
announced in late April of 2009, and subsequently declined substantially over the pandemic
period.

Statistical Analysis
Lead-lag and other timing differences. To test for differences in the timing of influenza

infections between the two weekly time-series, we performed a two sided t-test using Sat-
terthwaite variance calculation to account for unequal variances for each of the 4 regions and 7
seasons, and reported the mean difference along with Satterthwaite confidence intervals. We
used the Folded F test to test for equality of variance, and the two-sample Kolmogorov-Smir-
nov Test to test for significant differences in the cumulative distribution function (CDF). The
two-sample Kolmogorov–Smirnov test is a nonparametric method for comparing the distribu-
tion of two samples which is sensitive to differences in location (median), spread (parametric
equivalent is the standard deviation) and other shape characteristics such as differences in
skewness or heavier tails. Confidence intervals for the Pearson correlation coefficient were cal-
culated using Fisher’s z transformation. Differences in timing and other differences between
the CDFs were summarized for the 28 seasons. SAS Enterprise Guide 5.1 [20] was used for the
analysis and provides descriptions of these statistics.

The alert and evaluation. The alert was set for week t if at least 15 influenza positive tests
were observed for week t and the corresponding positivity rate was at least 5% (i.e. at least 300
specimens were tested in week t and 15 or 5% or more were positive). At any point in time, the
most current influenza surveillance report is usually available for the period dated 2 weeks ear-
lier. To allow for this delay in reporting and processing, a 2 week operational delay was
assumed. That is, if the first alert was set based on laboratory reports for week 1, we assumed
that the alert would be announced early in week 3, and preparations could begin in week 3. As
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gaps were more likely to occur at the beginning or end of the alert period when numbers were
small, we waited one week before turning the alert off in order to improve the continuity of the
alert period. The influenza hospitalizations for week t+2 (date of admission) were considered
to be included in the alert period if the alert was set based on the virological data for week t or
t-1. The length of the alert period is the time from the first to last alerted week (including any
gaps). The length of the pre-peak period was calculated from the presumed week of first
announcement (week of the first alert +2) to the week with the seasonal maximum number of
hospitalizations by week of admission. All statistics were calculated based on the alert status as
would have been reported in the most recent surveillance report available at the time of hospi-
talization. As well, the alerted weeks flagged in Figs 1–6 were adjusted for this 2 week opera-
tional delay. The first and last alerted weeks do not necessarily correspond to the beginning
and end of the epidemic period as generally defined elsewhere to be periods in excess of what is
normally expected (usually in reference to ILI surveillance). In using virological data for the
alert, the ultimate objective is to provide some advanced warning of an emerging epidemic
prior to observing an excess case load.

Ethics Statement
This study was conducted in accordance with the principles expressed in the Declaration of
Helsinki. Data provided to the Public Health Agency of Canada were collected under the Public
Health Agency of Canada Act and were used in agreement with policy and regulations related
to the publication of information related to public health. Identifying information was not
available to this study. Hence, ethics approval was not required.

Results
Over the study period, there were 11,070 influenza hospitalizations and 52,715 influenza posi-
tive test reports of which 12,550 (24%) were for influenza B. The ratio of positive tests to admis-
sions was 4.8:1. As an influenza diagnosis could have been based on a point of care test, or
more than one laboratory test could be associated with one admission, the exact relationship
between the number of weekly influenza positive tests reported to FluWatch by laboratories
and the number of patients admitted to hospital with a confirmed influenza diagnosis is not
known.

Lead-lag and other timing differences
Overall, influenza hospitalizations led laboratory positive tests an average of only 1.6 (95% CI:
-1.5, 4.7) days. Though the average difference was not statistically significant, the difference in
timing was statistically significant at the significance level of 0.01 in 8 out of 28 epidemic season
and this difference exceeded 1 week in 5 seasons. After accounting for multiple comparisons,
this level of detection remains highly significant (p-value<0.0001). The estimated variance was
higher for hospitalizations than for influenza positive tests in all 28 periods analyzed, and sta-
tistically significant in most. The Two Sample Kolmogorov-Smirnov Test was significant at the
significance level of 0.01 in 10 out of 28 of the periods analyzed (Table 1). From the perspective
of public health, there was very close agreement in the weekly distribution of influenza positive
tests and the number of patients admitted to hospital with influenza, though, the distribution
of hospital admissions was spread over a slightly longer period, i.e. the tails of the distribution
were noticeably longer. The comparison of two weekly indicators of influenza activity over one
season often identified distinct and statistically significant differences, similar to differences
previously observed between geographically adjacent population centers [21].
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Fig 1. a) Weekly number of influenza positive tests and influenza admissions to hospital for Ontario,
2003/04 season. A novel virus, A⁄Fujian⁄411⁄02 accounted for 95% of the isolates characterized in the
2003/04 season. Alerts based on the 5% positivity rule with 15 positive tests with an adjustment for
the 2 week operational delay are indicated against the influenza hospitalization time series as a solid
diamond. For example, the alert was first set based on virological data for the week of November 16,
with the alert period starting 2 weeks later (week of Nov 30), or 3 weeks before the peak in influenza
hospitalizations (week of Dec 21). b) Corresponding cumulative distribution functions (CDF).Hospital
admissions led by an average of only 1 day. Despite the close alignment during the period peak influenza
activity, a comparison of the CDF highlights differences in other measures of shape.

doi:10.1371/journal.pone.0141776.g001
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External validation of the Alert
On average, 80% of hospitalizations were covered by the regional alert period adjusted for a 2
week operational delay. The average length of the alert period was 16 weeks and a gap in the
alert period occurred twice. For the 2003/04 A/Fujian/411⁄02 (H3N2) season when a single

Fig 2. a) Weekly number of influenza positive tests and influenza admissions to hospital for the
Atlantic region, 2003/04 season. b) Corresponding cumulative distribution functions (CDF). The two
time series are in fair agreement with a correlation coefficient (r) of 0.55 (95%CI: 0.33, 0.72). Hospital
admissions led by an average of 6 days. Still, the proposed alert covering 11 weeks included 77% of the
admissions. An earlier alert would have been more helpful as admissions for the first week of the alert period
were already close to the maximum, and the pre-peak alert period is 2 weeks.

doi:10.1371/journal.pone.0141776.g002
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strain accounted for 95% of the influenza viral identifications, the average alert period was 12.8
weeks. More recently, at least two strains circulated in significant numbers each season, which

Fig 3. a) Weekly number of influenza positive tests and influenza admissions to hospital for the
Prairies region, 2003/04 season. b) Corresponding cumulative distribution functions (CDF). The two
time series are in close agreement with a correlation coefficient (r) of 0.97 (95%CI: 0.94, 0.98). However,
influenza hospital admissions continued for many months after the epidemic subsided in this region, and the
impact of these later admissions is highlighted by the CDF comparison. As a result, the average date of
hospital admissions lagged influenza positive tests by an average of 12 days. This season is of interest due
to the early epidemic peak (week of Nov 9, 2003). The pre-peak alert period is 4 weeks (the first alert was set
based on laboratory data for the week of Sept 28, with the alert period starting operationally in the week of Oct
12), well ahead of peak influenza activity for the region, thereby providing significant advanced warning at a
key time.

doi:10.1371/journal.pone.0141776.g003
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accounts for the longer alert period. Coverage rates were lowest in jurisdictions and seasons
with a smaller number of influenza positive tests (Table 2). For 20 out of the 28 (71%) seasons,
the first alert was signalled at least 3 weeks in real time prior to the week with the maximum
number of influenza hospital admissions.

Fig 4. a) Weekly number of influenza positive tests and influenza admissions to hospital for the
Prairies region, 2004/05 season. b) Corresponding cumulative distribution functions (CDF). The two
time series are in fair agreement with a correlation coefficient (r) of 0.80 (95%CI: 0.67, 0.88). Hospital
admissions led influenza positive tests by an average of 4 days (95%CI: -2.0, 9.9) though this difference was
not statistical significant. The proposed alert covered 18 weeks and included 78% of the admissions. Again
the viral identification data is more concentrated during periods of peak influenza activity than influenza
hospitalizations.

doi:10.1371/journal.pone.0141776.g004
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For selected seasons, the weekly distribution of influenza-confirmed hospitalizations and
influenza positive laboratory tests are shown in Figs 1 through 6 with the alerted weeks marked
with a solid diamond. Note that the alerted weeks were adjusted for a 2 week operational delay
to reflect the most recent alert status available during the corresponding week of admission to

Fig 5. a) Weekly number of influenza positive tests and influenza admissions to hospital for the
Ontario, 2007/08 season. b) Corresponding cumulative distribution functions (CDF).Considering that
42% of viral isolates were influenza B, the two time series are in close agreement with a correlation coefficient
(r) of 0.95 (95%CI: 0.92, 0.97). As a result of multiple circulating strains, the alert was triggered 15 weeks
before peak influenza admissions and remained on for 25 weeks. Influenza A (A/Solomon Islands/03/2006
(H1N1)) was responsible for the initial increase in hospitalizations in January with A/Brisbane/10/2007
(H3N2) and B strain (B/Florida/4/2006 (belonging to the B/Yamagata lineage)) circulating in late spring.

doi:10.1371/journal.pone.0141776.g005
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hospital. The time series used to set the weekly alerts (the weekly number and percent of labo-
ratory tests positive for influenza) are not shown. The accompanying CDF plots illustrate the
cumulative differences in timing over the full season that form the basis of the Two-Sample
Kolmogorov-Smirnov Test. Examples were selected primarily from the two regions with the

Fig 6. a) Weekly number of influenza positive tests and influenza admissions to hospital for the
Ontario, 2010/11 season. b) Corresponding cumulative distribution functions (CDF). In this example,
influenza admissions peaked in the last week of 2010 and first week of 2011, a time when resource planning
can be more critical. The alert set based on laboratory data for the week of Nov 21 and available operationally
the week of Dec 5, would have provided a 3 week notice of peak influenza activity.

doi:10.1371/journal.pone.0141776.g006
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Table 1. Average Differences in Timing between theWeek of Hospital Admission with Influenza and Report of Laboratory Confirmation of Influ-
enza in Specimens Sent for Testing.

Region Season Average Date
of Hospital
Admission

Average Date
of Influenza
Positive Test

Report

Difference
in Days1

95%CI F: Ratio of
Variances

P-value (F):
Equal

Variances

t-value of
Difference:
Unequal
Variance

p-value
(t-test)

p-
value
KS

Atlantic 2003/
2004

1-Jan-04 8-Jan-04 -6 (-13.9,
1.8)

4.31 < .0001 -1.54 0.1269 < .0001

Atlantic 2004/
2005

9-Feb-05 9-Feb-05 -1 (-6.8,
5.6)

3.47 < .0001 -0.18 0.8557 0.0147

Atlantic 2005/
2006

7-Mar-06 4-Apr-06 -28 (-46.6,
-8.5)

8.25 < .0001 -2.90 0.0054 0.0453

Atlantic 2006/
2007

4-Mar-07 8-Mar-07 -4 (-11.1,
3.7)

2.40 < .0001 -0.99 0.3221 0.0117

Atlantic 2007/
2008

21-Mar-08 19-Mar-08 2 (-6.2,
10.3)

1.57 0.004 0.50 0.6188 0.3803

Atlantic 2008/
2009

15-Feb-09 1-Mar-09 -15 (-24.2,
-5.1)

2.64 < .0001 -3.07 0.0031 0.0384

Atlantic 2010/
2011

28-Feb-11 1-Mar-11 -1 (-5.7,
3.3)

1.80 < .0001 -0.52 0.6064 0.5304

Ontario 2003/
2004

23-Dec-03 24-Dec-03 -1 (-2.6,
1.3)

2.35 < .0001 -0.65 0.5154 < .0001

Ontario 2004/
2005

17-Feb-05 23-Feb-05 -7 (-8.9,
-4.6)

1.39 < .0001 -6.17 < .0001 < .0001

Ontario 2005/
2006

14-Mar-06 18-Mar-06 -5 (-8.8,
-0.6)

2.34 < .0001 -2.26 0.0241 0.1179

Ontario 2006/
2007

6-Feb-07 13-Feb-07 -7 (-10.9,
-3.8)

1.91 < .0001 -4.10 < .0001 < .0001

Ontario 2007/
2008

11-Mar-08 14-Mar-08 -3 (-6.6,
0.5)

1.36 < .0001 -1.70 0.0900 0.0066

Ontario 2008/
2009

15-Feb-09 21-Feb-09 -6 (-9.2,
-1.9)

1.65 < .0001 -2.95 0.0033 0.0428

Ontario 2010/
2011

19-Jan-11 21-Jan-11 -3 (-4.5,
-0.8)

1.27 < .0001 -2.80 0.0052 < .0001

Prairies 2003/
2004

27-Nov-03 15-Nov-03 12 (7.5,
17.3)

3.86 < .0001 4.98 < .0001 < .0001

Prairies 2004/
2005

30-Jan-05 3-Feb-05 -4 (-9.9,
2.0)

2.31 < .0001 -1.31 0.1896 < .0001

Prairies 2005/
2006

1-Mar-06 21-Feb-06 8 (1.8,
14.4)

2.41 < .0001 2.51 0.0125 0.0596

Prairies 2006/
2007

14-Feb-07 31-Jan-07 14 (5.8,
22.6)

1.90 < .0001 3.33 0.0010 0.0034

Prairies 2007/
2008

18-Feb-08 19-Feb-08 -1 (-6.4,
5.2)

2.29 < .0001 -0.20 0.8401 0.0197

Prairies 2008/
2009

24-Feb-09 28-Feb-09 -4 (-9.6,
1.4)

1.39 0.001 -1.48 0.1406 0.5808

Prairies 2010/
2011

19-Feb-11 14-Feb-11 5 (0.3,
9.0)

1.15 0.043 2.08 0.0377 0.3136

BC 2003/
2004

16-Dec-03 12-Dec-03 4 (-3.1,
11.6)

1.78 < .0001 1.14 0.2544 0.2350

BC 2004/
2005

31-Jan-05 30-Jan-05 1 (-13.2,
15.3)

2.29 < .0001 0.15 0.8840 0.0326

BC 2005/
2006

15-Feb-06 11-Feb-06 5 (-5.7,
15.2)

1.96 < .0001 0.91 0.3668 0.0004

BC 2006/
2007

17-Feb-07 15-Feb-07 2 (-8.5,
11.5)

2.37 < .0001 0.30 0.7658 0.5543

(Continued)
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highest number of influenza positive tests, as with a larger sample size visual differences were
more likely to correspond to statistically significant differences.

In the 2003/04 season a novel strain (A⁄Fujian⁄411⁄02) emerged to dominate the season (Fig
1). Agreement was good between the two curves. The alert was first set based on virological
data for the week of Nov 16, and available for planning 2 weeks later (week of Nov 30), or 3
weeks before the peak in influenza hospitalizations (week of Dec 21). In Fig 2, the correlation
between curves was poorer (r = 0.55), though coverage was still good (77%). However, the alert
status was on for only 2 weeks in real time before the peak in influenza hospitalizations. In the
2003/04 season, the A⁄Fujian⁄411⁄02 strain emerged very early in the season in the Prairies (Fig
3). An unusually long tail for hospitalizations resulted in an estimated average lag of 12 days
(95% CI: 7.5, 17.3), though the epidemic midpoint (CDF = 50%) occurred in the week of Nov 9
for both time-series. A pre-peak alert period of 4 weeks (set based on laboratory data for the
week of Sept 28, and reportable in the week of Oct 12), would have provided significant
advanced warning. Fig 4 illustrates the variation corresponding to a mixed season (A/Fujian/
411/2002(H3N2) and A/California/7/2004) with two separate peaks. The alert period was long
(18 weeks), though the pre-peak warning was short (2 weeks). Fig 5 is an example of a season
where two influenza A strains (A/Solomon Islands/03/2006(H1N1) followed by A/Brisbane/
10/2007 (H3N2)) and a B strain (B/Florida/4/2006, B/Yamagata lineage) circulated. The epi-
demic curves are very similar (r = 0.95), however the pre-peak alert period was 15 weeks. Fig 6
is an example where peak influenza activity occurred over the last week of December and first
week of January, a time when advanced warning would be helpful for resource planning in the
hospital setting. In this example, the alert provided a 3 week pre-peak warning period.

Interpretation
This study shows that there was close agreement in the timing of the two indicators of influ-
enza activity at the regional level: the number of laboratory tests reported positive for influenza
and the number of admissions to hospital with a confirmed influenza diagnosis based on date
of test and date of admission. Though there was no evidence that one indicator consistently led
the other, subtle differences in timing were identified. Laboratory positive tests were slightly
but significantly more concentrated during periods of peak activity, while a slightly higher pro-
portion of hospitalizations occurred outside the peak period, as seen by the longer tails in the

Table 1. (Continued)

Region Season Average Date
of Hospital
Admission

Average Date
of Influenza
Positive Test

Report

Difference
in Days1

95%CI F: Ratio of
Variances

P-value (F):
Equal

Variances

t-value of
Difference:
Unequal
Variance

p-value
(t-test)

p-
value
KS

BC 2007/
2008

14-Feb-08 20-Feb-08 -5 (-14.7,
4.0)

2.19 < .0001 -1.14 0.2576 0.0112

BC 2008/
2009

18-Feb-09 21-Feb-09 -3 (-11.1,
5.1)

2.15 < .0001 -0.73 0.4643 0.6505

BC 2010/
2011

20-Feb-11 15-Feb-11 5 (-2.7,
11.8)

1.75 < .0001 1.23 0.2196 0.2732

Average -1.6 (-4.7,
1.5)

1 A positive difference indicates that the virological results led hospitalizations.

doi:10.1371/journal.pone.0141776.t001
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distribution figures. It is possible that viral testing is less frequent when influenza activity is
low.

Also surprising was the large number of epidemic curve comparisons for which either the
laboratory or hospitalization data led the other time series by more than 1 week. In some cases
this difference could be attributed to the longer tail in the hospitalization data when the epi-
demic peaked early in the season (Fig 3). In this example the epidemic midpoint offered a more
robust measure of lead/lag differences during the period of peak activity. Differences in testing
frequencies and procedures between hospitals, clinical practices and health regions, as well as

Table 2. Alert Characteristics.

Region Influenza
Season

% of Influenza
Hospitalizations Covered

by the Alert Period

# of
Weeks
Alerted

% Influenza
B Isolates

Annual # of
Influenza

Positive Tests

Annual # of Influenza
Confirmed

Hospitalizations

# Weeks from 1st Alert
to Peak

Hospitalizations1

Atlantic 2003/04 77.0% 11 1.8% 767 122 2

Atlantic 2004/05 60.4% 10 4.4% 885 182 0

Atlantic 2005/06 68.5% 14 66.1% 454 54 4

Atlantic 2006/07 64.6% 12 3.9% 623 96 1

Atlantic 2007/08 89.6% 16 58.8% 775 77 7

Atlantic 2008/09 69.2% 11 29.3% 598 65 2

Atlantic 2010/11 85.2% 17 8.6% 1,652 291 3

Ontario 2003/04 87.2% 13 1.1% 3,729 1226 3

Ontario 2004/05 90.6% 19 28.0% 3,874 1301 6

Ontario 2005/06 83.5% 17 48.3% 1,962 424 2

Ontario 2006/07 86.4% 19 1.9% 2,432 632 6

Ontario 2007/08 93.1% 25 42.0% 4,317 806 15

Ontario 2008/09 89.3% 16 53.9% 2,431 413 7

Ontario 2010/11 94.3% 22 11.0% 7,750 1982 3

Prairies 2003/04 80.3% 15 0.2% 2,409 578 4

Prairies 2004/05 77.7% 18 14.5% 1,802 381 2

Prairies 2005/06 82.3% 20 44.0% 2,093 334 6

Prairies 2006/07 69.4% 17 3.5% 1,598 219 8

Prairies 2007/08 79.4% 18 48.2% 2,708 345 6

Prairies 2008/09 86.4% 13 32.7% 1,631 206 7

Prairies 2010/11 93.5% 24 32.8% 2,861 490 13

BC 2003/04 74.0% 12 0.2% 814 150 2

BC 2004/05 55.7% 13 11.4% 579 97 1

BC 2005/06 77.2% 19 42.9% 772 92 10

BC 2006/07 70.2% 12 6.1% 653 94 4

BC 2007/08 82.3% 21 44.7% 1,066 113 7

BC 2008/09 84.2% 14 23.5% 820 120 3

BC 2010/11 81.1% 15 27.4% 660 180 8

Average 79.7% 16.2 24.7% 1883 395 5

Average of 2003/04
Season2

79.6% 12.8 0.8% 1930 519 3

Notes
1 After accounting for a 2 week operational delay. In 12 out the 28 regional seasons, the alert should have been available at least 3 weeks before the peak

in influenza hospitalizations.
2 A novel strain (A⁄Fujian⁄411⁄02) emerged in the 2003/04 season and dominated the season. Prompt alerts that are provided before the peak are more

crucial in seasons when a single strain dominates. The alert period will be shorter when a single strain circulates.

doi:10.1371/journal.pone.0141776.t002
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differences of a couple of weeks in the timing of peak activity within the region [21] could
explain the irregular differences in timing.

An alert based on 5% positivity of laboratory tests and 15 positive tests provided good cover-
age of influenza-confirmed hospital admissions and a reasonable warning period in the 2003/
04 season when the epidemic emerged very early and a single strain dominated. Increasing the
threshold to 15% positivity reduced the average length of the alert period only slightly by 1 to 2
weeks and coverage from 80% to 75%. However, a reduction in the pre-peak warning period of
1 to 2 weeks could have a more significant impact on operations.

The threshold of 15 positive tests in one week is expected to be reached 5 weeks (3 weeks in
real time) before the peak/epidemic midpoint in 90% of seasons if at least 800 positive tests are
reported annually for the strain responsible for the peak. This estimate is based on previous
estimates of the shape of the empirical epidemic curve [14] (the week five weeks before the epi-
demic midpoint accounted for approximately 2.5% of annual tests during seasons with a single
dominant strain). As the number of positive tests nearly doubled from one week to the next
during the exponential growth phase, reducing or increasing the threshold by a factor of two
should advance or delay the start of the alert period by 1 week. However, small numbers of pos-
itive tests may represent clusters (from an institutional outbreak), and evidence of over-disper-
sion in influenza data is common. Though regions with fewer influenza confirmations could
use a lower threshold, this would increase the risk of setting the alert very early based on strains
circulating in the pre-epidemic period.

Comparison with other studies
Despite numerous approaches to identify periods of influenza activity, thresholds are still usu-
ally set based on visual inspection. Even approaches based on complex statistical techniques
usually require some pre-determined threshold to be nominated, again often by inspection [1].
A recent Delphi study used expert opinion (ie, visual inspection) to provide ground truth for
algorithmic research [22]. In this study the focus was on identifying an alert that would provide
some warning in real time prior to the epidemic peak for resource planning purposes and one
that would include a large proportion of all confirmed influenza hospitalizations to be used, for
example, to determine the period of empirical anti-viral treatment, as appropriate [23,24]. Not-
ing that the onset of the influenza activity usually goes undetected for many weeks before the
number of influenza cases is sufficiently large to be detected through methods used to identify
excess morbidity or mortality or via laboratory testing, Cowling and colleagues [11] identified
a similar objective of quickly generating an alarm before the start of the peak season.

Following the success of Google Flu Trends in identifying a leading indicator for weekly ILI
consultation rates, a number of studies have shown strong correlations between various time-
series based on other administrative data or social media and conclude that results are promis-
ing [5]. However, others have noted that the degree of correlation was highly variable among
regions [2,6]. Our results agree more strongly with the latter conclusion.

Olson and colleagues used clinical ILI surveillance data as ground truth to assess the GFT
estimates. However, despite observing strong correlations, they also identified substantial dif-
ferences between the two weekly time series and concluded that search query data was no sub-
stitute for timely clinical or laboratory surveillance data [10]. As confirmed in our recent study
of emergency department visits [25], it seems inappropriate to treat ILI surveillance as the
ground truth for influenza activity when virological time-series are available. Ortiz and col-
leagues [26] also noted that GFT was more closely correlated with ILI consultation rates than
laboratory-confirmed influenza and hence concluded that of the three time series, virologic
surveillance is the most critical to the understanding of influenza activity.
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Studies that have used the lag with maximum cross-correlation have found considerable
variation in the estimates of timeliness of peak influenza activity for different data sources [3].
Our study confirms that some differences in timing, which could be due to a lack of geography
representativeness [21], likely exist, though any noted differences are not likely to be reproduc-
ible. Since the difference between the maximum and the second largest cross-correlation coeffi-
cient was often not statistically significant, our recommendations for assessing differences in
lead/lag timing of periods of peak influenza activity is to use differences in the average date of
infection or, preferably, the epidemic midpoint, as the average is more sensitive to differences
in the off-season (or tails of the distribution).

Ginsberg and colleagues noted that Google web search queries could produce ILI estimates
that were consistently 1–2 weeks ahead of CDC ILI surveillance reports because search query
data could be processed quickly [7]. As the time from symptom onset to hospital admission
averaged 4 days during the 2009 pandemic [27], and positive findings are less likely in persons
presenting for medical care more than a week after symptom onset [28], it appears unlikely
that secondary data sources could be found that would consistently lead the influenza epidemic
by more than the reporting and operational delay of 1–2 weeks. There are a few possible excep-
tions that we have noted elsewhere: though lead/lag times between adjacent health regions
have not been consistent, the Atlantic region in Canada has shown a tendency to lag other
regions in Canada and the United States [21]; and influenza infections in persons aged 15–19
and 20–24 years have been shown to lead other age groups by up to 1 week [29]. As this age
group is more web savvy, web-based participatory surveillance projects [30] may be able to tap
into this lead group. Because of the high baseline level for self-reports of influenza symptoms
[31], it is unlikely that the age-specific alert based on self-reports of ILI would be triggered ear-
lier, however, youth reports may be used to signal the timing of peak activity, or more specifi-
cally the end of exponential growth phase in the general population.

Reich and colleagues [32] is the only other study we are aware of to use similar operational
performance criteria. They illustrated that alerts based on influenza-confirmed hospitalizations
could be set at the hospital level, with thresholds in the range of 3 to 5 hospitalizations or
approximately 2.5% of the annual total. Immediate access to hospital data would increase the
timeliness by 1 week, though the small numbers would increase random variation. A threshold
of 5 positive tests is too small for virological data from the general population as tests associated
with an institutional outbreak in the pre-epidemic period or other sources of clustering could
trigger an early alert. The regional and local (hospital) approaches are complimentary, and in
both cases, preparations for a surge in influenza cases would have to start based on a relatively
small case load.

Limitations
We used historical data on confirmed influenza hospitalizations to assess the performance of
an alert base on 5% positivity and at least 15 positive tests in one week at the regional level as
an indicator of influenza activity. This assessment has a number of limitations. Confirmation
of an influenza infection either through laboratory or point of care testing is still limited, so
that the alert was set at a regional level–a geographic scale that is at times too large to ensure
synchronicity within each region [21]. Since the relationship between laboratory tests and the
burden of disease (influenza-attributed hospitalizations, for example) may vary from season to
season [25], the number of laboratory confirmations is not a direct measure of the disease bur-
den. However, as the number of confirmed influenza hospitalizations is only a fraction of all
hospitalizations attributable to influenza [16,33] and only a small proportion of emergency
department visits attributed to an influenza infection were given an ILI diagnosis [25], direct
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measures of the disease burden are not available. Though an indirect measure, regression mod-
els have been successful in estimating the annual burden attributable to influenza [16]. Though
we did not compare the alert period generated by the virological data head-to-head with weekly
ILI surveillance data due to data limitations, viral identifications would still be considered the
gold standard to assess whether any excess in ILI consultations is likely due to influenza. We
did not provide confidence intervals for many of the summary measures, such as the expected
coverage rate associated with this threshold rule, as the characteristics of each season are highly
variable and it is unclear to what extent the results can be generalized to future seasons.

Conclusions
In summary, virological data for four regions in Canada provided a reasonable pre-peak warn-
ing and indicated the period of influenza activity that covered most influenza hospitalizations.
There is no consensus on a gold standard to define the period of influenza activity, and it
seems unlikely that there will ever be one. More likely, the influenza indicator will be used in
conjunction with the specific resource data in question, and the pre-peak alert will be used by
health care resource managers as a reminder to monitor resources more closely especially over
the next couple of weeks. Alerts based on more complex time-series, such as ILI consultations,
may provide reasonable performance; however, cross-validation is required to assess any per-
formance advantages over virological data. This evaluation approach should be adaptable to
alerts based on other surveillance time series, or the criteria could be modified to suit specific
resource management issues. It is, however, important to conduct the performance evaluate
over many epidemics, especially when evaluating lead time differences, as each epidemic is a
unique mix of multiple strains of varying timing and severity.
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