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The field of computer modeling and simulation of biological systems is rapidly

advancing, backed by significant progress in the fields of experimentation

techniques, computer hardware, and programming software. The result of a

simulation may be delivered in several ways, from numerical results, through

graphs of the simulated run, to a visualization of the simulation. The vision of an

in-silico experiment mimicking an in-vitro or in-vivo experiment as it is viewed

under a microscope is appealing but technically demanding and computationally

intensive. Here, we report “Cell Studio,” a generic, hybrid platform to simulate an

immune microenvironment with biological and biophysical rules. We use game

engines—generic programs for game creation which offer ready-made assets and

tools—to create a visualized, interactive 3D simulation. We also utilize a scalable

architecture that delegates the computational load to a server. The user may view

the simulation, move the “camera” around, stop, fast-forward, and rewind it and

inject soluble molecules into the extracellular medium at any point in time. During

simulation, graphs are created in real time for a broad view of system-wide pro-

cesses. The model is parametrized using a user-friendly Graphical User Interface

(GUI). We show a simple validation simulation and compare its results with those

from a “classical” simulation, validated against a “wet” experiment. We believe

that interactive, real-time 3D visualization may aid in generating insights from the

model and encourage intuition about the immunological scenario. VC 2018
Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1063/1.5039473

INTRODUCTION

Computer models aim to incorporate multi-scale biological data into comprehensive,

dynamic computer software that simulates a biological system. Such models may help in under-

standing and even predicting the outcome of the modeled biological processes.1–4 Advance in
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computer modeling is fueled by both advance in biological experimentation techniques (the so-

called “-omics”)5—which significantly increase the amount of data acquired in a given experi-

ment—and advance in computer hardware technology—which boosts the resources available to

the modeler. Biological models are at the core of Systems Biology, a novel approach to analyz-

ing biological systems as a dynamic whole, which may overcome some of the limitations posed

by more reductionist approaches.2,6–8

APPROACHES TO BIOLOGICAL MODELING

Biological modeling paradigms can be roughly associated with one of the two main catego-

ries: mathematical modeling and computational modeling. Mathematical models use mathemati-

cal tools, most commonly differential equations, to calculate dynamic relationships between

bulk quantities.9,10 In contrast, computational models use computer algorithms to describe a

system, frequently depicting each entity separately.6,9

Such is Agent-Based Modeling (ABM), a modeling paradigm which attempts to break

down a system into its comprising entities, treating each of them as a separate agent, capable

of making its own “decisions,” based on its local environment.11,12 Biological models may con-

centrate on different biological scales, from single molecules, through the cellular scale, to the

entire organism. “Middle–out” biological simulations, which introduce the cell as the basic unit

of function, are naturally well suited to ABM.5,10 This paradigm enables the assignment of

known cellular characteristics to each cell-agent, without the need to assert the systemic impact

of cell-cell and cell-lattice interactions. Thus, data obtained from biological experiments, which

are otherwise hard to grasp due to their size and level of detail, are incorporated into a model

and simulated to be analyzed at the system level. The discrete nature of the simulation makes it

possible to track individual cells and follow populations, to observe how mesoscopic entities’

actions and interactions lead to macro-level events—a phenomenon referred to as emergent

behavior.9,11,13 A middle-out, cellular-level model may later be extended “down” and “up”—

either by adding intra-cellular mechanisms (e.g., signaling pathways) or by adding macroscopic

phenomena, at the organ- or entire body-level, respectively, thus creating a multiscale model.5

CURRENTLY AVAILABLE FRAMEWORKS

In recent years, several teams have built general purpose simulation systems, software

frameworks that offer basic tools that should serve as building blocks to allow researchers to

create an ad-hoc simulation for a particular biological case. These simulation systems can be

classified, apart from their aforementioned modeling paradigm, by their modelled biological

scale: from the intracellular level to the complete organism level. Intracellular scale simulations

model different phenomena occurring inside a cell or on its surface, concentrating on a single

cell per simulation run. Standout examples of intracellular, general purpose systems are Virtual

Cell,14,15 BIOCHAM,16 BioNetGen,17 Cellular Dynamic Simulator (CDS),18 Smoldyn,19,20 and

COPASI,21 which simulate different intracellular processes using different modeling paradigms.

Some systems listed above may be used either standalone or incorporated into other systems

(e.g., Virtual Cell incorporates Smoldyn and COPASI) to serve as an algorithmic solution for a

certain component in the process. For further information, we refer to the reader to reviews of

such systems.22,23

Cellular level simulation systems model the mesoscopic scale—cells and extracellular

matrix, often along with the extracellular fluid and soluble molecules. These systems commonly

adopt the ABM paradigm for its natural fit to modelling cells. Using ABM facilitates both the

development of the modeling system—since Object Oriented Programming, the software archi-

tecture equivalent to agent-based modeling, is a prominent software engineering pattern—and

the researcher’s work of creating the model—since assigning properties and abilities to each

cell population separately emulates the biological study process more closely. In addition, this

modeling method may alleviate the need for advanced mathematical or algorithmic knowledge

required to create a model.24–27
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Examples of cellular level, agent based, general purpose simulation systems include the

Multiscale Systems Immunology Project (MSI),28 EPISIM,29,30 LINDSAY,31 SimuLife,32

FLAME,33–35 Simmune,36,37 C-ImmSim,38 and CellSys.39 Also mentionable is

Compucell3D,40,41 a prominent, non-agent-based, biological simulation system. See Table I for

a concise comparison of these systems. There are also projects with the stated strategy of com-

bining several simulation systems into one framework, using a shared specification, such as

Multiscale Modelling and Simulation Framework (MMSF)42 and Fully integrated Immune

Response Model (FIRM).43 Reviewing these systems in depth is outside the scope of this arti-

cle, and we refer the reader to the individual articles referenced or to detailed reviews of these

systems in Refs. 13 and 44.

As can be seen in Table I, these systems differ in several key aspects, among them: simula-

tion scale, modeling paradigm (using a single modeling approach or a “hybrid” of several para-

digms), inclusion of the extracellular medium along with biophysics of soluble molecules, their

visualization capabilities (real-time or otherwise), the level of in-simulation interactivity, and

their use of different algorithmic measures for scalability and performance enhancement. These

differences were central in our decision to build a new system which attempts to combine some

of these systems’ abilities while emphasizing the important aspect of real-time, 3D, interactive

visualization of a simulation, and its scalability, using game engine technology.

COMPUTER MODELING TOOLS

The video game industry has seen a steady growth in recent years—particularly thanks to a

surge in mobile gaming46—and with it, the need for high quality game engines. Game engines

are programs that provide tools and assets that facilitate and expedite game development, which

include in part: a scripting environment, network capabilities, a physics engine, a rendering

engine, and an extensive IDE (Integrated Development Environment) for centralized control of

the development process. Using game engines for uses other than game creation (e.g., architec-

ture, medical, etc.) is referred to as “serious games.”47,48

A great challenge of modeling the immune system is dealing with the vast number and a

large variety of entities to model, while running the simulation on a single Central Processing

Unit (CPU) computer, a standard desktop client. There are several approaches for pushing the

computational power beyond what is made available in a single processor: (a) repurposing the

GPU for parallelization of trivial non-graphical calculation35,49 (the GPU is built for tasks of

different nature from CPU, making it better equipped to handle many simple calculations in

parallel), (b) parallelizing the simulation over several threads, using multicore CPUs,18,31,42,50

and (c) using a client-server architecture, delegating heavy duty calculations to the “server”

while assigning simpler, mainly visualization-oriented tasks to the client,32 thereby removing

the requirement for an expensive, high performance computer from the end-user.

In this work, we describe “Cell Studio” (available for download at www.cellstudio.info,

currently only for the Windows OS), a general-purpose, multi-paradigm (“hybrid”) framework

to simulate and visualize an immune microenvironment in real-time 3D, while allowing interac-

tion with the simulation during the run [moving the camera freely, controlling the timeline

(including to rewind the simulation), injecting soluble molecules into the medium, etc.]. We

deploy a client-server architecture, using the Unity3D game engine at the client side and a scal-

able Cþþ algorithm at the server side, using the GPU to accelerate certain (non-graphical)

processes. We offer an intuitive graphical user interface (GUI) for parameter initialization at

the beginning of the modeling process. A “batch mode” is available, enabling the user to run

many simulations continuously with a textual output instead of visualization.

We refer here to a hybrid model in two functions: (a) it combines discrete and continuous

forms of calculation10 and (b) it combines an agent-based simulation of independent simulation

entities (e.g., cells) with functional programming for describing the medium (e.g., soluble mole-

cule diffusion).

Combining the concept of agent based modelling with strong visualization capabilities is

known to assist biologists (and other “domain experts”) with little formal training in advanced
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TABLE I. A comparison of frameworks for biological modeling and simulation that include modeling of the cellular level. It should be noted that newer versions of the surveyed software may contain

features that are not mentioned in this table.

Name of systems Biological scale Paradigm Medium

Visualization

capabilities

Real-time

interactivity Features for scalability

MSI28 Multiscale-cellular and

intracellular

Agent-based Yes Non-real-time 3D None Parallelization

EPISIM29,30 Multiscale-cellular and intracel-

lular using COPASI

Multi paradigm No Real-time 2D and 3D Simulation param-

eter control

Parallelization

LINDSAY31 Cellular Agent-based No Real-time 3D

visualization

Moving camera,

simulation param-

eter control

Distributed computing

SimuLife32 Cellular “Reactive animation” Yes Real-time 3D Moving camera,

simulation param-

eter control

Client–server architecture

on web

FLAME-GPU33–35 Cellular, subcellular if linked to

COPASI

Agent-based No, but can be

linked to other

simulators to

enable a medium

3D visualization In later versions GPU used for non-

graphical tasks

Simmune36,37 Multiscale Multi-paradigm–agent based, 3D

grid

Yes Non-graphical output

of data

No No

C-ImmSim38 Multiscale–cellular and

intracellular

Agent-based Yes Non-graphical output

of data

No No, but following system

“ImmunoGrid” uses grid

technologies for

scalability45

CellSys39 Cellular Agent-based Yes Real-time 3D with

medium field

visualization

No Parallelization using

OpenMP

Compucell3D40 Cellular Cellular Potts model (CPM) or

lattice-based

Glazier–Graner–Hogeweg

(GGH)

Yes Real-time 3D No Parallelization using

OpenMP
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mathematical or computer algorithms to use a simulation system.15,24,27,31,32 Our main goal in

creating this framework is to use the tools offered by game engines to overcome challenges in

interactive, real-time 3D visualization and create a system that is user-friendly and

approachable.

RESULTS

Parameter initialization

Each cell is an agent in the simulation and has properties that are saved in its object class.

A cell object is not characterized by an explicit “state” but only by its physical and biophysical

properties, and so, all cells are theoretically able to undergo all events. Thus, a cell’s implicit

immunological “state” is inherently inferred from its properties. For example, once a T-cell

expresses the CD4 receptor, it is by definition regarded as a helper T-cell, but properties dic-

tated by this phenotype must still be explicitly defined. Configurable properties for each cell

population include the amount and velocity of cells in population, the population’s spatial dis-

tribution, and the composition of its membranal proteins. Per each membranal protein (e.g.,

receptor) population, the size of population and the typical membranal diffusion rate can be

defined. Each property value in the simulation is configured using a uniform distribution

(defined by minimum and maximum values) that is assigned to each cell randomly. This reflects

the inherent heterogeneity of a biological system.

Each cell can be set to react in response to three types of events: (a) binding of a receptor

on its surface to a neighboring membrane-bound molecule for a cell-cell interaction, (b)

“sensing” the concentration of a certain molecule near a receptor, and (c) “sensing” the average

concentration of a certain molecule around a cell.

Following each of these events and based on a set of rules, cellular reactions are induced:

(a) secretion of molecules, (b) a change in the expression level of membranal proteins, (c) pro-

liferation (mitosis), and (d) apoptosis. The combination of one or more events that result in one

or more applied actions is referred to as a “rule.” Rules are the mechanisms with which

changes in the cell’s properties are introduced in the simulation.

Apart from the cells and receptors, the medium of the simulation is also specified. This

medium may be a petri dish containing a substrate that sustains the cell or an organ or part of

the organ that contains an extracellular medium. Several biological “regions” can be defined

per each simulation (e.g., lymph node, thymus, inflammation micro-environment, etc.) and can

be connected via “bridges.” Bridges allow cells to migrate across regions. In each region, dif-

ferent initial conditions may be specified, including the size of the region, the composition of

soluble molecules in the medium, and the size of the bridges.

Creating a simulation

Creating a new simulation in the system is done using a GUI in Unity3D. During the ini-

tialization process, the user selects and characterizes1 the extracellular medium (including the

size of the region and the soluble molecules that inhabit it) [Figs. 1(a) and 1(b)],2 the cells that

participate in the simulation (including the size of population, velocity, and receptor expression

profiles) [Fig. 1(c)], and3 the rule set that dictates how cells interact with other cells and with

the medium [Fig. 1(d)].

While the rules defined in the simulation (see above) represent the biological mechanism

of the simulation, biophysical laws are implemented independent of the rule set and modelled

entities and are calculated continuously (at significantly smaller intervals). These include the

diffusion of soluble molecules in the extracellular fluid and migration of receptors along the

cell surface.

Visualization of a simulation

Once the simulation is executed, the user can observe it as it is animated in real-time in

3D or via a textual output. The animated view is meant to emulate the experience of observing
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cellular activity under the microscope, see Fig. 2. At the default magnification, the animated

objects include the cells that participate in the simulation. At higher levels of magnification,

single membranal proteins are visible as they diffuse and migrate on the cell surface. The cell

objects are animated in real-time, reacting to the back-end engine as it executes the simulation.

Each of the cell’s actions, such as death, proliferation, and “scanning” of another cell, are rep-

resented by a custom-tailored animation which was designed based on videos of cell micros-

copy; these animations are not movie clips prepared in advance but real-time, context-based

morphing of the three-dimensional mesh which is the skeleton of the cell model. This morphing

directly influences the outcome of cellular interactions, as membranal receptors’ positions

change as the cells morph. We are currently working on algorithms that calculate complex

FIG. 1. Initialization process using a GUI. (a) Design of the microenvironment of the simulation: its size, the number of

compartments (referred to as “regions”), and the number of routes between regions, (b) selection of soluble molecules that

inhibit the extracellular medium, (c) selection and adjustment of cell populations that take part in the simulation along with

their membranal proteins, and (d) creation of the rules that define the interactions in the simulation.

FIG. 2. Screenshots from the simulation which depict several graphical features. (a) Cell division, (b) receptors migrating to

the immune synapse in order to bind, (c) a cluster of cells which creates a tissue-like structure, and (d) graphs that display real

time data from the simulation (on the left, the number of cells in each monoclonal population; on the right, a Fluorescent

Activated Cell Sorting (FACS) plot).

026107-6 Liberman et al. APL Bioeng. 2, 026107 (2018)



directional diffusion on the cell surface using the mesh, use the position of membranal receptors

in the determination of the fate of cell interactions, and aim to publish the results soon.

Real-time visualization grants the user control over different aspects of the simulation. First,

the user controls the timeline of the simulation: stop, play, rewind to any point in time, fast for-

ward, and run it frame by frame. To view the simulation, a “camera”—a user-controlled window

onto the simulation—is available. The user may move the camera in space, rotate, and zoom it

in and out. By moving and zooming the camera at will, one can shift in real-time between a

comprehensive view of the simulation with all implemented cells and a more intimate view of

an immunological synapse, which is simulated according to user-defined rules and biophysical

laws. Such a view may help to elucidate emergent behavior at the receptor level.

The user may change the course of the simulation by injecting soluble molecules at different

concentrations into a region’s medium. In addition, numerical data on the simulation are avail-

able in real-time by displaying: (a) FACS plots (to get receptor distribution on a monoclonal cell

population) and (b) the number of cells from each monoclonal population [see Fig. 2(d)]. While

the simulation is running, each event registers an on-screen alert, with an option to move the

camera and examine the event up close or drop a marker on the timeline to return to it at a later

time. See Fig. 3 for a move clip of the design and visualization process (Multimedia View).

It is difficult to estimate the duration the system takes to generate a simulation since it is

heavily dependent upon the number of cells, membranal receptors, soluble molecules, and rules

created in each simulation run. A rule of thumb would be that on a mid- to high-end computer

with a modern GPU, a model containing 1000 cells each having 1000 receptors, with about 20

user-generated rules, can be simulated at a 1:1 ratio to real-time. This means that it would take

the system 1 s to generate 1 s of simulation (which is also equivalent to 1 “biological” second).

A “batch mode” is available and may be used to run multiple instances of the simulation

with a range of parameters. The user may select to change certain parameters across many oth-

erwise identical simulations to learn about the effect these parameters have on the modelled

system. The output of the batch mode is textual, including “snapshots” (generated in intervals

of 30 s) that detail all cells (with positions), user-defined rules that were registered, and quanti-

ties from the simulation. If one of the instances of the simulation is found to be particularly

interesting, it can be re-executed and visualized for in-depth inspection.

A simple validation simulation on Cell Studio

To provide initial, high level validation, we compared trends and results from a simulation

executed on Cell Studio to a corresponding simulation on an already validated system. For that,

FIG. 3. A video clip exhibiting design and execution of an experiment on Cell Studio. Featured in the order of appearance:

creating a simulation, visualization of a simulation, injecting soluble molecules into the extracellular medium in mid-

simulation, cell animations, diffusion of membranal proteins on the cell surface, and live plots during simulation.

Multimedia view: https://doi.org/10.1063/1.5039473.1
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we have referred to the work by Prokopiou et al. on the Compucell simulation system.54 In this

work, Prokopiou et al. describe a 2D simulation of an immune response to viral infection that is

controlled by CD8 T-cells upon interaction with Antigen Presenting Cells (APCs). Their model

included the activation of T-Cell Receptor (TCR), leading to differentiation of na€ıve CD8 T-cells,

Soluble factors that take part in their model included the Il2 and the T-bet, a T-cell-associated tran-

scription factor. Apoptosis of the infected cells was induced in their model by the action of cas-

pases and by Fas-Fas ligand interactions (cell-cell contact). Their model was compared with data

from C57B1/6 mice infected by intranasal H1N1 transferred with F5 cells 24 h prior to infection.

CD8 responder T-Cells were assessed by flow cytometry, based on CD8, CD45.1, and CD45.2

expression. The model included the kinetics during the first days of infection (up to day 5).

In translating the above simulated experiment to terms executable on Cell Studio, we have

kept as many parameters possible identical. Since the work against which we compare Cell

Studio uses CompuCell in 2D, while Cell Studio simulates a 3D space, we have adapted the spa-

tial parameters to fit our model. We have used a configuration of a single compartment, with a

volume of 75 lm3, simulating a lymph node. The compartment inhabits two cell populations: 3

APC cells with a radius of 10 lm3 and an average speed (random movement) of 0:1 lm=min and

30 CD8 T-cells, with a radius of 1 lm and an average speed of 0:75 lm=min. Each APC cell

expresses two membranal protein populations: Major Histocompatibility Complex (MHC)-I and

CD80 receptors, while each CD8 T-cell expresses populations of IL2R, FasR, FasL, CD28 TCR,

and CD8 TCR. Both cell populations proliferate and undergo apoptosis at rates corresponding to

the above experiment. The full specification is given in the supplementary material.

The dynamics of the simulation are determined by the system of rules of events and

actions. Three rules have been created, representing the interaction of a Na€ıve T-cell with APC

which moves it through the pre-activated and activated CD8 phases, the activation of the CD8

T-cell after interaction with an APC (increase in expression of several receptors, higher chance

to proliferate and die), and self-regulation of T-cells.

Figure 4 shows a snapshot of an interaction between an APC (green) and a T-cell, taken

during a real-time visualization of the simulation. A plot of results of the simulation can be

viewed in Fig. 5. It may be seen that the trends and numbers are similar to those obtained by

Prokopiou et al.

FIG. 4. A snapshot of Cell Studio taken during a simulation run, where an activated APC (green) is in the process of anti-

gen presentation with a Na€ıve T-cell (purple). The T-cell has begun forming the immune synapse with TCRs while scan-

ning the APC (red arrow). Diffusing membranal receptors on the cell surface may be noticed: on the APC, the MHC

complexes are in green, while the CD80 receptors are in light blue. The T-cell displays CD8 T-cell receptors in purple and

CD28 receptors are visible in light green.
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DISCUSSION

We have developed a hybrid, cellular-level, general-purpose platform for modeling and

simulation of immunological processes. The platform includes a user-friendly GUI to facilitate

parametrization of a model. The model can be then simulated in two ways: either run as a sin-

gle simulation in real-time, interactive 3D or as a series of simulations with a range of parame-

ters in a non-graphical manner with a textual output (“batch mode”). The results can be plotted

in real-time during the simulation. The platform includes an implementation of an extracellular

medium with diffusing soluble molecules.

We have created a relatively simple validation experiment, which includes two cell popula-

tions with multiple membranal protein populations and several rules. Parameters were set

according to a similar simulation created on CompuCell (itself validated against results from a

“wet” experiment). We have received results which greatly resemble the results of the experi-

ment. We treat this result as an initial “sanity check” of the simulation.

In our continuing efforts to create and validate further modules of Cell Studio, we have

recently completed a module that simulates the diffusion process of membranal proteins on the

cell’s surface, together with recycling processes (endo- and exocytosis). As a result, we are able to

implement a more biologically accurate model of juxtacrine (cell-cell) signaling. We have vali-

dated this module against a mathematical model of such processes from the literature, itself vali-

dated against in-vitro data (in preparation).55 This module (of which an in-depth description

extends beyond the scope of this article) is pivotal for future simulations, while serving as another

example of the way simple interactions lead to complex spatio-temporal dynamics in multi-cellular

systems.

These examples of validation simulations are based on relatively simple scenarios that take

into account as few parameters as possible. Due to the complexity of biological systems, these

are the types of validation experiments that we believe are needed. Otherwise, the inherent

uncertainty and inaccuracy in the value of parameters (most biological parameter values

required for simulation are extremely hard to obtain or are unknown), specifically in an elabo-

rate scenario, may lead to misleading results that take away from the validity of the simulation.

Enabling real-time 3D visualization in the simulation introduces two main advantages for

the researcher: (a) visualization is highly important to encourage intuition and understanding of

the modelled emergent behavior. We see animated visualization of a simulation as an optimal

multi-dimensional representation of data; for certain types of processes, it carries more informa-

tion than any other representation of data and facilitates gained insight. Of course, detailed plots

FIG. 5. Level of all CD8 cell counts in simulation vs. the Mouse data of Prokopiou et al. The simulated data are the average

of nine simulations, with the standard error for error bars. The number of T-cell increases with time.
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of simulation results must also be displayable. (b) Interacting with a system is an instinct for

researchers—intervening in the case of unintended or interesting behavior: system problems,

surprising outcomes, or any irregular phenomena. The researcher may pause, rewind, or fast

forward the simulation at any point, run it step by step, and control the simulation “camera.”

The ability to rewind gives the simulation a “debugging” ability. Should a certain unintended

event take place (all events are registered on-screen as they occur and may be marked on the

timeline), the researcher may stop the simulation, inject a different molecule to the medium,

and re-simulate what occurs under an alternate experimental route—this can be repeated until

the desired outcome is achieved, leading to efficient online parameter optimization. We believe

these two advantages—which accompany real-time 3D visualization—may aid in bridging the

gap between modelers and domain experts.

The development of front-end interactive visualization requires several programmatic fea-

tures: (a) development IDE—which centralizes all programming efforts, assets, and supports

resource load debugging (i.e., to identify memory and CPU bottlenecks), (b) a code editor that

supports a programming language and framework (this inherently includes many features like

networking support, file system support, etc.), (c) graphical abilities for simulation rendering,

(d) support for spatial, physics-based programming (we include in this, for example, the mesh

on which the cell “skin” is laid), (e) GUI tools, which enable creation of on-screen controllers

for real-time interaction during a simulation run, and (f) animation creation tools. Electing to

use the Unity3D game engine as our front-end development environment has readily provided

us with all these features and many more. Unity3D is also a cross-platform—deployable on

almost any operation system. Beyond the natural choice of using a game engine for its available

tools and benefits, it is important to note that an agent-based biological model is in many ways

very similar to a computer game—it includes many actors of different properties and abilities,

all of which act according to their own current state and local environment, and all together are

subjected to environmental constraints.

We aimed for resource exhaustion when building the back-end algorithm of the system.

For this, we utilized non-graphical GPU programming using CUDA. Since the GPU is built

differently from the CPU, it is able to handle parallelization of basic tasks better. Such is, for

example, the calculation of diffusion in the medium. Dividing computational load between the

CPU and GPU enables better usage of both and so to enable larger simulated compartments

and more simultaneous entities in the simulation. To achieve scalability for the system, we

have employed a client-server architecture with constant communication between sides. The

“server” can be deployed on a cluster in the “cloud” to utilize larger computational resources

and reduce load from the researcher’s client computer, which may not be able to handle the

steeper computational requirements of the system. Moreover, cloud architecture offers load

balancing which frees new resources when needed, enabling ad-hoc scaling of the back-end for

specific tasks at specific times.

The inclusion of simulation of the extracellular medium—and specifically existence and dif-

fusion of soluble factors—is important for two key processes in the simulation: non-juxtacrine

cell-cell signaling and cell chemotaxis according to molecule gradients (which is currently in

development). This inclusion of the constant biophysical law calculation in the simulation and

combination with the biological, user-defined rules (which are calculated over longer intervals)

enable many resulting phenomena to occur. For example, a given biological rule might dictate

that a cell secretes a certain antibody in response to stimuli, and diffusion dictates its dispersion

in the extra-cellular medium and at what concentration will this antibody reach another cell—

this may, for example, yield the expected immune reaction to an invasion of a pathogen to the

system.

In order to facilitate modelling of interactions occurring in multiple sites, we introduced

the concept of bridges. In many physiological processes and pathologies, multiple distant tissues

are involved and cells operate in more than one niche. This, however, does not imply that in all

these cases an in-silico modeling of a whole organism is needed. The essence of a multi-site

interaction is in many cases the migration of cells across tissues, using “bridges.” Modeling a

connecting bridge is characterized by the probability of migration of a cell and some delay and
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bypasses the need in modeling whole organs, with enormous complexity. A bridge can describe

the functional connectivity of an inflamed tissue and a lymph node, thereby allowing the migra-

tion of lymphocytes across these tissues or the connectivity to two distant tissues, allowing

migration of a neoplastic cell from one localized tumor to a site of a new metastasis.

The two modes of operation (batch mode to run multiple simulations in series and ani-

mated visualization of a single run) can be integrated for optimal results: a set of simulations

may be run and particularly interesting runs are observed. It should be noted that the future use

of such an integrated mode would require finding ways to identify, among a large set of simula-

tions, the ones that might be of special interest and that require further investigation.

A known problem in the field of biological modeling is the “gap” between the experimen-

talist (e.g., biologist), who often is not versed in programming and is not accustomed to using a

computer for experimental needs, and the modeler (e.g., computer scientist), who is not the

“domain expert” (see Introduction for further references). We aim to bridge this gap using a

user-friendly GUI for simulation creation, built specifically to be approachable to casual users

with no need for any programming knowledge. Using the above described system, of selecting

cells, soluble molecules for the medium, and rules for the simulation, we expect the GUI—

together with the visualized simulation—to aid in easing access to the system.

Several important challenges still remain for future development of the system. First, we

plan to add an intracellular component (e.g., intracellular pathways, signaling and expression of

some factor) to the simulation, by adding support to an existing intracellular modelling system,

similar to Ref. 24. We aim to add support to the shared modeling format, Systems Biology

Markup Language (SBML).56 SBML was not initially incorporated due to the added overhead

in integrating it prior to the basic validation needed for this system. This is an important step in

utilizing the growing library of models created by the systems biology community. We also

continue to integrate further biophysical modules we see as critical for simulation of immuno-

logical scenarios, such as the above-mentioned chemotaxis.

We believe that it is important to design and build the simulation to be extensible, sharing

not only complete specification of processes and models (possibly using SBML) but also single,

fully specified and parameterized entities from the model, e.g., a cell population of a certain size

distribution, together with their membranal proteins, biophysical properties, and even graphical

representation (including mesh and texture). The use of such premade simulation assets (known

as “prefabs” in the game engine jargon) may expedite the arduous work of parametrization of a

simulation and help to recreate simulation conditions for comparison between researchers. It

should also be noted that any vision as vast as creating a system for modeling and simulation of

an immunological system must include in it the basis for a community of users, sharing knowl-

edge and assets. This can be encouraged by creating a hub (e.g., a website or web forum—we

aim to add features to our current website at www.cellstudio.info) for asset sharing.

METHODS

System architecture

Cell Studio is built in a client-server architecture, which is separated into three logical

modules (Fig. 6): the client, the server, and the file system, which holds the data frames. The

server runs the main simulation engine, constantly calculating the positions of cells and mem-

brane proteins, diffusion of soluble molecules in the medium, chances of interaction of two

cells and results of tested rules—which contain conditions posed on elements on the simulation.

The output of the engine is saved in data frames, each containing a snapshot of a single time

point of the simulation. Data frames are saved on the file system and sent to the client.

Graphical processing is conducted on the client side, where the game engine parses data frames

and displays the simulation (cells, receptors, timeline, etc.) accordingly. Control commands are

sent directly to the server. This architecture can accommodate different setups: all the modules

may run on a user’s computer or the server and its created data frames may be hosted in the

“cloud.” Using the latter architecture enables scaling of the system under heavy processing load

so that more intensive calculations (e.g., more cells per simulation, more detailed cell models,
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more regions, etc.) may be allowed without changes to the simulation code. This architecture

also removes the requirement of a high-powered computer from the end-user.

The back end

General

The backend is implemented in Cþþwith some elements written in CUDA51 to be per-

formed on the GPU for improved performance. While the CPU contains few cores optimized to

handle complex calculations, the GPU contains many cores optimized to handle simple calcula-

tions. This makes it better suited to handle parallelized tasks like computation of diffusion in

many grid points from many injection points and receptor movement (a simple computational

action for thousands of elements). Elements written for the GPU are written to scale, using as

many GPU cores as needed per calculation.

After a model is created, it is saved onto an XML file (formatted using a custom, Cell

Studio specification), and maintained as a data structure in Cþþ. Subsequently, each of the bio-

logical entities (cells, receptors, and regions) is implemented as a separate instantiated class

(agent) which the simulation engine places in a single virtual 3D space. The engine also con-

trols the time axis and handles the calculation of the logical components (rules, events, etc.).

Space and diffusion

An important feature of the Cell Studio framework is modeling of an extracellular medium

and specifically diffusion of soluble molecules in three-dimensional space. To model the

medium, we use a grid of cubes with a volume of 1 lm3. Each grid cube can contain all recep-

tors specified during the experiment initialization phase, at different concentrations. When a

receptor’s level in a grid cube falls beneath a value that is considered too low to generate any

cellular response, it is marked and saved as C1. Cells are able to react to molecule concentra-

tions in grid cubes that they intersect with. As cells move in 3D space freely, unbound to the

grid, they may intersect with several cubes at once; the level of molecules from all intersecting

cubes is sampled to test for conditions of relevant user-generated rules at each time step.

For the diffusion calculation, we employ the classic Gaussian diffusion equation and

continuously calculate the concentration of each molecule per each cube. When some soluble

molecule concentration is injected (or secreted) into a grid cube, the simulation calculates the

dispersion of the material to each adjacent cube up to a point in time and space where the con-

centration of the material is close enough to its value at infinity, C1. The higher the molecule’s

diffusion value (and interchangeably, the larger the injected concentration), the larger the diffu-

sion cloud will grow on the grid and the longer it will take it to reach C1.

Cells are treated as perfect spheres. As such, the position of the cell’s center together with

its radius is sufficient to calculate collisions between cells. For diffusion purposes, the grid

FIG. 6. Architecture of the system. The system is separated into three modules—client, server, and file system. The server

hosts the engine which runs the simulation and saves data frames, which are sent to the client, parsed, and translated into a

graphical representation of the simulation.

026107-12 Liberman et al. APL Bioeng. 2, 026107 (2018)



cubes that the cells occupy can also be occupied by soluble molecules, i.e., the diffusion calcu-

lation disregards the existence of cells, both in terms of soluble molecules diffusing into the

volume they occupy and in terms of the drag they induce by moving in the extracellular fluid.

This was necessary to enable the highly complex diffusion calculation in real-time, while still

allowing modeling the effect of high concentrations of cells.

The simulation contains various user-generated rules in which a certain level of a soluble

molecule near a cell is required. This mechanism effectively implements cell to cell communi-

cation for both direct and indirect interactions. The calculation of the concentration of mole-

cules in each cube which pertains to these rules is implemented in the GPU, where the effect

of the diffusion is calculated in parallel for each involved injection point (i.e., a point in the

grid which is a source of soluble molecules, such as a cell secreting molecule or an external

injection by pipette). The calculation is done in a “just-in-time” manner so that the molecule

level will only be calculated for rule evaluation when (and if) needed.

Figure 7 outlines a 2D rendering (projection of a 3D original) of molecular levels in the

cube marked with a question mark, in which levels will only be calculated if a rule needs to be

evaluated for that grid cube at that specific point in time. Thus, if a cell which was initialized

to have a rule with conditions which depend on the level of soluble molecules in the surround-

ing medium, upon each calculation of the rule, local diffusion will be calculated. The calcula-

tion is parallelized in the GPU by taking into account only “molecule secreting centers” (here

A and B) which are close enough to have their molecules diffuse into the calculated area. The

cumulative amount is calculated and used to evaluate the rule.

Membranal proteins

Receptor (and other membranal proteins) movement is currently for visualization purposes

only and is calculated by moving the receptor object along the mesh of the cell object (the

mesh can be thought of as “train tracks” for the receptors). Movement either occurs randomly

or follows a calculated path towards a “sink point” on the object (a sink point might be, for

example, an immunological synapse).

Cell-cell interaction

Cells may directly interact in the simulation. Successfully interaction serves as a condition

for user-generated rules. Successful cell-cell interaction and signaling are determined by a con-

dition on the number of relevant membranal proteins and the size of each cell. When two cells

come close enough for a possible reaction, a linear combination of these parameters sets the

probability for the reaction to occur.

FIG. 7. An illustration of the calculation of diffusion. To conserve computational resources, molecule levels are only calcu-

lated for the grid cube marked with a question mark if it is required for calculating the result of a rule, and the calculation

will take into account only grid cubes which contain molecules that might affect the calculation of the rule. This is referred

to as a “just-in-time” calculation.
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The front end

The user interface (or “front end”) of the simulation, for both the simulation parameter ini-

tialization and the visualized simulation run, is built using a game engine. We have selected to

use Unity3D (Unity Technologies, San Francisco, CA, USA)52—currently the most widely used

game engine53—for its graphical, scripting (using C#), network, and physics-based tools, as

well as being a cross-platform (i.e., easily compiled and deployed on most computer platforms).

To visualize cells, we used a set of freely available, premade cell models. A model is made up

of a mesh—a three-dimensional structure—and its “skin,” the graphical texture for the mesh.

Cell animations are prepared prior to the simulation run. These are not recorded animation clips

but a set of directions that readjust and animate the mesh in real-time according to constraints

and conditions set on the cell. These directions are created via the MegaFiers Unity package.

The GUI is built using Unity3D GUI tools, which simulate a 2D canvas over the 3D simula-

tion. Graphs are plotted using the Graph Maker Unity package.

Ethical approval for this work is not required.

SUPPLEMENTARY MATERIAL

See supplementary material for a detailed specification for the validation simulation (see

the section on A simple validation simulation on Cell Studio under Results).
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